Research Article
BibTex RIS Cite

RF Enerji Hasatlama Uygulamaları için Üç Bantlı Anten ve Doğrultucu Tasarımı

Year 2023, Volume: 15 Issue: 2, 794 - 803, 14.07.2023
https://doi.org/10.29137/umagd.1314713

Abstract

Çok bantlı RF enerji hasadı, aynı anda birden fazla radyo frekansı (RF) bandından enerji hasadını içeren bir tekniktir. Bu yaklaşım, daha yüksek enerji hasadı verimliliğine ve daha geniş bir RF kaynağından enerji yakalama yeteneğine sahiptir. Bu çalışmada GSM900, GSM1800 ve UMTS2100 hücresel sistem frekanslarında enerji hasatlama için kullanılmak üzere anten ve doğrultucu tasarımı yapılmıştır. Tasarlanan anten 0,94, 1,8 ve 2,15 GHz orta frekanslarında çalışmakta olup bu frekanslarındaki geri dönüş kayıpları sırasıyla -18 dB, -27 dB ve -31dB’dir. Tasarlanan antenin bu frekanslardaki kazançları ise yine sırasıyla 3,74 dBi, 2,3 dBi ve 1,76 dBi’dır. Antenin 0,94 GHz’deki en yüksek verimi %78 iken, 1,8 GHz ve 2.15 GHz’deki en yüksek verim değerleri sırasıyla %79 ve %75’tir. Anten tasarımından sonra GSM900, GSM1800 ve UMTS2100 frekanslarındaki tüm sinyal güçlerini toplamak için T tipi eşleme kullanılarak bir doğrultucu tasarımı yapılmıştır. Gerilim doğrultucu çıkışında maksimum 5.6 V değeri 3 dBm giriş gücünde elde edilmiştir.

References

  • Adam, I., Yasin, M., Rahim, H., Soh, P., Abdulmalek, M. (2018). A Compact Dual-band Rectenna for Ambient Rf Energy Harvesting. Microw Opt Technol Lett, 11(60), 2740-2748. https://doi.org/10.1002/mop.31475
  • Boursianis, A. D., Papadopoulou, M. S., Koulouridis, S., Rocca, P., Georgiadis, A., Tentzeris, M. M., & Goudos, S. K. (2021). Triple-band single-layer rectenna for outdoor RF energy harvesting applications. Sensors, 21(10), 3460.
  • Das, D., Xu, Z., Nasrollahpour, M., Martos-Repath, I., Zaeimbashi, M., Khalifa, A., & Onabajo, M. (2023). Circuit-level Modeling and Simulation of Wireless Sensing and Energy Harvesting with Hybrid Magnetoelectric Antennas for Implantable Neural Devices. IEEE Open J. Circuits Syst., (4), 139-155. https://doi.org/10.1109/ojcas.2023.3259233
  • Jung, J., Kwon, I. (2022). A Capacitive DC-DC Boost Converter with Gate Bias Boosting and Dynamic Body Biasing for an RF Energy Harvesting System. Sensors, 1(23), 395. https://doi.org/10.3390/s23010395
  • Korunur Engiz B., & Kurnaz, Ç. (2016). Comparison of Signal Strengths of 2G/3G/4G Services on a University Campus. International Journal of Applied Mathematics Electronics and Computers, Special Issue (2016), 37-42. DOI: 10.18100/ijamec.270710
  • Kuhn, V., Lahuec, C., Seguin, F., & Person, C. (2015). A multi-band stacked RF energy harvester with RF-to-DC efficiency up to 84%. IEEE Transactions on Microwave Theory and Techniques, 63(5), 1768-1778.
  • Lee, Y., Ramiah, H., Choo, A., Churchill, K., Lai, N., Lim, C., & Martins, R. (2023). High-performance Multiband Ambient Rf Energy Harvesting Front-end System for Sustainable IoT Applications—a Review. IEEE Access, (11), 11143-11164. https://doi.org/10.1109/access.2023.3241458
  • Lu, X., Wang, P., Niyato, D., Kim, D., Han, Z. (2015). Wireless Networks with RF Energy Harvesting: A Contemporary Survey. IEEE Commun. Surv. Tutorials, 2(17), 757-789. https://doi.org/10.1109/comst.2014.2368999
  • Mouapi, A. (2022). Radiofrequency Energy Harvesting Systems for Internet of Things Applications: A Comprehensive Overview of Design Issues. Sensors, 21(22), 8088. https://doi.org/10.3390/s22218088
  • Rao, A., Aziz, A., Aljaloud, K., Qureshi, M., Muhammad, A., Rafique, A., & Hussain, R. (2022). Concomitance Of Radio Frequency Energy Harvesting and Wearable Devices: A Review of Rectenna Designs. Int J RF Mic Comp-Aid Eng, 12(32). https://doi.org/10.1002/mmce.23536
  • Sabaawi, A., Sultan, Q., Najm, T. (2022). Design and Implementation of Multi-band Fractal Slot Antennas for Energy Harvesting Applications. Period. Polytech. Elec. Eng. Comp. Sci., 3(66), 253-264. https://doi.org/10.3311/ppee.20301
  • Sherazi, H., Zorbas, D., & O'Flynn, B. (2022). A Comprehensive Survey on RF Energy Harvesting: Applications and Performance Determinants. Sensors, 8(22), 2990. https://doi.org/10.3390/s22082990
  • Singla, J., Mahajan, R., Bagai, D. (2022). An Energy‐efficient Technique for Mobile‐wireless‐sensor‐network‐based IoT. ETRI Journal, 3(44), 389-399. https://doi.org/10.4218/etrij.2021-0084
  • Soares, S., Carvalho, M. (2022). An Analytical Model for the Aggregate Throughput of IEEE 802.11ah Networks Under the Restricted Access Window Mechanism. Sensors, 15(22), 5561. https://doi.org/10.3390/s22155561
  • Wang, M., Zhang, Y., Tang, K., Yan, N., Min, H. (2021). A Wide Input Range Energy Harvesting System for AM Broadcast with Capacitor Load. Electronics Letters, 12(57), 469-471. https://doi.org/10.1049/ell2.12101

Tri-Band Antenna and Rectifier Design for RF Energy Harvesting Applications

Year 2023, Volume: 15 Issue: 2, 794 - 803, 14.07.2023
https://doi.org/10.29137/umagd.1314713

Abstract

Tri-band RF energy harvesting is a technique that involves harvesting energy from multiple radio frequency (RF) bands simultaneously. This approach offers higher energy harvesting efficiency and the ability to capture energy from a broader range of RF sources. In this study, antenna, and rectifier design were carried out for energy harvesting in the GSM900, GSM1800, and UMTS2100 cellular system frequencies. The designed antenna operates at frequencies of 0.94 GHz, 1.8 GHz, and 2.15 GHz, with return losses of -18 dB, -27 dB, and -31 dB, respectively. The gains of the designed antenna at these frequencies are 3.74 dBi, 2.3 dBi, and 1.76 dBi, respectively. The antenna achieves the highest efficiency of 78% at 0.94 GHz, while the highest efficiency values at 1.8 GHz and 2.15 GHz are 79% and 75%, respectively. Following the antenna design, a rectifier was designed using T-type matching to combine the power from the GSM900, GSM1800, and UMTS2100 frequencies. A maximum output voltage of 5.6 V was obtained at a 3 dBm input power level.

References

  • Adam, I., Yasin, M., Rahim, H., Soh, P., Abdulmalek, M. (2018). A Compact Dual-band Rectenna for Ambient Rf Energy Harvesting. Microw Opt Technol Lett, 11(60), 2740-2748. https://doi.org/10.1002/mop.31475
  • Boursianis, A. D., Papadopoulou, M. S., Koulouridis, S., Rocca, P., Georgiadis, A., Tentzeris, M. M., & Goudos, S. K. (2021). Triple-band single-layer rectenna for outdoor RF energy harvesting applications. Sensors, 21(10), 3460.
  • Das, D., Xu, Z., Nasrollahpour, M., Martos-Repath, I., Zaeimbashi, M., Khalifa, A., & Onabajo, M. (2023). Circuit-level Modeling and Simulation of Wireless Sensing and Energy Harvesting with Hybrid Magnetoelectric Antennas for Implantable Neural Devices. IEEE Open J. Circuits Syst., (4), 139-155. https://doi.org/10.1109/ojcas.2023.3259233
  • Jung, J., Kwon, I. (2022). A Capacitive DC-DC Boost Converter with Gate Bias Boosting and Dynamic Body Biasing for an RF Energy Harvesting System. Sensors, 1(23), 395. https://doi.org/10.3390/s23010395
  • Korunur Engiz B., & Kurnaz, Ç. (2016). Comparison of Signal Strengths of 2G/3G/4G Services on a University Campus. International Journal of Applied Mathematics Electronics and Computers, Special Issue (2016), 37-42. DOI: 10.18100/ijamec.270710
  • Kuhn, V., Lahuec, C., Seguin, F., & Person, C. (2015). A multi-band stacked RF energy harvester with RF-to-DC efficiency up to 84%. IEEE Transactions on Microwave Theory and Techniques, 63(5), 1768-1778.
  • Lee, Y., Ramiah, H., Choo, A., Churchill, K., Lai, N., Lim, C., & Martins, R. (2023). High-performance Multiband Ambient Rf Energy Harvesting Front-end System for Sustainable IoT Applications—a Review. IEEE Access, (11), 11143-11164. https://doi.org/10.1109/access.2023.3241458
  • Lu, X., Wang, P., Niyato, D., Kim, D., Han, Z. (2015). Wireless Networks with RF Energy Harvesting: A Contemporary Survey. IEEE Commun. Surv. Tutorials, 2(17), 757-789. https://doi.org/10.1109/comst.2014.2368999
  • Mouapi, A. (2022). Radiofrequency Energy Harvesting Systems for Internet of Things Applications: A Comprehensive Overview of Design Issues. Sensors, 21(22), 8088. https://doi.org/10.3390/s22218088
  • Rao, A., Aziz, A., Aljaloud, K., Qureshi, M., Muhammad, A., Rafique, A., & Hussain, R. (2022). Concomitance Of Radio Frequency Energy Harvesting and Wearable Devices: A Review of Rectenna Designs. Int J RF Mic Comp-Aid Eng, 12(32). https://doi.org/10.1002/mmce.23536
  • Sabaawi, A., Sultan, Q., Najm, T. (2022). Design and Implementation of Multi-band Fractal Slot Antennas for Energy Harvesting Applications. Period. Polytech. Elec. Eng. Comp. Sci., 3(66), 253-264. https://doi.org/10.3311/ppee.20301
  • Sherazi, H., Zorbas, D., & O'Flynn, B. (2022). A Comprehensive Survey on RF Energy Harvesting: Applications and Performance Determinants. Sensors, 8(22), 2990. https://doi.org/10.3390/s22082990
  • Singla, J., Mahajan, R., Bagai, D. (2022). An Energy‐efficient Technique for Mobile‐wireless‐sensor‐network‐based IoT. ETRI Journal, 3(44), 389-399. https://doi.org/10.4218/etrij.2021-0084
  • Soares, S., Carvalho, M. (2022). An Analytical Model for the Aggregate Throughput of IEEE 802.11ah Networks Under the Restricted Access Window Mechanism. Sensors, 15(22), 5561. https://doi.org/10.3390/s22155561
  • Wang, M., Zhang, Y., Tang, K., Yan, N., Min, H. (2021). A Wide Input Range Energy Harvesting System for AM Broadcast with Capacitor Load. Electronics Letters, 12(57), 469-471. https://doi.org/10.1049/ell2.12101
There are 15 citations in total.

Details

Primary Language Turkish
Subjects Engineering Electromagnetics
Journal Section Articles
Authors

Muhammet Emin İnce 0000-0001-9409-7314

Çetin Kurnaz 0000-0003-3436-899X

Ertuğrul Çam 0000-0001-6491-9225

Early Pub Date July 11, 2023
Publication Date July 14, 2023
Submission Date June 14, 2023
Published in Issue Year 2023 Volume: 15 Issue: 2

Cite

APA İnce, M. E., Kurnaz, Ç., & Çam, E. (2023). RF Enerji Hasatlama Uygulamaları için Üç Bantlı Anten ve Doğrultucu Tasarımı. International Journal of Engineering Research and Development, 15(2), 794-803. https://doi.org/10.29137/umagd.1314713

All Rights Reserved. Kırıkkale University, Faculty of Engineering.