Research Article
BibTex RIS Cite

Evaluation of Antibiotic Resistance Profiles and Extended Spectrum of Beta Lactamase (ESBL) Properties of Uropathogenic Escherichia coli Strains

Year 2020, Volume: 46 Issue: 2, 41 - 65, 31.10.2020

Abstract

In this study; 135 Escherichia coli strains, isolated and identified from urinary tract infections, were evaluated for their sensitivity to twenty different antibiotics and for their production of extended spectrum of beta lactamase enzyme (ESBL). Disc diffusion method was used to determine antibiotic susceptibilities. It was determined that 65.1% of the strains were resistant to at least one or more antibiotics and there were 69 different resistance profiles among the strains. It was seen that the highest resistance rate among strains was 50.4% against ampicillin, followed by 40.7% tetracycline, 40% nalidixic acid, 31.1% ofloxacin and moxifloxacin, 28.9% amoxicillin / clavulanic acid and ciprofloxacin. Strains were observed to be 100% sensitive to meropenem, followed by imipenem with a rate of 1.48% and amikacin with a rate of 2.2%. Double disk synergy method was used to determine the production of ESBL. It was determined that phenotypically, the number of ESBL positive strains was 16 (11.8%). Multiplex PCR method was used to detect the ESBL genes genotypically in ESBL positive strains. With this method, blaCTX-M, blaTEM, blaSHV, blaOXA beta lactamase genes were investigated. It was revealed that the most common gene in ESBL positive strains was the blaTEM gene with a rate of 93.7%. Uropathogenic Escherichia coli infections have become a serious problem worldwide. Strains that are increasingly resistant to both synthetic and natural antibiotics cause the infection to recur and become chronic with the emergence of new and more serious diseases. For this reason, surveillance studies on the antibiotic resistance properties of uropathogenic E. coli strains should be conducted and new therapeutic solutions should be developed.

References

  • Aladag MO, Uysal A, Dundar N, Durak Y, ve Gunes E (2013). Characterization of Klebsiella pneumoniae strains isolated from urinary tract infections: detection of ESBL characteristics, antibiotic susceptibility and RAPD genotyping. Polish Journal of Microbiology 62:401-409.
  • Allocati N, Masulli M, Alexeyev MF, ve Di Ilio C (2013). Escherichia coli in Europe: an overview. Int J Environ Res Public Health 10:6235-6254.
  • Azap O, Togan T, Yesilkaya A, Arslan H, ve Haberal M (2013). Antimicrobial Susceptibilities of Uropathogen Escherichia coli in Renal Transplant Recipients: Dramatic Increase in Ciprofloxacin Resistance. Transplantation Proceedings 45:956-957.
  • Azap OK, Arslan H, Serefhanoglu K, Colakoglu S, Erdogan H, Timurkaynak F, ve Senger SS (2010). Risk factors for extended-spectrum beta-lactamase positivity in uropathogenic Escherichia coli isolated from community-acquired urinary tract infections. Clinical Microbiology and Infection 16:147-151.
  • Bali EB, Acik L, ve Sultan N (2010). Phenotypic and molecular characterization of SHV, TEM, CTX-M and extended-spectrum beta-lactamase produced by Escherichia coli, Acinobacter baumannii and Klebsiella isolates in a Turkish hospital. Afr J Microbiol Res 4:650-654.
  • Bijapur GAM, Maulingkar SV, Greeshma B, ve Usman SM (2015). Multidrug Resistant Escherichia coli in Nosocomial Urinary Tract Infections at a Tertiary Care Hospital in Kerala, India. Open Infectious Diseases Journal 9:30-34.
  • Bordford P (2001). Extended-spectrum b-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clinical Microbiology Reviews 14:933-951.
  • Brolund A (2014). Overview of ESBL-producing Enterobacteriaceae from a Nordic perspective. Infect Ecol Epidemiol 4.
  • Bush K, ve Jacoby GA (2010). Updated Functional Classification of beta-Lactamases. Antimicrobial Agents and Chemotherapy 54:969-976.
  • CLSI (2011). Performance standards for antimicrobial susceptibility testing: twenty-first informational supplement. Clinical and Laboratory Standards Institute (CLSI), Pennsylvania, USA.
  • Coque TM, Baquero F, ve Canton R (2008). Increasing prevalence of ESBL-producing Enterobacteriaceae in Europe. Euro Surveill 13.
  • Danino D, Melamed R, Sterer B, Porat N, Hazan G, Gushanski A, Shany E, Greenberg D, ve Borer A (2018). Mother-to-child transmission of extended-spectrum-beta-lactamase-producing Enterobacteriaceae. Journal of Hospital Infection 100:40-46.
  • Dougnon V, Assogba P, Anago E, Déguénon E, Dapuliga C, Agbankpè J, Zin S, Akotègnon R, Moussa LB, ve Bankolé H (2020). Enterobacteria responsible for urinary infections: a review about pathogenicity, virulence factors and epidemiology. Journal of Applied Biology & Biotechnology 8:117-124.
  • ECDC (2019). European Centre for Disease Prevention and Control. Surveillance of Antimicrobial Resistance in Europe 2018. Pages 1-110, Stockholm.
  • Ejrnaes K, Stegger M, Reisner A, Ferry S, Monsen T, Holm SE, Lundgren B, ve Frimodt-Moller N (2011). Characteristics of Escherichia coli causing persistence or relapse of urinary tract infections: phylogenetic groups, virulence factors and biofilm formation. Virulence 2:528-537.
  • Emody L, Kerenyi M, ve Nagy G (2003). Virulence factors of uropathogenic Escherichia coli. Int J Antimicrob Agents 22 Suppl 2:29-33.
  • EUCAST (2019). The European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters. Version 9.0, 2019. http://www.eucast.org.
  • Gaddar N, Anastasiadis E, Halimeh R, Ghaddar A, Matar GM, Abou Fayad A, Sherri N, Dhar R, AlFouzan W, ve Yusef H (2020). Phenotypic and Genotypic Characterization of Extended-Spectrum Beta-Lactamases Produced by Escherichia coli Colonizing Pregnant Women. Infectious Diseases in Obstetrics and Gynecology 2020:1-7.
  • Gorgec S, Kuzucu C, Otlu B, Yetkin F, ve Ersoy Y (2015). Investigation of Beta-Lactamase Genes and Clonal Relationship Among the Extended-Spectrum Beta-Lactamase Producing Nosocomial Escherichia coli Isolates. Mikrobiyoloji Bulteni 49:15-25.
  • Hassuna NA, Khairalla AS, Farahat EM, Hammad AM, ve Abdel-Fattah M (2020). Molecular characterization of Extended-spectrum beta lactamase- producing E. coli recovered from community-acquired urinary tract infections in Upper Egypt. Sci Rep 10:2772.
  • Hirsch EF (2008). "The Treatment of Infected Wounds," Alexis Carrel's contribution to the care of wounded soldiers during World War I. Journal of Trauma-Injury Infection and Critical Care 64:S209-S210.
  • Holvoet K, Sampers I, Callens B, Dewulf J, ve Uyttendaele M (2013). Moderate prevalence of antimicrobial resistance in Escherichia coli isolates from lettuce, irrigation water, and soil. Appl Environ Microbiol 79:6677-6683. Khorshed AA, ve Arslan E. 2015. Determination of ESBL productıon as phenotypic and genotypic in extraintestinal pathogenıc E. coli. Page 131 Turkish Journal of Biochemistry. Turkish Journal of Biochemistry, Belek, ANTALYA.
  • Kiratisin P, Apisarnthanarak A, Laesripa C, ve Saifon P (2008). Molecular characterization and epidemiology of extended-spectrum-β-lactamase-producing Escherichia coli and Klebsiella pneumoniae isolates causing health care-associated infection in Thailand, where the CTX-M family is endemic. Antimicrobial agents and chemotherapy 52:2818-2824.
  • Kizilca O, Siraneci R, Yilmaz A, Hatipoglu N, Ozturk E, Kiyak A, ve Ozkok D (2012). Risk factors for community-acquired urinary tract infection caused by ESBL-producing bacteria in children. Pediatrics International 54:858-862.
  • Krumperman PH (1983). Multiple Antibiotic-Resistance Indexing of Escherichia-Coli to Identify High-Risk Sources of Fecal Contamination of Foods. Applied and Environmental Microbiology 46:165-170.
  • Kudinha T, Johnson JR, Andrew SD, Kong FR, Anderson P, ve Gilbert GL (2013). Escherichia coli Sequence Type 131 as a Prominent Cause of Antibiotic Resistance among Urinary Escherichia coli Isolates from Reproductive-Age Women. Journal of Clinical Microbiology 51:3270-3276.
  • Lee DS, Lee SJ, ve Choe HS (2018). Community-Acquired Urinary Tract Infection by Escherichia coli in the Era of Antibiotic Resistance. Biomed Res Int 2018:7656752.
  • Lee SY (1996). High cell-density culture of Escherichia coli. Trends Biotechnol 14:98-105.
  • Levy SB (2002). The 2000 Garrod lecture. Factors impacting on the problem of antibiotic resistance. J Antimicrob Chemother 49:25-30.
  • Li BY, ve Webster TJ (2018). Bacteria antibiotic resistance: New challenges and opportunities for implant-associated orthopedic infections. Journal of Orthopaedic Research 36:22-32.
  • Lu P-L, Liu Y-C, Toh H-S, Lee Y-L, Liu Y-M, Ho C-M, Huang C-C, Liu C-E, Ko W-C, ve Wang J-H (2012). Epidemiology and antimicrobial susceptibility profiles of Gram-negative bacteria causing urinary tract infections in the Asia-Pacific region: 2009–2010 results from the Study for Monitoring Antimicrobial Resistance Trends (SMART). International Journal of Antimicrobial Agents 40:S37-S43.
  • Maslikowska JA, Walker SA, Elligsen M, Mittmann N, Palmay L, Daneman N, ve Simor A (2016). Impact of infection with extended-spectrum beta-lactamase-producing Escherichia coli or Klebsiella species on outcome and hospitalization costs. Journal of Hospital Infection 92:33-41.
  • Moawad AA, Hotzel H, Neubauer H, Ehricht R, Monecke S, Tomaso H, Hafez HM, Roesler U, ve El-Adawy H (2018). Antimicrobial resistance in Enterobacteriaceae from healthy broilers in Egypt: emergence of colistin-resistant and extended-spectrum beta-lactamase-producing Escherichia coli. Gut Pathogens 10.
  • Moore E, Angelika A, Krüger A, Strömpl C, ve Mau M (2004). Simplified protocols for the preparation of genomic DNA from bacterial cultures. Second edition. Kluwer Academic Publishers, Netherlands.
  • Niranjan V, ve Malini A (2014). Antimicrobial resistance pattern in Escherichia coli causing urinary tract infection among inpatients. Indian Journal of Medical Research 139:945-948.
  • OBrien TF (1997). The global epidemic nature of antimicrobial resistance and the need to monitor and manage it locally. Clinical Infectious Diseases 24:S2-S8. Perez F, ve Bonomo RA (2012). Can We Really Use ss-Lactam/ss-Lactam Inhibitor Combinations for the Treatment of Infections Caused by Extended-Spectrum ss-Lactamase-Producing Bacteria? Clinical Infectious Diseases 54:175-177.
  • Rehab MMAA, El-Baghdady KZ, Iman KFK, ve El-Shishtawy HM (2019). Prevalence of Extended Spectrum Beta-Lactamase Genes among Escherichia coli and Klebsiella pneumoniae Clinical Isolates. Egyptian Journal of Microbiology 54:91-101.
  • Ruppé E (2010). Épidémiologie des bêta-lactamases à spectre élargi: l’avènement des CTX-M. Antibiotiques 12:3-16.
  • Russo TA, ve Johnson JR (2003). Medical and economic impact of extraintestinal infections due to Escherichia coli: focus on an increasingly important endemic problem. Microbes Infect 5:449-456.
  • Sana T, Rami K, Racha B, Fouad D, Marcel A, Hassan M, Sani H, ve Monzer H (2011). Detection of genes TEM, OXA, SHV and CTX-M in 73 clinical isolates of Escherichia coli producers of extended spectrum Betalactamases and determination of their susceptibility to antibiotics. The International Arabic Journal of Antimicrobial Agents 1:1-6.
  • Shaikh S, Fatima J, Shakil S, Rizvi SMD, ve Kamal MA (2015). Antibiotic resistance and extended spectrum beta-lactamases: Types, epidemiology and treatment. Saudi Journal of Biological Sciences 22:90-101.
  • Sharma G, Sharma S, Sharma P, Chandola D, Dang S, Gupta S, ve Gabrani R (2016). Escherichia coli biofilm: development and therapeutic strategies. Journal of Applied Microbiology 121:309-319.
  • Surgers L, Boyd A, Girard PM, Arlet G, ve Decre D (2019). Biofilm formation by ESBL-producing strains of Escherichia coli and Klebsiella pneumoniae. Int J Med Microbiol 309:13-18.
  • Tissera S, ve Lee SM (2013). Isolation of Extended Spectrum beta-lactamase (ESBL) Producing Bacteria from Urban Surface Waters in Malaysia. Malays J Med Sci 20:14-22.
  • Ugwu M, Shariff M, Nnajide C, Beri K, Okezie U, Iroha I, ve Esimone C (2020). Phenotypic and Molecular Characterization of β-Lactamases among Enterobacterial Uropathogens in Southeastern Nigeria. Canadian Journal of Infectious Diseases and Medical Microbiology 2020:1-9.
  • Uysal A, ve Durak Y (2012). Pulsed-field gel electrophoresis typing, antibiotic resistance, and plasmid profiles of Escherichia coli strains isolated from foods. Canadian Journal of Microbiology 58:1278-1287.
  • Uysal A, Gunes E, Arslan E, ve Durak Y (2018). Characterization of Uropathogenic Escherichia Coli Strains: Antibiotic Resistance Patterns, Detection of Esbl Genes and Interactions by Lytic Phages. Fresenius Environmental Bulletin 27:402-414.
  • van den Bogaard AE, London N, Driessen C, ve Stobberingh EE (2001). Antibiotic resistance of faecal Escherichia coli in poultry, poultry farmers and poultry slaughterers. Journal of Antimicrobial Chemotherapy 47:763-771.
  • van Driel AA, Notermans DW, Meima A, Mulder M, Donker GA, Stobberingh EE, ve Verbon A (2019). Antibiotic resistance of Escherichia coli isolated from uncomplicated UTI in general practice patients over a 10-year period. Eur J Clin Microbiol Infect Dis 38:2151-2158.
  • Vital PG, Zara ES, Paraoan CEM, Dimasupil MAZ, Abello JJM, Santos ITG, ve Rivera WL (2018). Antibiotic Resistance and Extended-Spectrum Beta-Lactamase Production of Escherichia coli Isolated from Irrigation Waters in Selected Urban Farms in Metro Manila, Philippines. Water 10.
  • Yilmaz N, Agus N, Yurtsever SG, Pullukcu H, Gulay Z, Coskuner A, Kose S, Aydemir S, Gulenc N, ve Ozgenc O (2009). Prevalence and antimicrobial susceptibility of Escherichia coli in outpatient urinary isolates in Izmir, Turkey. Medical Science Monitor 15:Pi61-Pi65.
  • Yılmaz N, Ağuş N, Bayram A, Şamlıoğlu P, Şirin MC, Derici YK, ve Hancı SY (2016). Antimicrobial susceptibilities of Escherichia coli isolates as agents of community-acquired urinary tract infection (2008–2014). Turkish journal of urology 42:32.
  • Zamani H, ve Salehzadeh A (2018). Biofilm formation in uropathogenic Escherichia coli: association with adhesion factor genes. Turkish Journal of Medical Sciences 48:162-167.
  • Zowawi HM, Harris PNA, Roberts MJ, Tambyah PA, Schembri MA, Pezzani MD, Williamson DA, ve Paterson DL (2015). The emerging threat of multidrug-resistant Gram-negative bacteria in urology. Nature Reviews Urology 12:570-584.

Üropatojenik Escherichia coli Suşlarının Antibiyotik Direnç Profilleri ve Genişlemiş Spektrumlu Beta Laktamaz (GSBL) Özelliklerinin Değerlendirilmesi

Year 2020, Volume: 46 Issue: 2, 41 - 65, 31.10.2020

Abstract

Bu çalışmada; idrar yolu enfeksiyonlarından izole ve identifiye edilen 135 Escherichia coli suşu; yirmi farklı antibiyotiğe duyarlılıkları ve genişlemiş spektrumlu beta laktamaz enzimi (GSBL) üretimleri açısından değerlendirildi. Antibiyotik duyarlılıklarının belirlenmesi için, disk difüzyon yöntemi kullanıldı. Suşların % 65.1’nin en az bir veya daha fazla antibiyotiğe dirençli olduğu ve suşlar arasında 69 farklı direnç profili olduğu belirlendi. Suşlar arasındaki en yüksek direnç oranı % 50.4 ile ampisiline karşı olduğu, bunu % 40.7 tetrasiklin, % 40 nalidiksik asid, % 31.1 ofloksasin ve moksifloksasin, % 28.9 ile amoksisilin/klavulanik asit ve siprofloksasin’in takip ettiği görüldü. Suşlar meropeneme karşı % 100 duyarlı olarak gözlemlendi, bunu % 1.48 oranı ile imipenem ve % 2.2 oranı ile amikasinin takip ettiği görüldü. GSBL üretiminin belirlenmesi için çift disk sinerji yöntemi kullanıldı. Fenotipik olarak GSBL pozitif suş sayısı 16 (% 11.8) olarak tespit edildi. GSBL pozitif suşların genotipik olarak GSBL genlerinin tespiti amacı ile multipleks PZR yöntemi kullanıldı. Bu yöntem ile blaCTX-M, blaTEM, blaSHV, blaOXA beta laktamaz genleri araştırıldı. GSBL pozitif suşlarda en yaygın genin % 93.7 oranı ile blaTEM geni olduğu ortaya koyuldu. Üropatojenik Escherichia coli enfeksiyonları dünya çapında ciddi bir sorun haline gelmiştir. Hem sentetik hem de doğal antibiyotiklere karşı artan dirençli suşlar, yeni ve daha ciddi hastalıkların ortaya çıkmasıyla enfeksiyonun tekrarlamasına ve kronikleşmesine neden olmaktadır. Bu sebeple üropatojenik E. coli suşlarının antibiyotik direnç özellikleri ile ilgili sürveyans çalışmaları yapılmalı ve yeni terapötik çözümlerin geliştirilmesine olanak sağlanmalıdır.

References

  • Aladag MO, Uysal A, Dundar N, Durak Y, ve Gunes E (2013). Characterization of Klebsiella pneumoniae strains isolated from urinary tract infections: detection of ESBL characteristics, antibiotic susceptibility and RAPD genotyping. Polish Journal of Microbiology 62:401-409.
  • Allocati N, Masulli M, Alexeyev MF, ve Di Ilio C (2013). Escherichia coli in Europe: an overview. Int J Environ Res Public Health 10:6235-6254.
  • Azap O, Togan T, Yesilkaya A, Arslan H, ve Haberal M (2013). Antimicrobial Susceptibilities of Uropathogen Escherichia coli in Renal Transplant Recipients: Dramatic Increase in Ciprofloxacin Resistance. Transplantation Proceedings 45:956-957.
  • Azap OK, Arslan H, Serefhanoglu K, Colakoglu S, Erdogan H, Timurkaynak F, ve Senger SS (2010). Risk factors for extended-spectrum beta-lactamase positivity in uropathogenic Escherichia coli isolated from community-acquired urinary tract infections. Clinical Microbiology and Infection 16:147-151.
  • Bali EB, Acik L, ve Sultan N (2010). Phenotypic and molecular characterization of SHV, TEM, CTX-M and extended-spectrum beta-lactamase produced by Escherichia coli, Acinobacter baumannii and Klebsiella isolates in a Turkish hospital. Afr J Microbiol Res 4:650-654.
  • Bijapur GAM, Maulingkar SV, Greeshma B, ve Usman SM (2015). Multidrug Resistant Escherichia coli in Nosocomial Urinary Tract Infections at a Tertiary Care Hospital in Kerala, India. Open Infectious Diseases Journal 9:30-34.
  • Bordford P (2001). Extended-spectrum b-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clinical Microbiology Reviews 14:933-951.
  • Brolund A (2014). Overview of ESBL-producing Enterobacteriaceae from a Nordic perspective. Infect Ecol Epidemiol 4.
  • Bush K, ve Jacoby GA (2010). Updated Functional Classification of beta-Lactamases. Antimicrobial Agents and Chemotherapy 54:969-976.
  • CLSI (2011). Performance standards for antimicrobial susceptibility testing: twenty-first informational supplement. Clinical and Laboratory Standards Institute (CLSI), Pennsylvania, USA.
  • Coque TM, Baquero F, ve Canton R (2008). Increasing prevalence of ESBL-producing Enterobacteriaceae in Europe. Euro Surveill 13.
  • Danino D, Melamed R, Sterer B, Porat N, Hazan G, Gushanski A, Shany E, Greenberg D, ve Borer A (2018). Mother-to-child transmission of extended-spectrum-beta-lactamase-producing Enterobacteriaceae. Journal of Hospital Infection 100:40-46.
  • Dougnon V, Assogba P, Anago E, Déguénon E, Dapuliga C, Agbankpè J, Zin S, Akotègnon R, Moussa LB, ve Bankolé H (2020). Enterobacteria responsible for urinary infections: a review about pathogenicity, virulence factors and epidemiology. Journal of Applied Biology & Biotechnology 8:117-124.
  • ECDC (2019). European Centre for Disease Prevention and Control. Surveillance of Antimicrobial Resistance in Europe 2018. Pages 1-110, Stockholm.
  • Ejrnaes K, Stegger M, Reisner A, Ferry S, Monsen T, Holm SE, Lundgren B, ve Frimodt-Moller N (2011). Characteristics of Escherichia coli causing persistence or relapse of urinary tract infections: phylogenetic groups, virulence factors and biofilm formation. Virulence 2:528-537.
  • Emody L, Kerenyi M, ve Nagy G (2003). Virulence factors of uropathogenic Escherichia coli. Int J Antimicrob Agents 22 Suppl 2:29-33.
  • EUCAST (2019). The European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters. Version 9.0, 2019. http://www.eucast.org.
  • Gaddar N, Anastasiadis E, Halimeh R, Ghaddar A, Matar GM, Abou Fayad A, Sherri N, Dhar R, AlFouzan W, ve Yusef H (2020). Phenotypic and Genotypic Characterization of Extended-Spectrum Beta-Lactamases Produced by Escherichia coli Colonizing Pregnant Women. Infectious Diseases in Obstetrics and Gynecology 2020:1-7.
  • Gorgec S, Kuzucu C, Otlu B, Yetkin F, ve Ersoy Y (2015). Investigation of Beta-Lactamase Genes and Clonal Relationship Among the Extended-Spectrum Beta-Lactamase Producing Nosocomial Escherichia coli Isolates. Mikrobiyoloji Bulteni 49:15-25.
  • Hassuna NA, Khairalla AS, Farahat EM, Hammad AM, ve Abdel-Fattah M (2020). Molecular characterization of Extended-spectrum beta lactamase- producing E. coli recovered from community-acquired urinary tract infections in Upper Egypt. Sci Rep 10:2772.
  • Hirsch EF (2008). "The Treatment of Infected Wounds," Alexis Carrel's contribution to the care of wounded soldiers during World War I. Journal of Trauma-Injury Infection and Critical Care 64:S209-S210.
  • Holvoet K, Sampers I, Callens B, Dewulf J, ve Uyttendaele M (2013). Moderate prevalence of antimicrobial resistance in Escherichia coli isolates from lettuce, irrigation water, and soil. Appl Environ Microbiol 79:6677-6683. Khorshed AA, ve Arslan E. 2015. Determination of ESBL productıon as phenotypic and genotypic in extraintestinal pathogenıc E. coli. Page 131 Turkish Journal of Biochemistry. Turkish Journal of Biochemistry, Belek, ANTALYA.
  • Kiratisin P, Apisarnthanarak A, Laesripa C, ve Saifon P (2008). Molecular characterization and epidemiology of extended-spectrum-β-lactamase-producing Escherichia coli and Klebsiella pneumoniae isolates causing health care-associated infection in Thailand, where the CTX-M family is endemic. Antimicrobial agents and chemotherapy 52:2818-2824.
  • Kizilca O, Siraneci R, Yilmaz A, Hatipoglu N, Ozturk E, Kiyak A, ve Ozkok D (2012). Risk factors for community-acquired urinary tract infection caused by ESBL-producing bacteria in children. Pediatrics International 54:858-862.
  • Krumperman PH (1983). Multiple Antibiotic-Resistance Indexing of Escherichia-Coli to Identify High-Risk Sources of Fecal Contamination of Foods. Applied and Environmental Microbiology 46:165-170.
  • Kudinha T, Johnson JR, Andrew SD, Kong FR, Anderson P, ve Gilbert GL (2013). Escherichia coli Sequence Type 131 as a Prominent Cause of Antibiotic Resistance among Urinary Escherichia coli Isolates from Reproductive-Age Women. Journal of Clinical Microbiology 51:3270-3276.
  • Lee DS, Lee SJ, ve Choe HS (2018). Community-Acquired Urinary Tract Infection by Escherichia coli in the Era of Antibiotic Resistance. Biomed Res Int 2018:7656752.
  • Lee SY (1996). High cell-density culture of Escherichia coli. Trends Biotechnol 14:98-105.
  • Levy SB (2002). The 2000 Garrod lecture. Factors impacting on the problem of antibiotic resistance. J Antimicrob Chemother 49:25-30.
  • Li BY, ve Webster TJ (2018). Bacteria antibiotic resistance: New challenges and opportunities for implant-associated orthopedic infections. Journal of Orthopaedic Research 36:22-32.
  • Lu P-L, Liu Y-C, Toh H-S, Lee Y-L, Liu Y-M, Ho C-M, Huang C-C, Liu C-E, Ko W-C, ve Wang J-H (2012). Epidemiology and antimicrobial susceptibility profiles of Gram-negative bacteria causing urinary tract infections in the Asia-Pacific region: 2009–2010 results from the Study for Monitoring Antimicrobial Resistance Trends (SMART). International Journal of Antimicrobial Agents 40:S37-S43.
  • Maslikowska JA, Walker SA, Elligsen M, Mittmann N, Palmay L, Daneman N, ve Simor A (2016). Impact of infection with extended-spectrum beta-lactamase-producing Escherichia coli or Klebsiella species on outcome and hospitalization costs. Journal of Hospital Infection 92:33-41.
  • Moawad AA, Hotzel H, Neubauer H, Ehricht R, Monecke S, Tomaso H, Hafez HM, Roesler U, ve El-Adawy H (2018). Antimicrobial resistance in Enterobacteriaceae from healthy broilers in Egypt: emergence of colistin-resistant and extended-spectrum beta-lactamase-producing Escherichia coli. Gut Pathogens 10.
  • Moore E, Angelika A, Krüger A, Strömpl C, ve Mau M (2004). Simplified protocols for the preparation of genomic DNA from bacterial cultures. Second edition. Kluwer Academic Publishers, Netherlands.
  • Niranjan V, ve Malini A (2014). Antimicrobial resistance pattern in Escherichia coli causing urinary tract infection among inpatients. Indian Journal of Medical Research 139:945-948.
  • OBrien TF (1997). The global epidemic nature of antimicrobial resistance and the need to monitor and manage it locally. Clinical Infectious Diseases 24:S2-S8. Perez F, ve Bonomo RA (2012). Can We Really Use ss-Lactam/ss-Lactam Inhibitor Combinations for the Treatment of Infections Caused by Extended-Spectrum ss-Lactamase-Producing Bacteria? Clinical Infectious Diseases 54:175-177.
  • Rehab MMAA, El-Baghdady KZ, Iman KFK, ve El-Shishtawy HM (2019). Prevalence of Extended Spectrum Beta-Lactamase Genes among Escherichia coli and Klebsiella pneumoniae Clinical Isolates. Egyptian Journal of Microbiology 54:91-101.
  • Ruppé E (2010). Épidémiologie des bêta-lactamases à spectre élargi: l’avènement des CTX-M. Antibiotiques 12:3-16.
  • Russo TA, ve Johnson JR (2003). Medical and economic impact of extraintestinal infections due to Escherichia coli: focus on an increasingly important endemic problem. Microbes Infect 5:449-456.
  • Sana T, Rami K, Racha B, Fouad D, Marcel A, Hassan M, Sani H, ve Monzer H (2011). Detection of genes TEM, OXA, SHV and CTX-M in 73 clinical isolates of Escherichia coli producers of extended spectrum Betalactamases and determination of their susceptibility to antibiotics. The International Arabic Journal of Antimicrobial Agents 1:1-6.
  • Shaikh S, Fatima J, Shakil S, Rizvi SMD, ve Kamal MA (2015). Antibiotic resistance and extended spectrum beta-lactamases: Types, epidemiology and treatment. Saudi Journal of Biological Sciences 22:90-101.
  • Sharma G, Sharma S, Sharma P, Chandola D, Dang S, Gupta S, ve Gabrani R (2016). Escherichia coli biofilm: development and therapeutic strategies. Journal of Applied Microbiology 121:309-319.
  • Surgers L, Boyd A, Girard PM, Arlet G, ve Decre D (2019). Biofilm formation by ESBL-producing strains of Escherichia coli and Klebsiella pneumoniae. Int J Med Microbiol 309:13-18.
  • Tissera S, ve Lee SM (2013). Isolation of Extended Spectrum beta-lactamase (ESBL) Producing Bacteria from Urban Surface Waters in Malaysia. Malays J Med Sci 20:14-22.
  • Ugwu M, Shariff M, Nnajide C, Beri K, Okezie U, Iroha I, ve Esimone C (2020). Phenotypic and Molecular Characterization of β-Lactamases among Enterobacterial Uropathogens in Southeastern Nigeria. Canadian Journal of Infectious Diseases and Medical Microbiology 2020:1-9.
  • Uysal A, ve Durak Y (2012). Pulsed-field gel electrophoresis typing, antibiotic resistance, and plasmid profiles of Escherichia coli strains isolated from foods. Canadian Journal of Microbiology 58:1278-1287.
  • Uysal A, Gunes E, Arslan E, ve Durak Y (2018). Characterization of Uropathogenic Escherichia Coli Strains: Antibiotic Resistance Patterns, Detection of Esbl Genes and Interactions by Lytic Phages. Fresenius Environmental Bulletin 27:402-414.
  • van den Bogaard AE, London N, Driessen C, ve Stobberingh EE (2001). Antibiotic resistance of faecal Escherichia coli in poultry, poultry farmers and poultry slaughterers. Journal of Antimicrobial Chemotherapy 47:763-771.
  • van Driel AA, Notermans DW, Meima A, Mulder M, Donker GA, Stobberingh EE, ve Verbon A (2019). Antibiotic resistance of Escherichia coli isolated from uncomplicated UTI in general practice patients over a 10-year period. Eur J Clin Microbiol Infect Dis 38:2151-2158.
  • Vital PG, Zara ES, Paraoan CEM, Dimasupil MAZ, Abello JJM, Santos ITG, ve Rivera WL (2018). Antibiotic Resistance and Extended-Spectrum Beta-Lactamase Production of Escherichia coli Isolated from Irrigation Waters in Selected Urban Farms in Metro Manila, Philippines. Water 10.
  • Yilmaz N, Agus N, Yurtsever SG, Pullukcu H, Gulay Z, Coskuner A, Kose S, Aydemir S, Gulenc N, ve Ozgenc O (2009). Prevalence and antimicrobial susceptibility of Escherichia coli in outpatient urinary isolates in Izmir, Turkey. Medical Science Monitor 15:Pi61-Pi65.
  • Yılmaz N, Ağuş N, Bayram A, Şamlıoğlu P, Şirin MC, Derici YK, ve Hancı SY (2016). Antimicrobial susceptibilities of Escherichia coli isolates as agents of community-acquired urinary tract infection (2008–2014). Turkish journal of urology 42:32.
  • Zamani H, ve Salehzadeh A (2018). Biofilm formation in uropathogenic Escherichia coli: association with adhesion factor genes. Turkish Journal of Medical Sciences 48:162-167.
  • Zowawi HM, Harris PNA, Roberts MJ, Tambyah PA, Schembri MA, Pezzani MD, Williamson DA, ve Paterson DL (2015). The emerging threat of multidrug-resistant Gram-negative bacteria in urology. Nature Reviews Urology 12:570-584.
There are 54 citations in total.

Details

Primary Language Turkish
Subjects Structural Biology
Journal Section Research Articles
Authors

Mehmet Akif Bozkır This is me 0000-0002-9297-4050

Ahmet Uysal 0000-0002-9297-4050

Emine Arslan 0000-0002-0782-506X

Publication Date October 31, 2020
Submission Date April 22, 2020
Published in Issue Year 2020 Volume: 46 Issue: 2

Cite

APA Bozkır, M. A., Uysal, A., & Arslan, E. (2020). Üropatojenik Escherichia coli Suşlarının Antibiyotik Direnç Profilleri ve Genişlemiş Spektrumlu Beta Laktamaz (GSBL) Özelliklerinin Değerlendirilmesi. Selçuk Üniversitesi Fen Fakültesi Fen Dergisi, 46(2), 41-65.
AMA Bozkır MA, Uysal A, Arslan E. Üropatojenik Escherichia coli Suşlarının Antibiyotik Direnç Profilleri ve Genişlemiş Spektrumlu Beta Laktamaz (GSBL) Özelliklerinin Değerlendirilmesi. sufefd. October 2020;46(2):41-65.
Chicago Bozkır, Mehmet Akif, Ahmet Uysal, and Emine Arslan. “Üropatojenik Escherichia Coli Suşlarının Antibiyotik Direnç Profilleri Ve Genişlemiş Spektrumlu Beta Laktamaz (GSBL) Özelliklerinin Değerlendirilmesi”. Selçuk Üniversitesi Fen Fakültesi Fen Dergisi 46, no. 2 (October 2020): 41-65.
EndNote Bozkır MA, Uysal A, Arslan E (October 1, 2020) Üropatojenik Escherichia coli Suşlarının Antibiyotik Direnç Profilleri ve Genişlemiş Spektrumlu Beta Laktamaz (GSBL) Özelliklerinin Değerlendirilmesi. Selçuk Üniversitesi Fen Fakültesi Fen Dergisi 46 2 41–65.
IEEE M. A. Bozkır, A. Uysal, and E. Arslan, “Üropatojenik Escherichia coli Suşlarının Antibiyotik Direnç Profilleri ve Genişlemiş Spektrumlu Beta Laktamaz (GSBL) Özelliklerinin Değerlendirilmesi”, sufefd, vol. 46, no. 2, pp. 41–65, 2020.
ISNAD Bozkır, Mehmet Akif et al. “Üropatojenik Escherichia Coli Suşlarının Antibiyotik Direnç Profilleri Ve Genişlemiş Spektrumlu Beta Laktamaz (GSBL) Özelliklerinin Değerlendirilmesi”. Selçuk Üniversitesi Fen Fakültesi Fen Dergisi 46/2 (October 2020), 41-65.
JAMA Bozkır MA, Uysal A, Arslan E. Üropatojenik Escherichia coli Suşlarının Antibiyotik Direnç Profilleri ve Genişlemiş Spektrumlu Beta Laktamaz (GSBL) Özelliklerinin Değerlendirilmesi. sufefd. 2020;46:41–65.
MLA Bozkır, Mehmet Akif et al. “Üropatojenik Escherichia Coli Suşlarının Antibiyotik Direnç Profilleri Ve Genişlemiş Spektrumlu Beta Laktamaz (GSBL) Özelliklerinin Değerlendirilmesi”. Selçuk Üniversitesi Fen Fakültesi Fen Dergisi, vol. 46, no. 2, 2020, pp. 41-65.
Vancouver Bozkır MA, Uysal A, Arslan E. Üropatojenik Escherichia coli Suşlarının Antibiyotik Direnç Profilleri ve Genişlemiş Spektrumlu Beta Laktamaz (GSBL) Özelliklerinin Değerlendirilmesi. sufefd. 2020;46(2):41-65.

Journal Owner: On behalf of Selçuk University Faculty of Science, Rector Prof. Dr. Metin AKSOY
Selcuk University Journal of Science Faculty accepts articles in Turkish and English with original results in basic sciences and other applied sciences. The journal may also include compilations containing current innovations.

It was first published in 1981 as "S.Ü. Fen-Edebiyat Fakültesi Dergisi" and was published under this name until 1984 (Number 1-4).
In 1984, its name was changed to "S.Ü. Fen-Edeb. Fak. Fen Dergisi" and it was published under this name as of the 5th issue.
When the Faculty of Letters and Sciences was separated into the Faculty of Science and the Faculty of Letters with the decision of the Council of Ministers numbered 2008/4344 published in the Official Gazette dated 3 December 2008 and numbered 27073, it has been published as "Selcuk University Journal of Science Faculty" since 2009.
It has been scanned in DergiPark since 2016.

88x31.png

Selcuk University Journal of Science Faculty is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) License.