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ABSTRACT 
Pressurized irrigation systems are widespread among other alternatives in 

Mediterranean countries. Since the initial investment costs of pressurized 

irrigation systems are quite high, it is crucial to determine design 

parameters such as pipe diameter. Most of the current optimization 

techniques for pipe diameter selection are based on linear, non-linear, and 

dynamic programming models. The ultimate aim of these techniques is to 

produce solutions to problems with less cost and computation time. In this 

study, a novel approach for determining pipe diameter was proposed 

using Artificial Neural Networks (ANN) as an alternative to existing 

models. For this purpose, three pressurized irrigation systems were 

investigated. Different ANN architectures were created and tested using 

hydrant level parameters of the irrigation systems, such as irrigated area 

per hydrant, hydrant discharge, pipe length, and hydrant elevation. 

Different training algorithms, transfer functions, and hidden neuron 

numbers were tried to determine the best ANN model for each irrigation 

system. Using multilayer feed-forward ANN architecture, the highest 

coefficients of determination were found to be 0.97, 0.93, and 0.83 for 

irrigation systems investigated. It was concluded that pipe diameters 

could be determined by using artificial neural networks in the planning of 

pressurized irrigation systems. 

 

Keywords: Machine learning, Optimization techniques, Irrigation water management, Network performance analysis, Hydraulic parameters  

 

 

1. Introduction 
 

Limited water resources impose people for modernizing irrigation systems to provide equal rights to all users and to save water. 

One of the main reasons for not using water effectively in irrigation networks is that water losses are very high in the systems. 

In light of this fact, initially, water-saving measures should be taken thoroughly in agriculture. Firstly, it is imperative to install 

water transmission and distribution systems that will minimize water losses. Therefore, pressurized irrigation systems instead of 

open channel systems must be established in new irrigation projects. 

 

The design of pressurized irrigation systems is a complicated, and time-consuming process. For this reason, many hydraulic 

parameters and factors must be considered. This process consists of mainly five stages: (1) optimization of network layout to 

reduce total cost of network, (2) hydrant discharge calculation considering plot sizes (3) determination of design flow each 

pipeline, (4) calculation of the optimum pipe size diameters to minimize the investment and energy costs, (5) network 

performance analysis for different operating conditions to specify the potential supply failure situations of the network or of the 

pumping plant (Alandi et al. 2007). 

 

The initial investment costs of pressurized irrigation systems are relatively high. A reason for this might be that the majority 

of the expenses are vastly spent on pipe costs. Since the size of the pipes is directly related to the pipe prices, the selection of the 

optimum pipe diameter is significant in terms of both project cost and system performance when designing the network. 

 

With advances in computer technology, optimization techniques have been used by many researchers to solve complex 

equations and the design of hydraulic parameters efficiently. The classical optimization techniques such as linear programming 

(LP), non-linear programming, and dynamic programming have been commonly used for many years. Especially in large and 

complicated network systems, classical optimization techniques can be time-consuming to find an optimal solution. Therefore, 

metaheuristic optimization techniques have been proposed, such as Genetic algorithms, simulated annealing, tabu search, ant-

colony optimization, and harmony search (Schaake & Lai 1969; Alperovits & Shamir 1977; Lansey & Mays 1989; Simpson et 

al. 1994; Cunha & Sousa 1999; Geem et al. 2002; Maier et al. 2003; Cunha & Ribiero 2004). 
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Artificial Neural Network (ANN) is a machine learning method gaining popularity for solving complex problems in recent 

years. Unlike many machine learning methods, the core idea behind ANN is to reveal the hidden interactions between features 

(variables) that consist of the data. An ANN learns by using numerical values that can be observed or experienced previously. 

Accordingly, they can predict the data that the ANN model has not seen before with its hidden network structure. This approach 

allows the ANN to simulate the biological nervous system. An input layer of the ANN contains neurons corresponding to the 

number of features in training data. Target output values are represented by one neuron in an output layer. Hidden layers are 

located between the input and output layers. Neurons collect information that reaches them via transfer functions and transmit it 

to the subsequent neurons they are connected to (Omid et al. 2009). ANNs can reveal potential and hidden correlations between 

the variables that make up the data. Contrary to conventional models, an ANN model can produce satisfactory results even if 

there are several miscalculated neuron weights. In addition to these advantages, ANN models also can learn using the outputs of 

multiple traditional models looking for a solution to the same problem, thereby producing better predictions by combining the 

solving power of different models. ANN-based approaches were reported for possible solutions to various issues in non-

agricultural water networks. One of the problems that were tried to be solved with ANN was to detect bursts and leaks in urban 

water networks (Mounce & Machell 2006; Arsene et al. 2012). Besides, some efforts were reported for non-agricultural purpose 

water networks such as assessment of the water flow rate and pressure losses (Czapczuk & Dawidowicz 2018; Dawidowicz et 

al. 2018), pipe failure detection (Shirzad & Safari 2019), and infrastructure aging risk assessment (Cantos & Juran 2019). As of 

preparing this paper, there was only one study accomplished by Dawidowicz (2018) investigating to determine pipe diameters 

based on ANN for urban water networks to the best of the authors’ knowledge. However, the literature was in lack of optimization 

techniques in determining pipe diameters for agricultural irrigation networks using ANN.  

 

The aim of present study was to investigate the possibilities of determining the pipe diameter, which is an important system 

design parameter in pressure irrigation systems using ANN as an alternative to the currently used models. For this purpose, three 

different pressurized irrigation systems operated with the on-demand method were selected, and different ANN architectures 

were created and tested with the hydrant level parameters of the system such as irrigated area, hydrant discharge, pipe length, 

and hydrant elevation above sea level. 

 

2. Material and Methods 
 

2.1. Study areas 

 

In this study, three different sized pressurized irrigation system data were used to re-estimate pipe diameters with ANN: (1) 

Gulluce-Dolluk; (2) Devecikonagi; and (3) Yolcati. The Gulluce-Dolluk and Devecikonagi pressurized irrigation systems are 

located within the Mustafakemalpasa district's borders in the Marmara Region, 90 km from Bursa city center. These systems 

supply irrigation water from Devecikonagi Dam (Figures 1 and 2). The Devecikonagi pressurized irrigation system's irrigation 

water is taken from the Devecikonagi Dam via the transmission line and pumped to a water collection pool at the highest point 

(103.6 m) of the irrigation area by using a pump. A pressurized pipe irrigation system then delivers water to the hydrants from 

the water collection pool. The Yolcati (Gobelye) pressurized irrigation network is located in the Marmara Region, 20 km from 

Bursa city center, within the boundaries of Bursa Uludag University Campus in Turkey (Figure 3). The Yolcati Pond is used for 

irrigation purposes of Bursa Uludag University, within the Nilufer District of the central Bursa. Irrigation water is conveyed to 

hydrants with a piped irrigation system by pumping from the sluice gate to the reservoir located on the highest point of irrigation 

area by two electro pumps. Then it is distributed to the irrigated area from the reservoir with the help of gravity. The properties 

of three different pressurized irrigation systems used in this study are shown in Table 1. 

 
Table1-The properties of pressurized irrigation systems used in this study. 

 

           Study areas 

 

System parameters 

Gulluce-Dolluk Devecikonagi Yolcati  

Coordinate 40° 10' N, 28° 23' E 39° 54' N, 28° 34' E 40°02′ N, 28°23′ E 

Irrigated area (ha) 5820 360 125 

Discharge (l s-1) 5035 528 217 

Upstream elevation (m) 77 103.6 140 

Total hydrant number 741 63 54 

Pipe material HDPE (High-density polyethylene) HDPE HDPE 
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Figure 1- The layout of Gulluce-Dolluk pressurized irrigation network 

 

 
 

Figure 2- The layout of Devecikonagi pressurized irrigation network 

 

 
   

Figure 3- The layout of Yolcati pressurized irrigation network 

 

2.2. Software 

 

The use of ANN requires the preparation of data with an appropriate number of training examples. For this purpose, hydraulic 

data was collected from three different pressurized irrigation systems, and hydraulic calculations were made to create the 

training data for ANN. For this reason, COPAM (Combined Optimization and Performance Analysis Model) software, by 
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Lamaddalena & Sagardoy (2000), was applied. The ANN models were implemented and tested with Matlab (2020a, The 

MathWorks, Inc., Natick, Massachusetts) software. 

 

2.3. Hydraulic calculations 

 

Three different configurations are available with COPAM; calculation of discharge, calculation of pipe diameter, and analysis. 

There are two modules (Clément and random) in the structure of discharge calculation, a module (optimization) under the 

structure of pipe diameter calculation, and two modules (configurations and hydrants) under the analysis structure. In COPAM, 

pipe diameters are determined using an optimization process called Labye’s iterative discontinuous method (ELIDM), which is 

an extension for several flow regimes models (SFR) (Labye 1981; Ait-Kadi et al. 1990). Further details about COPAM software 

can be found in Lamaddalena (1997), Lamaddalena & Sagardoy (2000) and Calejo et al. (2008).  

 

COPAM has a software module for calculating an irrigation network's optimum pipe diameter under several different flow 

configurations and single flow regime conditions. ELIDM, used by COPAM, implements linear programming methods to cover 

several different flow regimes.  

 

The ELIDM model uses the Darcy equation to calculate the pipes' friction coefficient (Eq. 1). 

 

𝑌 = 0.000857 (1 + 2𝛾𝐷−0.5)2 𝑄2𝐷−5 𝐿 = 𝑢 𝑄2 𝐿                                                                                                                    (1) 

 

Where; 𝛾, roughness parameter of Bazin (expressed by m0.5); 𝑄, pipe discharge (m3 s-1); 𝑢, dimensional coefficient of 

resistance (m-1 s2); 𝐿, the length of pipe (m). Bazin's roughness coefficient was taken as 0.05 for HDPE pipes used (Lamaddalena 

& Sagardoy 2000). AKLA model was used for each hydrant’s reliability analysis according to a minimum pressure head Hmin 

of 25 m. 

 

2.4. Artificial neural network (ANN) 

 

In this study, multi-layered feed-forward artificial neural network structures were employed to determine the pipe diameters of 

pressurized irrigation systems. While designing the prediction models, one hidden layer was used along with an input and an 

output layer since a hidden layer is enough to solve many complex problems. The use of more than one hidden layer is required 

in rare cases. However, this situation would cause the network to learn excessively and negatively affect the ability to generalize 

( Wang & Paliwal 2006; Nazghelichi et al. 2011). Different training algorithms can be used to update neuron weights in ANNs. 

The training algorithm used may affect the performance of ANN (Beale et al. 2014). Therefore, in this study, four different 

training algorithms were employed to determine the best ANN architecture that provides the highest prediction success in 

irrigation networks tested. The training algorithms used in the experiments are shown in Table 2 (Garg & Bansal 2015; Pakalapati 

et al. 2019). 

 
Table 2- The training algorithms used in the experiments 

 

Training algorithm Abbreviation 

Bayesian regularization backpropagation Trainbr 

Levenberg-Marquardt Trainlm 

Resilient backpropagation Trainrp 

Scaled conjugate gradient Trainscg 

 

The number of neurons in the hidden layer plays a crucial role in the creation of ANN models. There is no generally accepted 

rule for determining the number for ANNs. However, in a few studies, empirical methods were established to determine the 

number of neurons (Heaton 2015; Priddy & Keller 2005). In this study, while creating ANN architectures, the numbers of neurons 

up to 40, with five intervals starting from five, were tried. Their performances in predicting the diameter of network pipes were 

investigated. Another factor that affects ANN performances is the transfer function. While the linear transfer function was used 

in the output layer of the ANNs created, the tangent-sigmoid and logarithmic-sigmoid transfer functions were employed 

separately in the hidden layer. Table 3 shows the ANN architectures employed in the present study. The equations of these 

transfer functions are given in Eq. 2, 3, and 4 (Lertworasirikul & Tipsuwan 2008). 

 

logsig(𝑥) =
1

(1+e−𝑥)
                                                                         (2) 

 

tansig(𝑥) =
2

(1+e−2𝑥)
− 1                                                                                     (3) 

 

purelin(𝑥) = 𝑥                                                                                      (4) 
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Table 3- The ANN architectures employed in the present study 
 

 Training algorithm 

  Trainbr Trainlm Trainrp Trainscg 
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The hydraulic data of Gulluce-Dolluk, Devecikonagi and Yolcati irrigation networks were used in the training and testing of 

the ANNs. The variables used in the training of the ANNs were start point, end point, irrigated area (ha), hydrant discharge (l s-1), 

pipe length (m), and hydrant elevation (m). Assuming that each variable used affects determining a pipe diameter, the ANN 

models were expected to use hidden correlations between variables in deciding a proper diameter of a pipeline. Figure 4 shows 

a representative model of the ANN scheme concept in the study. There were 741 hydrants and nodes data in the Gulluce-Dolluk 

irrigation system, 63 in the Devecikonagi irrigation system, and 54 in the Yolcati irrigation system. For each irrigation system, 

there were 3 data sets, namely, training set (50% of total data), validation set (25%), and test set (25%) (Sigtia & Dixon 2014; 

Ucar et al. 2020). Those data sets were constructed randomly before the experiments. During the networks' training, the training 

and validation sets were used to update the neuron weights. The prediction performances of the trained ANN were evaluated 

using the test data set that the network had never seen during the training phase. Since the variable value ranges were quite 

different for each variable, before training, all the variables were normalized in the range of 0 to 1 to increase the prediction 

success. Matlab initializes the neurons' weight values randomly at the beginning of the training of any network. This causes each 

training to yield a different prediction model, even if the number of hidden layers and other network parameters remain 

unchanged. To cope with this variation, a constant random state was used to give all ANN models experimented equal chance. 

 

 
Figure 4- A hidden layered feed-forward ANN model 

 

In the ANN models' training, mean square error (MSE) was used as a performance function. The error goal and the maximum 

number of epochs were set to 0.001 and 1000, respectively. In the experiments, to prevent overfitting, a training process stopped 

when the error goal was reached, the course of the validation error remained constant, or the validation error did not decrease 

over five iterations. The best ANN models were determined in predicting pipe diameters based on the highest determination 

coefficient (R2), the lowest root mean square error (RMSE), and the mean absolute percentage error (MAPE) values for the test 

data set. 

Start node number 

End node number 

Irrigated area (ha) 

Hydrant discharge 

(l s-1) 

Length of pipeline 

(m) 

Hydrant elevation 

(m) 

Weights wij 

Weights wic 

Pipe 

diameter 

Input layer 

Hidden layer 

Output layer 
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3. Results and Discussion 
 

In the experiments, three real-world irrigation networks were investigated. A total of 64 different ANN architectures were 

employed for each irrigation network using eight different neuron numbers, four training algorithms, and two activation 

functions. Thus, the most successful ANN models were determined for each irrigation network. 

 

3.1. The gulluce-dolluk pressurized irrigation system 

 

A total of 741 available network sections were used for training and testing the ANN models based on the Gulluce-Dolluk 

irrigation network. Table 4 shows prediction successes on 185 test samples of ANN models tested with different model 

parameters. According to the results, the best prediction performances were observed using the ANN models with the trainbr 

algorithm and 15 neurons. Both transfer functions yielded very similar performance metrics. The R2 value was obtained as 0.97 

for both transfer functions providing very close error metrics. The lowest RMSE and MAPE values were also obtained for those 

highest R2 scores. The MAPE values were found between 20% and 50% for these models. According to Moreno et al. (2013), 

these scores are interpreted as a reasonable prediction. Figure 5a shows the best performed ANN model's training record in 

predicting pipe diameters of the Gulluce-Dolluk irrigation network. A smooth decrease in training and testing error was obtained 

during the training of this ANN model. This model yielded the best training performance at the training iteration 216. The error 

histogram of this ANN model was shown in Figure 5b. As a useful performance indicator, it was observed that most of the error 

distributed close to zero error line in the error space. For this ANN model, Figure 5c shows a plot representing the linear 

regression of target pipe diameters relative to predicted ones on the test data set. The regression plot also supported that this 

ANN model was very accurate. For the experiments related to Gulluce-Dolluk, the second-best performance was obtained from 

the trainlm algorithm with an R2 value of 0.96. It was also inferred from the experiments that high prediction performances were 

provided by the ANN models having 15 neurons in their hidden layers. The learning algorithm trainrp was an exception in this 

regard since the highest R2 (0.92) was observed using 30 neurons in the hidden layer. 

 
Table 4- Performance results of the ANN models in predicting the pipe diameters of Gulluce-Dolluk 

 

T
ra

in
in

g
 

a
lg

o
ri

th
m

 

N. of neurons in  

hidden layer 
R R2 RMSE MAPE   R R2 RMSE MAPE 

 
  

Transfer function 
  

Transfer function 
 Tangent-sigmoid Logarithmic-sigmoid 

T
ra

in
b
r 

5 0.97 0.94 113.29 0.30  0.96 0.92 126.24 0.33 

10 0.95 0.91 149.56 0.36  0.97 0.93 125.66 0.31 

15 0.98 0.97   91.04 0.28  0.98 0.97   90.98 0.27 

20 0.95 0.90 160.87 0.29  0.96 0.92 145.00 0.32 

25 0.79 0.61 483.21 0.35  0.83 0.69 398.53 0.30 

30 0.86 0.75 350.53 0.29  0.96 0.92 167.45 0.29 

35 0.97 0.94 127.80 0.32  0.94 0.89 169.64 0.35 

40 0.97 0.94 128.96 0.31  0.94 0.88 174.68 0.40 

T
ra

in
lm

 

5 0.97 0.93 117.05 0.33  0.96 0.93 118.67 0.32 

10 0.93 0.87 211.84 0.34  0.94 0.89 173.27 0.33 

15 0.98 0.96   93.74 0.29  0.98 0.96 100.25 0.30 

20 0.96 0.92 144.44 0.37  0.96 0.92 144.32 0.36 

25 0.95 0.90 159.82 0.36  0.91 0.83 217.70 0.36 

30 0.96 0.92 151.46 0.37  0.97 0.94 137.59 0.30 

35 0.96 0.93 133.41 0.33  0.97 0.94 124.25 0.30 

40 0.96 0.92 141.57 0.36  0.96 0.93 135.77 0.38 

T
ra

in
rp

 

5 0.90 0.81 196.61 0.60  0.89 0.80 203.41 0.58 

10 0.91 0.83 209.71 0.45  0.93 0.87 172.94 0.45 

15 0.93 0.86 181.27 0.47  0.93 0.87 174.90 0.47 

20 0.92 0.85 193.05 0.53  0.87 0.76 257.72 0.53 

25 0.89 0.80 230.00 0.49  0.94 0.89 170.74 0.47 

30 0.95 0.89 181.05 0.49  0.96 0.92 153.96 0.43 

35 0.94 0.88 176.18 0.43  0.95 0.90 159.74 0.37 

40 0.93 0.86 177.02 0.53  0.93 0.85 185.25 0.51 

T
ra

in
sc

g
 

5 0.82 0.67 258.66 0.70  0.82 0.68 255.63 0.69 

10 0.86 0.74 286.98 0.51  0.88 0.75 267.07 0.50 

15 0.95 0.90 152.24 0.41  0.74 0.54 334.43 0.91 

20 0.89 0.79 234.14 0.63  0.84 0.70 291.20 0.66 

25 0.90 0.80 232.73 0.48  0.92 0.85 201.13 0.52 

30 0.87 0.76 268.12 0.52  0.93 0.87 198.64 0.53 

35 0.77 0.60 318.31 0.68  0.84 0.71 269.05 0.58 

40 0.89 0.79 220.76 0.60  0.81 0.66 280.07 0.70 
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Figure 5- Training record (a), error histogram (b), and regression plot (c) related to the best ANN model performed for 

Gulluce-Dolluk irrigation network 

 

3.2. The devecikonagi pressurized irrigation system 

 

The Devecikonagi was another irrigation network studied in this study. Using 63 available sections, different ANN models were 

trained and tested. For this irrigation network, only 16 test sections were available. In the real-world, there are many irrigation 

networks with such a small number of sections. Furthermore, it was an important task to reveal the performance of neural network 

models predicting pipe diameters with fewer sections or pipelines. The performance results of the experiments related to this 

irrigation network were given in Table 5. The highest R2 value (0.93) was obtained using the trainscg algorithm, 20 neurons, and 

the tangent-sigmoid transfer function. The second-highest performance metric (R2= 0.89) for this experiment group was obtained 

with the trainbr algorithm using the same number of neurons. The MAPE values, obtained between 0.1-0.2, showed that these 

models performed good predictions (Moreno et al. 2013). Figure 6a shows that the best training performance was reached at 

epoch 20. This experiment's error histogram showed that the error is mainly distributed between -0.9528 and 0.5842 (Figure 6b). 

In Figure 6c, the regression plot related to the best-performed model also shows that model fits well with a slight shift from the 

perfect fit. 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) 
(b) 

(c) 
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Table 5- Performance results of the ANN models in predicting the pipe diameters of Devecikonagi 

 

T
ra

in
in

g
 

a
lg

o
ri

th
m

 

N. of neurons 

in hidden 

layer 

R R2 RMSE MAPE   R R2 RMSE MAPE 

   
Transfer function 

  

Transfer function 

 
Tangent-sigmoid Logarithmic-sigmoid 

T
ra

in
b

r 

5 0.56 0.32 103.13 0.35  0.56 0.32 96.23 0.33 

10 0.88 0.78 74.01 0.25  0.88 0.77 74.27 0.25 

15 0.78 0.61 104.88 0.37  0.79 0.62 98.31 0.35 

20 0.94 0.89 53.59 0.18  0.94 0.89 54.15 0.18 

25 0.49 0.24 143.09 0.28  0.62 0.38 121.13 0.25 

30 0.73 0.53 107.74 0.27  0.75 0.57 103.82 0.29 

35 0.83 0.68 70.27 0.20  0.87 0.76 70.67 0.22 

40 0.69 0.48 104.91 0.26  0.62 0.38 118.26 0.26 

T
ra

in
lm

 

5 0.67 0.44 63.27 0.23  0.82 0.67 50.05 0.19 

10 0.80 0.64 112.10 0.43  0.93 0.86 71.00 0.18 

15 0.36 0.13 164.84 0.59  0.68 0.46 124.63 0.48 

20 0.76 0.58 107.57 0.32  0.91 0.82 66.68 0.23 

25 0.53 0.28 144.30 0.31  0.68 0.47 115.25 0.33 

30 0.57 0.32 162.36 0.56  0.50 0.25 142.86 0.54 

35 0.75 0.56 123.30 0.34  0.78 0.62 92.28 0.22 

40 0.56 0.32 124.62 0.30  0.63 0.40 113.22 0.28 

T
ra

in
rp

 

5 0.34 0.12 108.55 0.40  0.55 0.31 86.98 0.36 

10 0.83 0.68 89.65 0.29  0.88 0.77 76.58 0.29 

15 0.74 0.54 105.40 0.42  0.79 0.63 127.83 0.53 

20 0.93 0.87 60.77 0.20  0.90 0.81 75.31 0.24 

25 0.73 0.53 114.89 0.27  0.65 0.42 119.72 0.25 

30 0.63 0.40 141.71 0.42  0.80 0.64 122.78 0.47 

35 0.67 0.45 97.68 0.25  0.40 0.16 152.49 0.42 

40 0.29 0.08 174.50 0.49  0.70 0.49 102.45 0.31 

T
ra

in
sc

g
 

5 0.65 0.42 64.28 0.24  0.63 0.39 67.06 0.24 

10 0.74 0.54 109.67 0.42  0.86 0.75 88.13 0.32 

15 0.80 0.64 110.49 0.44  0.89 0.79 115.20 0.52 

20 0.96 0.93 48.29 0.17  0.85 0.73 90.95 0.33 

25 0.69 0.48 129.06 0.27  0.74 0.55 116.60 0.25 

30 0.55 0.30 135.84 0.42  0.60 0.37 123.31 0.45 

35 0.71 0.51 131.53 0.36  0.36 0.13 124.20 0.32 

40 0.71 0.51 104.70 0.22  0.70 0.50 103.66 0.31 
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Figure 6- Training record (a), error histogram (b), and regression plot (c) related to the best ANN model  

performed for Devecikonagi 

 

3.3. The yolcati pressurized irrigation system 

 

This network has a few numbers (54) of pipeline sections. According to the experiments, the best prediction result (R2= 0.83) 

was obtained using the training algorithm of trainbr (Table 6). The trainbr algorithm was responsible for the second-best 

performance metric (0.73). Apart from these, the rest of the training algorithms yielded R2 values below 0.6 with this irrigation 

network. For this experiment group, the most successful predictions were observed with 10 neurons and the tangent-sigmoid 

transfer function. The best training performance was reached at epoch 20 for the model with the highest R2 (Figure 7a). This 

experiment's error histogram showed that the prediction errors were distributed in a wide range (Figure 7b), which was an 

unwanted and a relatively low-performance result. The regression plot related to the best-performing model also shows that the 

model fits not as good as the other networks investigated in this research (Figure 7c). 
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Table 6- Performance results of the ANN models in predicting the pipe diameters of Yolcati 

 

T
ra

in
in

g
 

a
lg

o
ri

th
m

 

N. of neurons 

in hidden 

layer 

R R2 RMSE MAPE   R R2 RMSE MAPE 

   
Transfer function 

  

Transfer function 

 
Tangent-sigmoid Logarithmic-sigmoid 

T
ra

in
b

r 

5 0.73 0.53 59.03 0.24  0.73 0.53 58.99 0.24 

10 0.85 0.73 70.90 0.24  0.85 0.72 72.48 0.25 

15 0.51 0.26 84.48 0.27  0.51 0.26 84.40 0.27 

20 0.80 0.64 64.20 0.25  0.80 0.64 64.17 0.25 

25 0.47 0.22 77.34 0.30  0.50 0.25 75.14 0.30 

30 0.45 0.20 67.76 0.30  0.45 0.20 67.82 0.30 

35 0.63 0.40 65.06 0.32  0.27 0.08 87.54 0.41 

40 0.72 0.52 57.14 0.23  0.72 0.52 57.17 0.23 

T
ra

in
lm

 

5 0.66 0.44 72.45 0.31  0.67 0.45 59.79 0.30 

10 0.68 0.47 171.92 0.79  0.66 0.44 115.85 0.39 

15 0.44 0.20 95.23 0.26  0.28 0.08 123.69 0.35 

20 -0.59 0.35 158.97 0.74  0.44 0.19 94.09 0.39 

25 0.67 0.45 65.69 0.26  0.61 0.37 69.59 0.29 

30 0.14 0.02 142.67 0.73  0.29 0.08 104.87 0.46 

35 0.05 0.00 139.25 0.67  0.19 0.04 109.00 0.56 

40 0.48 0.23 111.29 0.49  0.53 0.28 89.46 0.44 

T
ra

in
rp

 

5 0.75 0.56 62.26 0.24  0.76 0.58 55.17 0.22 

10 0.91 0.83 75.43 0.26  0.84 0.71 86.12 0.27 

15 0.38 0.14 100.81 0.26  0.25 0.06 115.44 0.34 

20 0.14 0.02 131.55 0.61  0.58 0.33 87.19 0.40 

25 0.35 0.12 108.10 0.35  0.64 0.41 68.07 0.33 

30 0.04 0.00 106.35 0.50  0.31 0.10 77.35 0.41 

35 0.21 0.04 154.05 0.61  0.35 0.12 87.20 0.37 

40 0.51 0.26 147.12 0.58  0.67 0.44 98.99 0.48 

T
ra

in
sc

g
 

5 0.72 0.52 56.66 0.26  0.72 0.52 57.50 0.26 

10 0.73 0.54 96.99 0.36  0.67 0.44 98.58 0.34 

15 0.31 0.09 104.12 0.33  0.29 0.09 110.23 0.37 

20 0.55 0.31 94.52 0.49  0.63 0.39 85.72 0.37 

25 0.53 0.28 83.55 0.30  0.47 0.22 86.67 0.35 

30 -0.11 0.01 138.88 0.74  0.04 0.00 90.13 0.38 

35 0.43 0.18 127.75 0.61  0.50 0.25 90.42 0.48 

40 0.56 0.31 99.76 0.47  0.57 0.33 72.11 0.36 
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Figure 7- Training record (a), error histogram (b), and regression plot (c) related to the best ANN model performed for 

Yolcati 

 

The ANN models yielded decimal numbers in the experiments, as seen in Table 7, illustrating the target and predicted pipe 

diameters. The pipe sections in the table were chosen randomly from the test data sets. The predicted pipe diameters were 

standardized as commercially available integer values, pointing out the proposed method's potential usage. The last row of Table 

6 shows the pipe diameters obtained from the Network Optimization Program (NOP) used by The Republic of Turkey, the 

General Directorate of State Hydraulic Works (SHW). The NOP is an out-of-date program operated on MS-DOS, and it has 

some drawbacks, such as it is not possible to add all the pipes in production (Wang & Dal, 2017). When comparing the ANN 

results and the NOP results, an R2 value of 0.95 was obtained (RMSE = 143.85, MAPE = 0.16) with a correlation coefficient (R) 

of 0.98. Although the results of the NOP should not be considered as a reference (ground-truth) for model verification, these 

findings were remarkable because statistically similar values were obtained using the ANN model and a classical method. 
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Table 7- Target and predicted values for pipe diameters 

 

    Pipe Diameter (mm) 

Study Area 
Pipe section 

number  
Hydraulic data Predicted (ANN) 

Predicted 

(standardized) 

NOP 

Gulluce-Dolluk  

50 1400 1407.95 1400 1900 

244 160 156.88 160 200 

575 1000 998.54 1000 1000 

621 450 450.40 450 500 

709 160 216.18 200 225 

Devecikonagi  

4 600 598.30 600 600 

15 355 371.83 355 350 

27 250 235.85 225 250 

53 355 364.51 355 355 

56 280 283.16 280 280 

Yolcati 

2 315 237.21 250 450 

24 110 84.83 90 160 

28 160 106.16 110 160 

35 355 299.01 315 400 

54 110 88.72 90 110 

 

In this study, pressurized irrigation systems of different sizes were investigated to predict pipe diameters using ANN. In the 

Yolcati irrigation, using the least numbers of hydrants, pipe diameter prediction success was lowest with a R2 value of 0.83. In 

the Gulluce-Dolluk irrigation having 741 hydrants, the pipe diameter prediction was done with the highest R2 value of 0.97. 

Thus, it can be concluded that as the number of data increases in the training data set, pipe diameter estimation success also 

increases. Although it may not be fair to make a one-to-one comparison with the related papers employing ANN to optimize or 

analyze water networks, some points are worth discussing. While the approach developed in this study was to take the problem 

as a regression task, Dawidowicz (2018) addressed the problem as a classification task to determine the pipe diameters for urban 

water networks. Sadly, a prediction score was not reported in the researcher’s study. However, a confusion matrix was available 

to compute the overall accuracy of the prediction model. Using a relatively large database of 36 urban water networks, the 

prediction model's overall accuracy could be computed as 0.998 based on the confusion matrix reported. In this paper, relatively 

high prediction scores were also obtained. Unfortunately, pressurized irrigation networks usually are not abundant, and they do 

not have as many nodes as urban water distribution networks. These may make it challenging to model agricultural irrigation 

networks with ANN compared to urban water networks. Nevertheless, the results obtained in this study were promising in terms 

of modeling agricultural irrigation networks using ANN. 

 

4. Conclusions 
 

The initial investment costs of pressurized irrigation systems are quite high, in addition, the calculation of pipe diameter in 

system design is very important for the performance of the irrigation system. Different ANN models were trained and tested to 

predict pipe diameters of three irrigation systems. Tested networks had different sizes. It was a promising result of a model fit 

success of 0.83 for an irrigation network with relatively low hydraulic data. The highest model success was obtained for the 

Gulluce-Dolluk irrigation system with an R2 value of 0.97. Considering these findings, it was concluded that ANN could be a 

versatile tool to determine the pipe diameters of pressurized irrigation networks if a decent number of training samples is 

available. Although it is difficult to integrate a new system parameter into traditional models, new system parameters can be 

easily integrated into the ANN-based model implementations. Since the core idea of tubular networks is the same as the 

pressurized irrigation networks, the findings of the present work should also guide future studies related to the drinking water 

networks. Future studies should include the usage of a large hydraulic database covering a vast number of conditions to train the 

ANN models that can make more accurate predictions for design parameters of irrigation networks. 
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