Review
BibTex RIS Cite

Fiziksel Aktivite ile Bağırsak Mikrobiyota Bileşimindeki Değişiklikler Arasındaki İlişki

Year 2023, Volume: 1 Issue: 1, 1 - 14, 13.10.2023

Abstract

Amaç: Bağırsak mikrobiyotası, sindirim sisteminde simbiyotik olarak yaşayan bakteriler, mantarlar, arkealer, protistler, helmintler ve virüslerden oluşur. Bugüne kadar araştırmalar, aktif bir yaşam tarzı ile insan mikrobiyotasının sağlıklı bir bileşimi arasındaki olası ilişki hakkında sınırlı veri sağlamıştır. Bu derleme, farklı fiziksel aktivite miktarlarına sahip sağlıklı bireylerin mikrobiyomlarını karşılaştıran insan çalışmalarının sonuçlarını özetlemeyi amaçlamıştır. Yöntem: Ağustos–Ekim 2020 arasında NIH/PubMed ve Academic Search Complete'i aradık. Dahil etme kriterleri şunları içermiştir: (a) farklı fiziksel aktivite seviyelerine sahip denekler arasında bağırsak mikrobiyomunu karşılaştırmaya odaklanan kesitsel çalışmalar; (b) herhangi bir tür egzersiz uyarısına insan bağırsağı mikrobiyomu tepkilerini tanımlayan çalışmalar; (c) sağlıklı yetişkin kadın ve erkekleri içeren çalışmalar. Diyet değişiklikleri, probiyotik veya prebiyotik tüketimi içeren çalışmaları ve diyabet, hipertansiyon, kanser, hormonal işlev bozukluğuna odaklanan çalışmaları hariç tutulmuştur. Sonuçlar: Toplam 17 makale dahil edilmeye uygun bulundu: on enine kesit ve yedi boylamsal çalışma. Ana sonuçlar, boylamsal çalışmalarda fiziksel aktivite miktarlarına göre önemli ölçüde değişmektedir. Aktif insanlarda çeşitlilik indekslerinde ve belirli bakterilerin göreceli bolluğunda ayrık değişiklikler belirlenmiştir. Sonuç olarak; bu alandaki literatür hızla çoğaldığı için, uyku ve beslenme düzenleri gibi aktif yaşam tarzlarıyla ilgili diğer yönleri değerlendirmek için çeşitli yöntemleri içeren çalışmalar önemlidir. Virüsler, arkealer ve parazitler gibi diğer grupların araştırılması, bağırsak mikrobiyotasının fiziksel aktivite ve spora adaptasyonunun ve bunun konak metabolizması ve dayanıklılığı üzerindeki potansiyel olarak faydalı etkilerinin daha iyi anlaşılmasına yol açabilir.

References

  • Referans1: Ho H-E, Bunyavanich S. Role of the Microbiome in Food Allergy. Curr Allergy Asthma Rep. 2018 05; 18(4):27. https://doi.org/10.1007/s11882-018-0780-z PMID: 29623445
  • Referans2. Microbiome—an overview | ScienceDirect Topics [Internet]. [cited 2020 Jul 30]. https://wwwsciencedirect- com.ez.urosario.edu.co/topics/immunology-and-microbiology/microbiome
  • Referans3. Gevers D, Knight R, Petrosino JF, Huang K, McGuire AL, Birren BW, et al. The Human Microbiome Project: A Community Resource for the Healthy Human Microbiome. PLoS Biol [Internet]. 2012 Aug 14 [cited 2020 Feb 6]; 10(8). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3419203/
  • Referans4. Holmes E, Li JV, Marchesi JR, Nicholson JK. Gut Microbiota Composition and Activity in Relation to Host Metabolic Phenotype and Disease Risk. Cell Metab. 2012 Nov 7; 16(5):559–64. https://doi.org/ 10.1016/j.cmet.2012.10.007 PMID: 23140640
  • Referans5. Nicholson JK, Holmes E, Kinross J, Burcelin R, Gibson G, Jia W, et al. Host-gut microbiota metabolic interactions. Science. 2012 Jun 8; 336(6086):1262–7. https://doi.org/10.1126/science.1223813 PMID: 22674330
  • Referans6. Mach N, Fuster-Botella D. Endurance exercise and gut microbiota: A review. J Sport Health Sci. 2017 Jun; 6(2):179–97. https://doi.org/10.1016/j.jshs.2016.05.001 PMID: 30356594
  • Referans7. Codella R, Luzi L, Terruzzi I. Exercise has the guts: How physical activity may positively modulate gut microbiota in chronic and immune-based diseases. Dig Liver Dis Off J Ital Soc Gastroenterol Ital Assoc Study Liver. 2018 Apr; 50(4):331–41. https://doi.org/10.1016/j.dld.2017.11.016 PMID: 29233686
  • Referans8. Collins SM. A role for the gut microbiota in IBS. Nat Rev Gastroenterol Hepatol. 2014 Aug; 11(8):497– 505. https://doi.org/10.1038/nrgastro.2014.40 PMID: 24751910
  • Referans9. Nishida A, Inoue R, Inatomi O, Bamba S, Naito Y, Andoh A. Gut microbiota in the pathogenesis of inflammatory bowel disease. Clin J Gastroenterol. 2018 Feb; 11(1):1–10. https://doi.org/10.1007/ s12328-017- 0813-5 PMID: 29285689
  • Referans10. Moreno-Indias I, Cardona F, Tinahones FJ, Queipo-Ortuño MI. Impact of the gut microbiota on the development of obesity and type 2 diabetes mellitus. Front Microbiol. 2014; 5:190. https://doi.org/10. 3389/fmicb.2014.00190 PMID: 24808896
  • Referans11. Jose PA, Raj D. Gut microbiota in hypertension. Curr Opin Nephrol Hypertens. 2015 Sep; 24(5):403– https://doi.org/10.1097/MNH.0000000000000149 PMID: 26125644
  • Referans12. Lazar V, Ditu L-M, Pircalabioru GG, Gheorghe I, Curutiu C, Holban AM, et al. Aspects of Gut Microbiota and Immune System Interactions in Infectious Diseases, Immunopathology, and Cancer. Front Immunol. 2018; 9:1830. https://doi.org/10.3389/fimmu.2018.01830 PMID: 30158926
  • Referans13. Plovier H, Cani PD. Microbial Impact on Host Metabolism: Opportunities for Novel Treatments of Nutritional Disorders? Microbiol Spectr. 2017; 5(3). https://doi.org/10.1128/microbiolspec.BAD-0002-2016 PMID: 28597812
  • Referans14. Salazar N, Arboleya S, Ferna´ndez-Navarro T, de Los Reyes-Gavila´n CG, Gonzalez S, Gueimonde M. Age-Associated Changes in Gut Microbiota and Dietary Components Related with the Immune System in Adulthood and Old Age: A Cross-Sectional Study. Nutrients. 2019 Jul 31; 11(8). https://doi.org/ 10.3390/nu11081765 PMID: 31370376
  • Referans15. Wilson AS, Koller KR, Ramaboli MC, Nesengani LT, Ocvirk S, Chen C, et al. Diet and the Human Gut Microbiome: An International Review. Dig Dis Sci. 2020; 65(3):723–40. https://doi.org/10.1007/ s10620-020- 06112-w PMID: 32060812
  • Referans16. Moszak M, Szulińska M, Bogdański P. You Are What You Eat-The Relationship between Diet, Microbiota, and Metabolic Disorders-A Review. Nutrients. 2020 Apr 15; 12(4).
  • Referans17. Matenchuk BA, Mandhane PJ, Kozyrskyj AL. Sleep, circadian rhythm, and gut microbiota. Sleep Med Rev. 2020 May 13; 53:101340. https://doi.org/10.1016/j.smrv.2020.101340 PMID: 32668369
  • Referans18. Tremaroli V, Ba¨ckhed F. Functional interactions between the gut microbiota and host metabolism. Nature. 2012 Sep 13; 489(7415):242–9. https://doi.org/10.1038/nature11552 PMID: 22972297
  • Referans19. Zeng MY, Inohara N, Nuñez G. Mechanisms of inflammation-driven bacterial dysbiosis in the gut. Mucosal Immunology. 2017.
  • Referans20. Derrien M, Alvarez A-S, de Vos WM. The Gut Microbiota in the First Decade of Life. Trends Microbiol. 2019; 27(12):997–1010. https://doi.org/10.1016/j.tim.2019.08.001 PMID: 31474424
  • Referans21. King CH, Desai H, Sylvetsky AC, LoTempio J, Ayanyan S, Carrie J, et al. Baseline human gut microbiota profile in healthy people and standard reporting template. PloS One. 2019; 14(9):e0206484. https://doi.org/10.1371/journal.pone.0206484 PMID: 31509535
  • Referans22. Galle F, Valeriani F, Cattaruzza MS, Gianfranceschi G, Liguori R, Antinozzi M, et al. Mediterranean Diet, Physical Activity and Gut Microbiome Composition: A Cross-Sectional Study among Healthy Young Italian Adults. Nutrients. 2020; 12(7). https://doi.org/10.3390/nu12072164 PMID: 32708278
  • Referans23. Warburton DER, Bredin SSD. Health benefits of physical activity: a systematic review of current systematic reviews. Curr Opin Cardiol. 2017 Sep; 32(5):541–56. https://doi.org/10.1097/HCO. 0000000000000437 PMID: 28708630
  • Referans24. Maughan RJ, Burke LM, Dvorak J, Larson-Meyer DE, Peeling P, Phillips SM, et al. IOC consensus statement: dietary supplements and the high-performance athlete. Br J Sports Med. 2018 Apr; 52(7):439–55. https://doi.org/10.1136/bjsports-2018-099027 PMID: 29540367
  • Referans25. Campbell B, Kreider RB, Ziegenfuss T, La Bounty P, Roberts M, Burke D, et al. International Society of Sports Nutrition position stand: protein and exercise. J Int Soc Sports Nutr. 2007 Sep 26; 4:8. https://doi.org/10.1186/1550-2783-4-8 PMID: 17908291
  • Referans26. Ja¨ger R, Mohr AE, Carpenter KC, Kerksick CM, Purpura M, Moussa A, et al. International Society of Sports Nutrition Position Stand: Probiotics. J Int Soc Sports Nutr. 2019 Dec 21; 16(1):62. https://doi. org/10.1186/s12970-019-0329-0 PMID: 31864419
  • Referans27. Dekker J. In with a sporting chance probiotics may help reduce inflamation and improve immünity. Nutraceuticals Now. 2019 Jan 2;18–9.
  • Referans28. Evans CC, LePard KJ, Kwak JW, Stancukas MC, Laskowski S, Dougherty J, et al. Exercise prevents weight gain and alters the gut microbiota in a mouse model of high fat diet-induced obesity. PloS One. 2014; 9(3):e92193. https://doi.org/10.1371/journal.pone.0092193 PMID: 24670791
  • Referans29. Brandt N, Kotowska D, Kristensen CM, Olesen J, Lu¨tzhøft DO, Halling JF, et al. The impact of exercise training and resveratrol supplementation on gut microbiota composition in high-fat diet fed mice. Physiol Rep. 2018 Oct; 6(20):e13881.
  • Referans30. McCabe LR, Irwin R, Tekalur A, Evans C, Schepper JD, Parameswaran N, et al. Exercise prevents high fat diet-induced bone loss, marrow adiposity and dysbiosis in male mice. Bone. 2019 Jan; 118:20–31. https://doi.org/10.1016/j.bone.2018.03.024 PMID: 29604350
  • Referans31. Nagano T, Yano H. Effect of dietary cellulose nanofiber and exercise on obesity and gut microbiota in mice fed a high-fat-diet. Biosci Biotechnol Biochem. 2020 Mar; 84(3):613–20. PMID: 31718523
  • Referans32. Yu C, Liu S, Chen L, Shen J, Niu Y, Wang T, et al. Effect of exercise and butyrate supplementation on microbiota composition and lipid metabolism. J Endocrinol. 2019 Nov; 243(2):125–35. https://doi.org/ 10.1530/JOE-19-0122 PMID: 31454784
  • Referans33. Hsu YJ, Chiu CC, Li YP, Huang WC, Huang YT, Huang CC, et al. Effect of intestinal microbiota on exercise performance in mice. J Strength Cond Res. 2015 Feb; 29(2):552–8. https://doi.org/10.1519/ JSC.0000000000000644 PMID: 25144131
  • Referans34. Lambert JE, Myslicki JP, Bomhof MR, Belke DD, Shearer J, Reimer RA. Exercise training modifies gut microbiota in normal and diabetic mice. Appl Physiol Nutr Metab Physiol Appl Nutr Metab. 2015 Jul; 40(7):749–52. https://doi.org/10.1139/apnm-2014-0452 PMID: 25962839
  • Referans35. Kim D, Kang H. Exercise training modifies gut microbiota with attenuated host responses to sepsis in wild-type mice. FASEB J Off Publ Fed Am Soc Exp Biol. 2019 Apr; 33(4):5772–81. https://doi.org/10. 1096/fj.201802481R PMID: 30702933
  • Referans36. Allen JM, Berg Miller ME, Pence BD, Whitlock K, Nehra V, Gaskins HR, et al. Voluntary and forced exercise differentially alters the gut microbiome in C57BL/6J mice. J Appl Physiol Bethesda Md 1985. 2015 Apr 15; 118(8):1059–66.
  • Referans37. Denou E, Marcinko K, Surette MG, Steinberg GR, Schertzer JD. High-intensity exercise training increases the diversity and metabolic capacity of the mouse distal gut microbiota during diet-induced obesity. Am J Physiol Endocrinol Metab. 2016 Jun 1; 310(11):E982–993. https://doi.org/10.1152/ ajpendo.00537.2015 PMID: 27117007
  • Referans38. Okamoto T, Morino K, Ugi S, Nakagawa F, Lemecha M, Ida S, et al. Microbiome potentiates endurance exercise through intestinal acetate production. Am J Physiol Endocrinol Metab. 2019 May 1; 316 (5):E956–66. https://doi.org/10.1152/ajpendo.00510.2018 PMID: 3086087
  • Referans39. Yuan X, Xu S, Huang H, Liang J, Wu Y, Li C, et al. Influence of excessive exercise on immunity, metabolism, and gut microbial diversity in an overtraining mice model. Scand J Med Sci Sports. 2018 May; 28(5):1541–51. https://doi.org/10.1111/sms.13060 PMID: 29364545
  • Referans40. Houghton D, Stewart CJ, Stamp C, Nelson A, Aj Ami NJ, Petrosino JF, et al. Impact of Age-Related Mitochondrial Dysfunction and Exercise on Intestinal Microbiota Composition. J Gerontol A Biol Sci Med Sci. 2018 Apr 17; 73(5):571–8.
  • Referans41. Riebe D, Franklin BA, Thompson PD, Garber CE, Whitfield GP, Magal M, et al. Updating ACSM’s Recommendation for Exercise Preparticipation Health Screening: Med Sci Sports Exerc. 2015 Nov; 47(11):2473–9. https://doi.org/10.1249/MSS.0000000000000664 PMID: 26473759
  • Referans42. Moher D, Liberati A, Tetzlaff J, Altman DG, Group TP. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLOS Med. 2009 Jul 21; 6(7):e1000097. https://doi.org/10.1371/journal.pmed.1000097 PMID: 19621072
  • Referans43. Sterne JA, Herna´n MA, Reeves BC, Savović J, Berkman ND, Viswanathan M, et al. ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. BMJ. 2016 Oct 12; 355:i4919. https://doi.org/10.1136/bmj.i4919 PMID: 27733354
  • Referans44. Clarke SF, Murphy EF, O’Sullivan O, Lucey AJ, Humphreys M, Hogan A, et al. Exercise and associated dietary extremes impact on gut microbial diversity. Gut. 2014 Dec; 63(12):1913–20. https://doi. org/10.1136/gutjnl-2013-306541 PMID: 25021423
  • Referans45. Barton W, Penney NC, Cronin O, Garcia-Perez I, Molloy MG, Holmes E, et al. The microbiome of professional athletes differs from that of more sedentary subjects in composition and particularly at the functional metabolic level. Gut. 2018; 67(4):625–33. https://doi.org/10.1136/gutjnl-2016-313627 PMID: 28360096
  • Referans46. Estaki M, Pither J, Baumeister P, Little JP, Gill SK, Ghosh S, et al. Cardiorespiratory fitness as a predictor of intestinal microbial diversity and distinct metagenomic functions. Microbiome. 2016 08; 4 (1):42. https://doi.org/10.1186/s40168-016-0189-7 PMID: 27502158
  • 47. Bressa C, Baile´n-Andrino M, Pe´rez-Santiago J, Gonza´lez-Soltero R, Pe´rez M, Montalvo-Lominchar MG, et al. Differences in gut microbiota profile between women with active lifestyle and sedentary women. PloS One. 2017; 12(2):e0171352. https://doi.org/10.1371/journal.pone.0171352 PMID: 28187199
  • Referans48. Petersen LM, Bautista EJ, Nguyen H, Hanson BM, Chen L, Lek SH, et al. Community characteristics of the gut microbiomes of competitive cyclists. Microbiome. 2017 Aug 10; 5(1):98. https://doi.org/10. 1186/s40168- 017-0320-4 PMID: 28797298
  • Referans49. Yang Y, Shi Y, Wiklund P, Tan X, Wu N, Zhang X, et al. The Association between Cardiorespiratory Fitness and Gut Microbiota Composition in Premenopausal Women. Nutrients [Internet]. 2017 Jul 25 [cited 2020 Apr 30]; 9(8). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5579588/
  • Referans50. Whisner CM, Maldonado J, Dente B, Krajmalnik-Brown R, Bruening M. Diet, physical activity and screen time but not body mass index are associated with the gut microbiome of a diverse cohort of college students living in university housing: a cross-sectional study. BMC Microbiol. 2018 Dec 12; 18 (1):210. https://doi.org/10.1186/s12866-018-1362-x PMID: 30541450
  • Referans51. Durk RP, Castillo E, Ma´rquez-Magaña L, Grosicki GJ, Bolter ND, Lee CM, et al. Gut Microbiota Composition Is Related to Cardiorespiratory Fitness in Healthy Young Adults. Int J Sport Nutr Exerc Metab. 2019 May 1; 29(3):249–53. https://doi.org/10.1123/ijsnem.2018-0024 PMID: 29989465
  • Referans52. Jang L-G, Choi G, Kim S-W, Kim B-Y, Lee S, Park H. The combination of sport and sport-specific die is associated with characteristics of gut microbiota: an observational study. J Int Soc Sports Nutr. 2019 May 3; 16(1):21. https://doi.org/10.1186/s12970-019-0290-y PMID: 31053143
  • Referans53. O’Donovan CM, Madigan SM, Garcia-Perez I, Rankin A, O’ Sullivan O, Cotter PD. Distinct microbiome composition and metabolome exists across subgroups of elite Irish athletes. J Sci Med Sport. 2019 Sep 18; https://doi.org/10.1016/j.jsams.2019.08.290 PMID: 31558359
  • Referans54. Liang R, Zhang S, Peng X, Yang W, Xu Y, Wu P, et al. Characteristics of the gut microbiota in professional martial arts athletes: A comparison between different competition levels. PLOS ONE. 2019 Dec 27; 14(12):e0226240. https://doi.org/10.1371/journal.pone.0226240 PMID: 31881037
  • Referans55. Scheiman J, Luber JM, Chavkin TA, MacDonald T, Tung A, Pham L-D, et al. Meta-omics analysis of elite athletes identifies a performance-enhancing microbe that functions via lactate metabolism. Nat Med. 2019 Jul; 25(7):1104–9. https://doi.org/10.1038/s41591-019-0485-4 PMID: 31235964
  • Referans56. Hampton-Marcell JT, Eshoo TW, Cook MD, Gilbert JA, Horswill CA, Poretsky R. Comparative Analysis of Gut Microbiota Following Changes in Training Volume Among Swimmers. Int J Sports Med. 2020 May; 41(5):292–9. https://doi.org/10.1055/a-1079-5450 PMID: 31975357
  • Referans57. Mitchell JH, Haskell W, Snell P, Van Camp SP. Task Force 8: Classification of sports. J Am Coll Cardiol. 2005 Apr 19; 45(8):1364–7. https://doi.org/10.1016/j.jacc.2005.02.015 PMID: 15837288
  • Referans58. Allen JM, Mailing LJ, Niemiro GM, Moore R, Cook MD, White BA, et al. Exercise Alters Gut Microbiota Composition and Function in Lean and Obese Humans. Med Sci Sports Exerc. 2018; 50(4):747–57. https://doi.org/10.1249/MSS.0000000000001495 PMID: 29166320
  • Referans59. Munukka E, Ahtiainen JP, Puigbo´ P, Jalkanen S, Pahkala K, Keskitalo A, et al. Six-Week Endurance Exercise Alters Gut Metagenome That Is not Reflected in Systemic Metabolism in Over-weight Women. Front Microbiol [Internet]. 2018 Oct 3 [cited 2019 Oct 15]; 9. Available from: https://www.ncbi. nlm.nih.gov/pmc/articles/PMC6178902/
  • Referans60. Kern T, Blond MB, Hansen TH, Rosenkilde M, Quist JS, Gram AS, et al. Structured exercise alters the gut microbiota in humans with overweight and obesity—A randomized controlled trial. Int J Obes. 2020 Jan; 44(1):125–35. https://doi.org/10.1038/s41366-019-0440-y PMID: 31467422
  • Referans61. Rettedal EA, Cree JME, Adams SE, MacRae C, Skidmore PML, Cameron-Smith D, et al. Short-term high-intensity interval training exercise does not affect gut bacterial community diversity or composition of lean and overweight men. Exp Physiol. 2020 Jun 1; https://doi.org/10.1113/EP088744 PMID: 32478429
  • Referans62. Zhao X, Zhang Z, Hu B, Huang W, Yuan C, Zou L. Response of Gut Microbiota to Metabolite Changes Induced by Endurance Exercise. Front Microbiol. 2018; 9:765. https://doi.org/10.3389/fmicb.2018. 00765 PMID: 29731746
  • Referans63. Cockburn DW, Orlovsky NI, Foley MH, Kwiatkowski KJ, Bahr CM, Maynard M, et al. Molecular details of a starch utilization pathway in the human gut symbiont Eubacterium rectale. Mol Microbiol. 2015 Jan; 95(2):209–30. https://doi.org/10.1111/mmi.12859 PMID: 25388295
  • Referans64. Cockburn DW, Suh C, Medina KP, Duvall RM, Wawrzak Z, Henrissat B, et al. Novel carbohydrate binding modules in the surface anchored α-amylase of Eubacterium rectale provide a molecular rationale for the range of starches used by this organism in the human gut. Mol Microbiol. 2018; 107 (2):249–64. https://doi.org/10.1111/mmi.13881 PMID: 29139580
  • Referans65. Gomes AC, Hoffmann C, Mota JF. The human gut microbiota: Metabolism and perspective in obesity. Gut Microbes. 2018 04; 9(4):308–25. https://doi.org/10.1080/19490976.2018.1465157 PMID: 29667480
  • Referans66. Fu X, Liu Z, Zhu C, Mou H, Kong Q. Nondigestible carbohydrates, butyrate, and butyrate-producing bacteria. Crit Rev Food Sci Nutr. 2019 Jun 27; 59(sup1):S130–52. https://doi.org/10.1080/10408398. 2018.1542587 PMID: 30580556
  • Referans67. Derrien M, Belzer C, de Vos WM. Akkermansia muciniphila and its role in regulating host functions. Microb Pathog. 2017 May; 106:171–81. https://doi.org/10.1016/j.micpath.2016.02.005 PMID: 26875998
  • Referans68. Ottman N, Geerlings SY, Aalvink S, de Vos WM, Belzer C. Action and function of Akkermansia muciniphila in microbiome ecology, health and disease. Best Pract Res Clin Gastroenterol. 2017 Dec 1; 31 (6):637–42. https://doi.org/10.1016/j.bpg.2017.10.001 PMID: 2956690
  • Referans69. Verhoog S, Taneri PE, Roa Dı´az ZM, Marques-Vidal P, Troup JP, Bally L, et al. Dietary Factors and Modulation of Bacteria Strains of Akkermansia muciniphila and Faecalibacterium prausnitzii: A Systematic Review. Nutrients. 2019 Jul 11; 11(7). https://doi.org/10.3390/nu11071565 PMID: 31336737
  • Referans70. Leylabadlo HE, Ghotaslou R, Feizabadi MM, Farajnia S, Moaddab SY, Ganbarov K, et al. The critical role of Faecalibacterium prausnitzii in human health: An overview. Microb Pathog. 2020 Dec 1; 149:104344. https://doi.org/10.1016/j.micpath.2020.104344 PMID: 32534182

The Connection Between Differences in Gut Microbiota Composition And Physical Activity

Year 2023, Volume: 1 Issue: 1, 1 - 14, 13.10.2023

Abstract

Aim: The gut microbiota is made up of a variety of symbiotic organisms that live in the digestive tract, including bacteria, fungus, archaea, protists, helminths, and viruses. There isn't much information available on the potential link between an active lifestyle and a healthy microbiome composition. In this study, the findings of human research comparing the microbiomes of healthy adults who engaged in various levels of physical exercise were summarized. Methods: Between August and October 2020, we conducted searches on NIH/PubMed and Academic Search Complete. The following were considered as inclusion criteria: (a) cross-sectional studies comparing the gut microbiomes of participants who engaged in varying levels of physical activity; (b) studies characterizing the reactions of the human gut microbiome to various exercise stimuli; and (c) studies including healthy adult men and women. Studies addressing dietary modifications, probiotic or prebiotic use, and research on diabetes, hypertension, cancer, and hormone disruption were all eliminated. Results: Ten cross-sectional studies and seven longitudinal studies, totaling 17 papers, met the inclusion criteria. According to the levels of physical activity in the longitudinal investigations, the major outcomes varied significantly. The relative abundance of several bacteria and discrete changes in diversity indices were seen in individuals who were physically active. In light of the expanding body of research in this area, it is crucial to conduct studies using a variety of techniques to evaluate other facets of active lifestyles, such as eating and sleeping habits. Understanding how the gut microbiota adapts to physical activity and sport, as well as any potential positive effects on human metabolism and endurance, may be improved by looking at additional groups such as viruses, archaea, and parasites.

References

  • Referans1: Ho H-E, Bunyavanich S. Role of the Microbiome in Food Allergy. Curr Allergy Asthma Rep. 2018 05; 18(4):27. https://doi.org/10.1007/s11882-018-0780-z PMID: 29623445
  • Referans2. Microbiome—an overview | ScienceDirect Topics [Internet]. [cited 2020 Jul 30]. https://wwwsciencedirect- com.ez.urosario.edu.co/topics/immunology-and-microbiology/microbiome
  • Referans3. Gevers D, Knight R, Petrosino JF, Huang K, McGuire AL, Birren BW, et al. The Human Microbiome Project: A Community Resource for the Healthy Human Microbiome. PLoS Biol [Internet]. 2012 Aug 14 [cited 2020 Feb 6]; 10(8). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3419203/
  • Referans4. Holmes E, Li JV, Marchesi JR, Nicholson JK. Gut Microbiota Composition and Activity in Relation to Host Metabolic Phenotype and Disease Risk. Cell Metab. 2012 Nov 7; 16(5):559–64. https://doi.org/ 10.1016/j.cmet.2012.10.007 PMID: 23140640
  • Referans5. Nicholson JK, Holmes E, Kinross J, Burcelin R, Gibson G, Jia W, et al. Host-gut microbiota metabolic interactions. Science. 2012 Jun 8; 336(6086):1262–7. https://doi.org/10.1126/science.1223813 PMID: 22674330
  • Referans6. Mach N, Fuster-Botella D. Endurance exercise and gut microbiota: A review. J Sport Health Sci. 2017 Jun; 6(2):179–97. https://doi.org/10.1016/j.jshs.2016.05.001 PMID: 30356594
  • Referans7. Codella R, Luzi L, Terruzzi I. Exercise has the guts: How physical activity may positively modulate gut microbiota in chronic and immune-based diseases. Dig Liver Dis Off J Ital Soc Gastroenterol Ital Assoc Study Liver. 2018 Apr; 50(4):331–41. https://doi.org/10.1016/j.dld.2017.11.016 PMID: 29233686
  • Referans8. Collins SM. A role for the gut microbiota in IBS. Nat Rev Gastroenterol Hepatol. 2014 Aug; 11(8):497– 505. https://doi.org/10.1038/nrgastro.2014.40 PMID: 24751910
  • Referans9. Nishida A, Inoue R, Inatomi O, Bamba S, Naito Y, Andoh A. Gut microbiota in the pathogenesis of inflammatory bowel disease. Clin J Gastroenterol. 2018 Feb; 11(1):1–10. https://doi.org/10.1007/ s12328-017- 0813-5 PMID: 29285689
  • Referans10. Moreno-Indias I, Cardona F, Tinahones FJ, Queipo-Ortuño MI. Impact of the gut microbiota on the development of obesity and type 2 diabetes mellitus. Front Microbiol. 2014; 5:190. https://doi.org/10. 3389/fmicb.2014.00190 PMID: 24808896
  • Referans11. Jose PA, Raj D. Gut microbiota in hypertension. Curr Opin Nephrol Hypertens. 2015 Sep; 24(5):403– https://doi.org/10.1097/MNH.0000000000000149 PMID: 26125644
  • Referans12. Lazar V, Ditu L-M, Pircalabioru GG, Gheorghe I, Curutiu C, Holban AM, et al. Aspects of Gut Microbiota and Immune System Interactions in Infectious Diseases, Immunopathology, and Cancer. Front Immunol. 2018; 9:1830. https://doi.org/10.3389/fimmu.2018.01830 PMID: 30158926
  • Referans13. Plovier H, Cani PD. Microbial Impact on Host Metabolism: Opportunities for Novel Treatments of Nutritional Disorders? Microbiol Spectr. 2017; 5(3). https://doi.org/10.1128/microbiolspec.BAD-0002-2016 PMID: 28597812
  • Referans14. Salazar N, Arboleya S, Ferna´ndez-Navarro T, de Los Reyes-Gavila´n CG, Gonzalez S, Gueimonde M. Age-Associated Changes in Gut Microbiota and Dietary Components Related with the Immune System in Adulthood and Old Age: A Cross-Sectional Study. Nutrients. 2019 Jul 31; 11(8). https://doi.org/ 10.3390/nu11081765 PMID: 31370376
  • Referans15. Wilson AS, Koller KR, Ramaboli MC, Nesengani LT, Ocvirk S, Chen C, et al. Diet and the Human Gut Microbiome: An International Review. Dig Dis Sci. 2020; 65(3):723–40. https://doi.org/10.1007/ s10620-020- 06112-w PMID: 32060812
  • Referans16. Moszak M, Szulińska M, Bogdański P. You Are What You Eat-The Relationship between Diet, Microbiota, and Metabolic Disorders-A Review. Nutrients. 2020 Apr 15; 12(4).
  • Referans17. Matenchuk BA, Mandhane PJ, Kozyrskyj AL. Sleep, circadian rhythm, and gut microbiota. Sleep Med Rev. 2020 May 13; 53:101340. https://doi.org/10.1016/j.smrv.2020.101340 PMID: 32668369
  • Referans18. Tremaroli V, Ba¨ckhed F. Functional interactions between the gut microbiota and host metabolism. Nature. 2012 Sep 13; 489(7415):242–9. https://doi.org/10.1038/nature11552 PMID: 22972297
  • Referans19. Zeng MY, Inohara N, Nuñez G. Mechanisms of inflammation-driven bacterial dysbiosis in the gut. Mucosal Immunology. 2017.
  • Referans20. Derrien M, Alvarez A-S, de Vos WM. The Gut Microbiota in the First Decade of Life. Trends Microbiol. 2019; 27(12):997–1010. https://doi.org/10.1016/j.tim.2019.08.001 PMID: 31474424
  • Referans21. King CH, Desai H, Sylvetsky AC, LoTempio J, Ayanyan S, Carrie J, et al. Baseline human gut microbiota profile in healthy people and standard reporting template. PloS One. 2019; 14(9):e0206484. https://doi.org/10.1371/journal.pone.0206484 PMID: 31509535
  • Referans22. Galle F, Valeriani F, Cattaruzza MS, Gianfranceschi G, Liguori R, Antinozzi M, et al. Mediterranean Diet, Physical Activity and Gut Microbiome Composition: A Cross-Sectional Study among Healthy Young Italian Adults. Nutrients. 2020; 12(7). https://doi.org/10.3390/nu12072164 PMID: 32708278
  • Referans23. Warburton DER, Bredin SSD. Health benefits of physical activity: a systematic review of current systematic reviews. Curr Opin Cardiol. 2017 Sep; 32(5):541–56. https://doi.org/10.1097/HCO. 0000000000000437 PMID: 28708630
  • Referans24. Maughan RJ, Burke LM, Dvorak J, Larson-Meyer DE, Peeling P, Phillips SM, et al. IOC consensus statement: dietary supplements and the high-performance athlete. Br J Sports Med. 2018 Apr; 52(7):439–55. https://doi.org/10.1136/bjsports-2018-099027 PMID: 29540367
  • Referans25. Campbell B, Kreider RB, Ziegenfuss T, La Bounty P, Roberts M, Burke D, et al. International Society of Sports Nutrition position stand: protein and exercise. J Int Soc Sports Nutr. 2007 Sep 26; 4:8. https://doi.org/10.1186/1550-2783-4-8 PMID: 17908291
  • Referans26. Ja¨ger R, Mohr AE, Carpenter KC, Kerksick CM, Purpura M, Moussa A, et al. International Society of Sports Nutrition Position Stand: Probiotics. J Int Soc Sports Nutr. 2019 Dec 21; 16(1):62. https://doi. org/10.1186/s12970-019-0329-0 PMID: 31864419
  • Referans27. Dekker J. In with a sporting chance probiotics may help reduce inflamation and improve immünity. Nutraceuticals Now. 2019 Jan 2;18–9.
  • Referans28. Evans CC, LePard KJ, Kwak JW, Stancukas MC, Laskowski S, Dougherty J, et al. Exercise prevents weight gain and alters the gut microbiota in a mouse model of high fat diet-induced obesity. PloS One. 2014; 9(3):e92193. https://doi.org/10.1371/journal.pone.0092193 PMID: 24670791
  • Referans29. Brandt N, Kotowska D, Kristensen CM, Olesen J, Lu¨tzhøft DO, Halling JF, et al. The impact of exercise training and resveratrol supplementation on gut microbiota composition in high-fat diet fed mice. Physiol Rep. 2018 Oct; 6(20):e13881.
  • Referans30. McCabe LR, Irwin R, Tekalur A, Evans C, Schepper JD, Parameswaran N, et al. Exercise prevents high fat diet-induced bone loss, marrow adiposity and dysbiosis in male mice. Bone. 2019 Jan; 118:20–31. https://doi.org/10.1016/j.bone.2018.03.024 PMID: 29604350
  • Referans31. Nagano T, Yano H. Effect of dietary cellulose nanofiber and exercise on obesity and gut microbiota in mice fed a high-fat-diet. Biosci Biotechnol Biochem. 2020 Mar; 84(3):613–20. PMID: 31718523
  • Referans32. Yu C, Liu S, Chen L, Shen J, Niu Y, Wang T, et al. Effect of exercise and butyrate supplementation on microbiota composition and lipid metabolism. J Endocrinol. 2019 Nov; 243(2):125–35. https://doi.org/ 10.1530/JOE-19-0122 PMID: 31454784
  • Referans33. Hsu YJ, Chiu CC, Li YP, Huang WC, Huang YT, Huang CC, et al. Effect of intestinal microbiota on exercise performance in mice. J Strength Cond Res. 2015 Feb; 29(2):552–8. https://doi.org/10.1519/ JSC.0000000000000644 PMID: 25144131
  • Referans34. Lambert JE, Myslicki JP, Bomhof MR, Belke DD, Shearer J, Reimer RA. Exercise training modifies gut microbiota in normal and diabetic mice. Appl Physiol Nutr Metab Physiol Appl Nutr Metab. 2015 Jul; 40(7):749–52. https://doi.org/10.1139/apnm-2014-0452 PMID: 25962839
  • Referans35. Kim D, Kang H. Exercise training modifies gut microbiota with attenuated host responses to sepsis in wild-type mice. FASEB J Off Publ Fed Am Soc Exp Biol. 2019 Apr; 33(4):5772–81. https://doi.org/10. 1096/fj.201802481R PMID: 30702933
  • Referans36. Allen JM, Berg Miller ME, Pence BD, Whitlock K, Nehra V, Gaskins HR, et al. Voluntary and forced exercise differentially alters the gut microbiome in C57BL/6J mice. J Appl Physiol Bethesda Md 1985. 2015 Apr 15; 118(8):1059–66.
  • Referans37. Denou E, Marcinko K, Surette MG, Steinberg GR, Schertzer JD. High-intensity exercise training increases the diversity and metabolic capacity of the mouse distal gut microbiota during diet-induced obesity. Am J Physiol Endocrinol Metab. 2016 Jun 1; 310(11):E982–993. https://doi.org/10.1152/ ajpendo.00537.2015 PMID: 27117007
  • Referans38. Okamoto T, Morino K, Ugi S, Nakagawa F, Lemecha M, Ida S, et al. Microbiome potentiates endurance exercise through intestinal acetate production. Am J Physiol Endocrinol Metab. 2019 May 1; 316 (5):E956–66. https://doi.org/10.1152/ajpendo.00510.2018 PMID: 3086087
  • Referans39. Yuan X, Xu S, Huang H, Liang J, Wu Y, Li C, et al. Influence of excessive exercise on immunity, metabolism, and gut microbial diversity in an overtraining mice model. Scand J Med Sci Sports. 2018 May; 28(5):1541–51. https://doi.org/10.1111/sms.13060 PMID: 29364545
  • Referans40. Houghton D, Stewart CJ, Stamp C, Nelson A, Aj Ami NJ, Petrosino JF, et al. Impact of Age-Related Mitochondrial Dysfunction and Exercise on Intestinal Microbiota Composition. J Gerontol A Biol Sci Med Sci. 2018 Apr 17; 73(5):571–8.
  • Referans41. Riebe D, Franklin BA, Thompson PD, Garber CE, Whitfield GP, Magal M, et al. Updating ACSM’s Recommendation for Exercise Preparticipation Health Screening: Med Sci Sports Exerc. 2015 Nov; 47(11):2473–9. https://doi.org/10.1249/MSS.0000000000000664 PMID: 26473759
  • Referans42. Moher D, Liberati A, Tetzlaff J, Altman DG, Group TP. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLOS Med. 2009 Jul 21; 6(7):e1000097. https://doi.org/10.1371/journal.pmed.1000097 PMID: 19621072
  • Referans43. Sterne JA, Herna´n MA, Reeves BC, Savović J, Berkman ND, Viswanathan M, et al. ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. BMJ. 2016 Oct 12; 355:i4919. https://doi.org/10.1136/bmj.i4919 PMID: 27733354
  • Referans44. Clarke SF, Murphy EF, O’Sullivan O, Lucey AJ, Humphreys M, Hogan A, et al. Exercise and associated dietary extremes impact on gut microbial diversity. Gut. 2014 Dec; 63(12):1913–20. https://doi. org/10.1136/gutjnl-2013-306541 PMID: 25021423
  • Referans45. Barton W, Penney NC, Cronin O, Garcia-Perez I, Molloy MG, Holmes E, et al. The microbiome of professional athletes differs from that of more sedentary subjects in composition and particularly at the functional metabolic level. Gut. 2018; 67(4):625–33. https://doi.org/10.1136/gutjnl-2016-313627 PMID: 28360096
  • Referans46. Estaki M, Pither J, Baumeister P, Little JP, Gill SK, Ghosh S, et al. Cardiorespiratory fitness as a predictor of intestinal microbial diversity and distinct metagenomic functions. Microbiome. 2016 08; 4 (1):42. https://doi.org/10.1186/s40168-016-0189-7 PMID: 27502158
  • 47. Bressa C, Baile´n-Andrino M, Pe´rez-Santiago J, Gonza´lez-Soltero R, Pe´rez M, Montalvo-Lominchar MG, et al. Differences in gut microbiota profile between women with active lifestyle and sedentary women. PloS One. 2017; 12(2):e0171352. https://doi.org/10.1371/journal.pone.0171352 PMID: 28187199
  • Referans48. Petersen LM, Bautista EJ, Nguyen H, Hanson BM, Chen L, Lek SH, et al. Community characteristics of the gut microbiomes of competitive cyclists. Microbiome. 2017 Aug 10; 5(1):98. https://doi.org/10. 1186/s40168- 017-0320-4 PMID: 28797298
  • Referans49. Yang Y, Shi Y, Wiklund P, Tan X, Wu N, Zhang X, et al. The Association between Cardiorespiratory Fitness and Gut Microbiota Composition in Premenopausal Women. Nutrients [Internet]. 2017 Jul 25 [cited 2020 Apr 30]; 9(8). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5579588/
  • Referans50. Whisner CM, Maldonado J, Dente B, Krajmalnik-Brown R, Bruening M. Diet, physical activity and screen time but not body mass index are associated with the gut microbiome of a diverse cohort of college students living in university housing: a cross-sectional study. BMC Microbiol. 2018 Dec 12; 18 (1):210. https://doi.org/10.1186/s12866-018-1362-x PMID: 30541450
  • Referans51. Durk RP, Castillo E, Ma´rquez-Magaña L, Grosicki GJ, Bolter ND, Lee CM, et al. Gut Microbiota Composition Is Related to Cardiorespiratory Fitness in Healthy Young Adults. Int J Sport Nutr Exerc Metab. 2019 May 1; 29(3):249–53. https://doi.org/10.1123/ijsnem.2018-0024 PMID: 29989465
  • Referans52. Jang L-G, Choi G, Kim S-W, Kim B-Y, Lee S, Park H. The combination of sport and sport-specific die is associated with characteristics of gut microbiota: an observational study. J Int Soc Sports Nutr. 2019 May 3; 16(1):21. https://doi.org/10.1186/s12970-019-0290-y PMID: 31053143
  • Referans53. O’Donovan CM, Madigan SM, Garcia-Perez I, Rankin A, O’ Sullivan O, Cotter PD. Distinct microbiome composition and metabolome exists across subgroups of elite Irish athletes. J Sci Med Sport. 2019 Sep 18; https://doi.org/10.1016/j.jsams.2019.08.290 PMID: 31558359
  • Referans54. Liang R, Zhang S, Peng X, Yang W, Xu Y, Wu P, et al. Characteristics of the gut microbiota in professional martial arts athletes: A comparison between different competition levels. PLOS ONE. 2019 Dec 27; 14(12):e0226240. https://doi.org/10.1371/journal.pone.0226240 PMID: 31881037
  • Referans55. Scheiman J, Luber JM, Chavkin TA, MacDonald T, Tung A, Pham L-D, et al. Meta-omics analysis of elite athletes identifies a performance-enhancing microbe that functions via lactate metabolism. Nat Med. 2019 Jul; 25(7):1104–9. https://doi.org/10.1038/s41591-019-0485-4 PMID: 31235964
  • Referans56. Hampton-Marcell JT, Eshoo TW, Cook MD, Gilbert JA, Horswill CA, Poretsky R. Comparative Analysis of Gut Microbiota Following Changes in Training Volume Among Swimmers. Int J Sports Med. 2020 May; 41(5):292–9. https://doi.org/10.1055/a-1079-5450 PMID: 31975357
  • Referans57. Mitchell JH, Haskell W, Snell P, Van Camp SP. Task Force 8: Classification of sports. J Am Coll Cardiol. 2005 Apr 19; 45(8):1364–7. https://doi.org/10.1016/j.jacc.2005.02.015 PMID: 15837288
  • Referans58. Allen JM, Mailing LJ, Niemiro GM, Moore R, Cook MD, White BA, et al. Exercise Alters Gut Microbiota Composition and Function in Lean and Obese Humans. Med Sci Sports Exerc. 2018; 50(4):747–57. https://doi.org/10.1249/MSS.0000000000001495 PMID: 29166320
  • Referans59. Munukka E, Ahtiainen JP, Puigbo´ P, Jalkanen S, Pahkala K, Keskitalo A, et al. Six-Week Endurance Exercise Alters Gut Metagenome That Is not Reflected in Systemic Metabolism in Over-weight Women. Front Microbiol [Internet]. 2018 Oct 3 [cited 2019 Oct 15]; 9. Available from: https://www.ncbi. nlm.nih.gov/pmc/articles/PMC6178902/
  • Referans60. Kern T, Blond MB, Hansen TH, Rosenkilde M, Quist JS, Gram AS, et al. Structured exercise alters the gut microbiota in humans with overweight and obesity—A randomized controlled trial. Int J Obes. 2020 Jan; 44(1):125–35. https://doi.org/10.1038/s41366-019-0440-y PMID: 31467422
  • Referans61. Rettedal EA, Cree JME, Adams SE, MacRae C, Skidmore PML, Cameron-Smith D, et al. Short-term high-intensity interval training exercise does not affect gut bacterial community diversity or composition of lean and overweight men. Exp Physiol. 2020 Jun 1; https://doi.org/10.1113/EP088744 PMID: 32478429
  • Referans62. Zhao X, Zhang Z, Hu B, Huang W, Yuan C, Zou L. Response of Gut Microbiota to Metabolite Changes Induced by Endurance Exercise. Front Microbiol. 2018; 9:765. https://doi.org/10.3389/fmicb.2018. 00765 PMID: 29731746
  • Referans63. Cockburn DW, Orlovsky NI, Foley MH, Kwiatkowski KJ, Bahr CM, Maynard M, et al. Molecular details of a starch utilization pathway in the human gut symbiont Eubacterium rectale. Mol Microbiol. 2015 Jan; 95(2):209–30. https://doi.org/10.1111/mmi.12859 PMID: 25388295
  • Referans64. Cockburn DW, Suh C, Medina KP, Duvall RM, Wawrzak Z, Henrissat B, et al. Novel carbohydrate binding modules in the surface anchored α-amylase of Eubacterium rectale provide a molecular rationale for the range of starches used by this organism in the human gut. Mol Microbiol. 2018; 107 (2):249–64. https://doi.org/10.1111/mmi.13881 PMID: 29139580
  • Referans65. Gomes AC, Hoffmann C, Mota JF. The human gut microbiota: Metabolism and perspective in obesity. Gut Microbes. 2018 04; 9(4):308–25. https://doi.org/10.1080/19490976.2018.1465157 PMID: 29667480
  • Referans66. Fu X, Liu Z, Zhu C, Mou H, Kong Q. Nondigestible carbohydrates, butyrate, and butyrate-producing bacteria. Crit Rev Food Sci Nutr. 2019 Jun 27; 59(sup1):S130–52. https://doi.org/10.1080/10408398. 2018.1542587 PMID: 30580556
  • Referans67. Derrien M, Belzer C, de Vos WM. Akkermansia muciniphila and its role in regulating host functions. Microb Pathog. 2017 May; 106:171–81. https://doi.org/10.1016/j.micpath.2016.02.005 PMID: 26875998
  • Referans68. Ottman N, Geerlings SY, Aalvink S, de Vos WM, Belzer C. Action and function of Akkermansia muciniphila in microbiome ecology, health and disease. Best Pract Res Clin Gastroenterol. 2017 Dec 1; 31 (6):637–42. https://doi.org/10.1016/j.bpg.2017.10.001 PMID: 2956690
  • Referans69. Verhoog S, Taneri PE, Roa Dı´az ZM, Marques-Vidal P, Troup JP, Bally L, et al. Dietary Factors and Modulation of Bacteria Strains of Akkermansia muciniphila and Faecalibacterium prausnitzii: A Systematic Review. Nutrients. 2019 Jul 11; 11(7). https://doi.org/10.3390/nu11071565 PMID: 31336737
  • Referans70. Leylabadlo HE, Ghotaslou R, Feizabadi MM, Farajnia S, Moaddab SY, Ganbarov K, et al. The critical role of Faecalibacterium prausnitzii in human health: An overview. Microb Pathog. 2020 Dec 1; 149:104344. https://doi.org/10.1016/j.micpath.2020.104344 PMID: 32534182
There are 70 citations in total.

Details

Primary Language Turkish
Subjects Clinical Microbiology
Journal Section Reviews
Authors

Efdal Oktay Gultekin 0000-0002-0962-152X

Onur Gültekin 0000-0003-3444-9044

Arzu Coşkun 0000-0003-4771-1558

Publication Date October 13, 2023
Submission Date August 20, 2023
Published in Issue Year 2023 Volume: 1 Issue: 1

Cite

AMA Oktay Gultekin E, Gültekin O, Coşkun A. Fiziksel Aktivite ile Bağırsak Mikrobiyota Bileşimindeki Değişiklikler Arasındaki İlişki. Tusad. October 2023;1(1):1-14.