BibTex RIS Cite

<i>Platismatia glauca</i> (L.) W.L.Culb. & C.F.Culb.'nın İnsan Lenfositleri Üzerindeki Biyolojik Aktiviteleri

Year 2018, Volume: 22 Issue: 2, 840 - 848, 15.08.2018
https://doi.org/10.19113/sdufbed.00743

Abstract

Likenler yapısında farklı metabolitleri bulunduran ve bu bileşenleri sayesinde antik çağlardan beri birçok hastalığın tedavisinde yararlanılan organizma olarak dikkat çekmektedir. Bu yüzden, mevcut çalışma önemli liken türlerinden biri olan Platismatia glauca (L.) W.L.Culb. & C.F.Culb.'nın insan lenfositleri üzerindeki etkilerini incelemeyi amaçlamıştır. P. glauca'dan elde edilen metanol (PME) ve su (PSE) ekstraktlarının hücreler üzerindeki sitotoksik aktiviteleri 3-(4,5-dimetiltiazol-2-il)-2,5-difeniltetrazolyum bromür ve laktat dehidrogenaz testleri ile analiz edilmiştir. PME ve PSE ile muamele edilen lenfositlerdeki oksidatif değişimin belirlenmesi amacıyla toplam antioksidan kapasite (TAK) ve toplam oksidan durum (TOD) analizleri gerçekleştirilmiştir. Bu uygulamalara ek olarak, ekstraktların hücreler üzerinde sebep olduğu genetik hasar hücrelerdeki 8-hidroksi-2′-deoksiguanozin seviyeleri ölçülerek tespit edilmiştir. Hesaplanan IC50 değerleri,PSE'nin (162,26 mg/L) PME'ye (84,02 mg/L) kıyasla çok daha düşük seviyede sitotoksik aktivite gösterdiğini ortaya çıkarmıştır. Her iki ekstraktın tüm konsantrasyonlarının (6,25-200 mg/L) negatif kontrole kıyasla istatistiksel olarak (p>0,05) hücrelerdeki TAK'yi yükselttiği ve aynı zamanda düşük konsantrasyonlarının genetik hasar meydana getirmediği belirlenmiştir. Tüm uygulamalar göz önüne alındığında, PME ve özellikle PSE'nin belli konsantrasyonlarının (<25 mg/L) lenfositler üzerinde anlamlı derecede oksidatif ve genetik hasara neden olmadan TAK'yi yükselttiği ve bu nedenle P. glauca likeninin doğal bir antioksidan olarak kullanılabileceği gözlenmiştir.

References

  • [1] Federico, A., Morgillo, F., Tuccillo, C., Ciardiello, F., Loguercio, C. 2007. Chronic Inflammation and Oxidative Stress in Human Carcinogenesis. International Journal of Cancer, 121(11), 2381–2386.
  • [2] Carocho, M., Ferreira, I. C. F. R. 2013. A Review on Antioxidants, Prooxidants and Related Controversy: Natural and Synthetic Compounds, Screening and Analysis Methodologies and Future Perspectives. Food and Chemical Toxicology, 51(1), 15–25.
  • [3] Gago-Dominguez, M., Castelao, J. E. 2006. Lipid Peroxidation and Renal Cell Carcinoma: Further Supportive Evidence and New Mechanistic Insights. Free Radical Biology & Medicine, 40(4), 721–733.
  • [4] Ray, P. D., Huang, B. W., Tsuji, Y. 2012. Reactive Oxygen Species (ROS) Homeostasis and Redox Regulation in Cellular Signaling. Cellular Signalling, 24(5), 981–990.
  • [5] Poljsak, B., Suput, D., Milisav, I. 2013. Achieving the Balance between ROS and Antioxidants: When to Use the Synthetic Antioxidants. Oxidative Medicine and Cellular Longevity, 956792.
  • [6] Irshad, M., Chaudhuri, P. S. 2002. Oxidant-Antioxidant System: Role and Significance in Human Body. Indian Journal of Experimental Biology, 40(11), 1233–1239.
  • [7] Valenzuela, B. A., Sanhueza, J., Nieto, S. 2003. Natural Antioxidants in Functional Foods: From Food Safety to Health Benefits. Grasas y Aceites, 54(3), 295–303.
  • [8] Ahmad, S. R., Gokulakrishnan, P., Giriprasad, R., Yatoo, M. A. 2015. Fruit-Based Natural Antioxidants in Meat and Meat Products: A Review. Critical Reviews in Food Science and Nutrition, 55(11), 1503–1513.
  • [9] Moukette, B. M., Pieme, C. A., Njimou, J. R., Biapa, C. P. N., Marco, B., Ngogang, J. Y. 2015. In Vitro Antioxidant Properties, Free Radicals Scavenging Activities of Extracts and Polyphenol Composition of a Non-Timber Forest Product Used as Spice: Monodora Myristica. Biological Research, 48(1), 15.
  • [10] Brodo, I. M., Sharnoff, S. D., Sharnoff, S. 2001. About the Lichens. Lichens of North America. ss 3–113. Yale University Press, New Haven & London.
  • [11] Boustie, J., Grube, M. 2005. Lichens-A Promising Source of Bioactive Secondary Metabolites. Plant Genetic Resources, 3(2), 273–287.
  • [12] Grujičić, D., Stošić, I., Kosanić, M., Stanojković, T., Ranković, B., Milošević-Djordjević, O. 2014. Evaluation of In Vitro Antioxidant, Antimicrobial, Genotoxic and Anticancer Activities of Lichen Cetraria islandica. Cytotechnology, 66(5), 803–813.
  • [13] Karagöz, A., Aslan, A. 2005. Antiviral and Cytotoxic Activity of Some Lichen Extracts. Biologia, 60(3), 281–286.
  • [14] Halici, M., Odabasoglu, F., Suleyman, H., Cakir, A., Aslan, A., Bayir, Y. 2005. Effects of Water Extract of Usnea longissima on Antioxidant Enzyme Activity and Mucosal Damage Caused by Indomethacin in Rats. Phytomedicine, 12(9), 656–662.
  • [15] Emsen, B., Turkez, H., Togar, B., Aslan, A. 2017. Evaluation of Antioxidant and Cytotoxic Effects of Olivetoric and Physodic Acid in Cultured Human Amnion Fibroblasts. Human & Experimental Toxicology, 36(4), 376–385.
  • [16] Ögmundsdóttir, H. M., Zoëga, G. M., Gissurarson, S. R., Ingólfsdottir, K. 1998. Anti-Proliferative Effects of Lichen-Derived Inhibitors of 5-Lipoxygenase on Malignant Cell-Lines and Mitogen-Stimulated Lymphocytes. Journal of Pharmacy and Pharmacology, 50(1), 107–115.
  • [17] Turkez, H., Geyikoglu, F., Aslan, A., Karagöz, Y., Turkez, O., Anar, M. 2010. Antimutagenic Effects of Lichen Pseudovernia furfuracea (L.) Zoph. Extracts against the Mutagenicity of Aflatoxin B1 In Vitro. Toxicology and Industrial Health, 26(9), 625–631.
  • [18] Vartia, K. O. 1973. Antibiotics in Lichens. The Lichens. ss 547. Ahmadjian, V., Hale, M.E., ed. Academic Press, New York.
  • [19] Dülger, B., Gücin, F., Aslan, A. 1998. Antimicrobial Activity of Cetraria islandica (L) Ach Lichen. Turkish Journal of Biology, 22, 111–118.
  • [20] Russo, A., Piovano, M., Lombardo, L., Garbarino, J., Cardile, V. 2008. Lichen Metabolites Prevent UV Light and Nitric Oxide-Mediated Plasmid DNA Damage and Induce Apoptosis in Human Melanoma Cells. Life Sciences, 83(13–14), 468–474.
  • [21] Bézivin, C., Tomasi, S., Lohézic-Le Dévéhat, F., Boustie, J. 2003. Cytotoxic Activity of Some Lichen Extracts on Murine and Human Cancer Cell Lines. Phytomedicine, 10(6–7), 499–503.
  • [22] Ghate, N. B., Chaudhuri, D., Sarkar, R., Sajem, A. L., Panja, S., Rout, J., Mandal, N. 2013. An Antioxidant Extract of Tropical Lichen, Parmotrema reticulatum, Induces Cell Cycle Arrest and Apoptosis in Breast Carcinoma Cell Line MCF-7. Plos One, 8(12), e82293.
  • [23] Singh, N., Nambiar, D., Kale, R. K., Singh, R. P. 2013. Usnic Acid Inhibits Growth and Induces Cell Cycle Arrest and Apoptosis in Human Lung Carcinoma A549 Cells. Nutrition and Cancer, 65(1), 36–43.
  • [24] Emsen, B., Aslan, A., Togar, B., Turkez, H. 2016. In Vitro Antitumor Activities of the Lichen Compounds Olivetoric, Physodic and Psoromic Acid in Rat Neuron and Glioblastoma Cells. Pharmaceutical Biology, 54(9), 1748–1762.
  • [25] Wirth, V. 1995. Die Flechten Baden Württembergs. Ulmer, Stuttgart, 1006s.
  • [26] Purvis, O. W., Coppins, B. J., Hawksworth, D. L., James, P. W., Moore, D. M. 1992. The Lichen Flora of Great Britain and Ireland. Natural History Museum Publications in Association with the British Lichen Society, London, 710s.
  • [27] Berridge, M. V, Herst, P. M., Tan, A. S. 2005. Tetrazolium Dyes as Tools in Cell Biology: New Insights into Their Cellular Reduction. Biotechnology Annual Review, 11, 127–152.
  • [28] Haslam, G., Wyatt, D., Kitos, P. A. 2000. Estimating the Number of Viable Animal Cells in Multi-Well Cultures Based on Their Lactate Dehydrogenase Activities. Cytotechnology, 32(1), 63–75.
  • [29] Erel, O. 2004. A Novel Automated Direct Measurement Method for Total Antioxidant Capacity Using a New Generation, More Stable ABTS Radical Cation. Clinical Biochemistry, 37(4), 277–285.
  • [30] Erel, O. 2005. A New Automated Colorimetric Method for Measuring Total Oxidant Status. Clinical Biochemistry, 38(12), 1103–1111.
  • [31] Gan, W., Nie, B., Shi, F., Xu, X. M., Qian, J. C., Takagi, Y., Hayakawa, H., Sekiguchi, M., Cai, J. P. 2012. Age-Dependent Increases in the Oxidative Damage of DNA, RNA, and Their Metabolites in Normal and Senescence-Accelerated Mice Analyzed by LC-MS/MS: Urinary 8-Oxoguanosine as a Novel Biomarker of Aging. Free Radical Biology & Medicine, 52(9), 1700–1707.
  • [32] Behradmanesh, S., Derees, F., Rafieian-Kopaei, M. 2013. Effect of Salvia officinalis on Diabetic Patients. Journal of Renal Injury Prevention, 2(2), 51–54.
  • [33] Khajehdehi, P. 2012. Turmeric: Reemerging of a Neglected Asian Traditional Remedy. Journal of Nephropathology, 1(1), 17–22.
  • [34] Tavafi, M. 2013. Diabetic Nephropathy and Antioxidants. Journal of Nephropathology, 2(1), 20–27.
  • [35] Manojlović, N., Ranković, B., Kosanić, M., Vasiljević, P., Stanojković, T. 2012. Chemical Composition of Three Parmelia Lichens and Antioxidant, Antimicrobial and Cytotoxic Activities of Some Their Major Metabolites. Phytomedicine, 19(13), 1166–1172.
  • [36] Schinkovitz, A., Kaur, A., Urban, E., Zehl, M., Páchniková, G., Wang, Y., Kretschmer, N., Slaninová, I., Pauli, G. F., Franzblau, S. G., Krupitza, G., Bauer, R., Kopp, B. 2014. Cytotoxic Constituents from Lobaria scrobiculata and a Comparison of Two Bioassays for Their Evaluation. Journal of Natural Products, 77(4), 1069–1073.
  • [37] Brandao, L. F. G., Alcantara, G. B., Matos, M. D. F. C., Bogo, D., Freitas, D. D. S., Oyama, N. M., Honda, N. K. 2013. Cytotoxic Evaluation of Phenolic Compounds from Lichens against Melanoma Cells. Chemical & Pharmaceutical Bulletin, 61(2), 176–183.
  • [38] Nguyen, T. T., Yoon, S., Yang, Y., Lee, H. Bin, Oh, S., Jeong, M. H., Kim, J. J., Yee, S. T., Crişan, F., Moon, C., Lee, K. Y., Kim, K. K., Hur, J. S., Kim, H. 2014. Lichen Secondary Metabolites in Flavocetraria cucullata Exhibit Anti-Cancer Effects on Human Cancer Cells through the Induction of Apoptosis and Suppression of Tumorigenic Potentials. Plos One, 9(10), e111575.
  • [39] Bazin, M. A., Le Lamer, A. C., Delcros, J. G., Rouaud, I., Uriac, P., Boustie, J., Corbel, J. C., Tomasi, S. 2008. Synthesis and Cytotoxic Activities of Usnic Acid Derivatives. Bioorganic & Medicinal Chemistry, 16(14), 6860–6866.
  • [40] Han, D., Matsumaru, K., Rettori, D., Kaplowitz, N. 2004. Usnic Acid-Induced Necrosis of Cultured Mouse Hepatocytes: Inhibition of Mitochondrial Function and Oxidative Stress. Biochemical Pharmacology, 67(3), 439–451.
  • [41] Demir, L., Toğar, B., Hasan Türkez, Sozio, P., Aslan, A., Stefano, A. Di. 2015. The Investigation of Cytogenetic and Oxidative Effects of Diffractaic Acid on Human Lymphocyte Cultures. Brazilian Archives of Biology and Technology, 58(1), 75–81.
  • [42] Leandro, L. F., Munari, C. C., Sato, V. L. F. L., Alves, J. M., de Oliveira, P. F., Mastrocola, D. F. P., Martins, S. de P. L., Moraes, T. da S., de Oliveira, A. I., Tozatti, M. G., Cunha, W. R., Tavares, D. C. 2013. Assessment of the Genotoxicity and Antigenotoxicity of (+)-Usnic Acid in V79 Cells and Swiss Mice by the Micronucleus and Comet Assays. Mutation Research, 753(2), 101–106.
  • [43] Alpsoy, L., Orhan, F., Nardemir, G., Agar, G., Gulluce, M., Aslan, A. 2015. Antigenotoxic Potencies of a Lichen Species, Evernia prunastri. Toxicology and Industrial Health, 31(2), 153–161.
  • [44] Fernández-Moriano, C., Gómez-Serranillos, M., Crespo, A. 2016. Antioxidant Potential of Lichen Species and Their Secondary Metabolites. A Systematic Review. Pharmaceutical Biology, 54(1), 1–17.
  • [45] Pavithra, G. M., Vinayaka, K. S., Rakesh, K. N., Junaid, S., Dileep, N., Kekuda, P. T. R., Siddiqua, S., Naik, A. S. 2013. Antimicrobial and Antioxidant Activities of a Macrolichen Usnea pictoides G. Awasthi (Parmeliaceae). Journal of Applied Pharmaceutical Science, 3(8), 154–160.
  • [46] Toledo Marante, F. J., García Castellano, a., Estévez Rosas, F., Quintana Aguiar, J., Bermejo Barrera, J. 2003. Identification and Quantitation of Allelochemicals from the Lichen Lethariella canariensis: Phytotoxicity and Antioxidative Activity. Journal of Chemical Ecology, 29(9), 2049–2071.
Year 2018, Volume: 22 Issue: 2, 840 - 848, 15.08.2018
https://doi.org/10.19113/sdufbed.00743

Abstract

References

  • [1] Federico, A., Morgillo, F., Tuccillo, C., Ciardiello, F., Loguercio, C. 2007. Chronic Inflammation and Oxidative Stress in Human Carcinogenesis. International Journal of Cancer, 121(11), 2381–2386.
  • [2] Carocho, M., Ferreira, I. C. F. R. 2013. A Review on Antioxidants, Prooxidants and Related Controversy: Natural and Synthetic Compounds, Screening and Analysis Methodologies and Future Perspectives. Food and Chemical Toxicology, 51(1), 15–25.
  • [3] Gago-Dominguez, M., Castelao, J. E. 2006. Lipid Peroxidation and Renal Cell Carcinoma: Further Supportive Evidence and New Mechanistic Insights. Free Radical Biology & Medicine, 40(4), 721–733.
  • [4] Ray, P. D., Huang, B. W., Tsuji, Y. 2012. Reactive Oxygen Species (ROS) Homeostasis and Redox Regulation in Cellular Signaling. Cellular Signalling, 24(5), 981–990.
  • [5] Poljsak, B., Suput, D., Milisav, I. 2013. Achieving the Balance between ROS and Antioxidants: When to Use the Synthetic Antioxidants. Oxidative Medicine and Cellular Longevity, 956792.
  • [6] Irshad, M., Chaudhuri, P. S. 2002. Oxidant-Antioxidant System: Role and Significance in Human Body. Indian Journal of Experimental Biology, 40(11), 1233–1239.
  • [7] Valenzuela, B. A., Sanhueza, J., Nieto, S. 2003. Natural Antioxidants in Functional Foods: From Food Safety to Health Benefits. Grasas y Aceites, 54(3), 295–303.
  • [8] Ahmad, S. R., Gokulakrishnan, P., Giriprasad, R., Yatoo, M. A. 2015. Fruit-Based Natural Antioxidants in Meat and Meat Products: A Review. Critical Reviews in Food Science and Nutrition, 55(11), 1503–1513.
  • [9] Moukette, B. M., Pieme, C. A., Njimou, J. R., Biapa, C. P. N., Marco, B., Ngogang, J. Y. 2015. In Vitro Antioxidant Properties, Free Radicals Scavenging Activities of Extracts and Polyphenol Composition of a Non-Timber Forest Product Used as Spice: Monodora Myristica. Biological Research, 48(1), 15.
  • [10] Brodo, I. M., Sharnoff, S. D., Sharnoff, S. 2001. About the Lichens. Lichens of North America. ss 3–113. Yale University Press, New Haven & London.
  • [11] Boustie, J., Grube, M. 2005. Lichens-A Promising Source of Bioactive Secondary Metabolites. Plant Genetic Resources, 3(2), 273–287.
  • [12] Grujičić, D., Stošić, I., Kosanić, M., Stanojković, T., Ranković, B., Milošević-Djordjević, O. 2014. Evaluation of In Vitro Antioxidant, Antimicrobial, Genotoxic and Anticancer Activities of Lichen Cetraria islandica. Cytotechnology, 66(5), 803–813.
  • [13] Karagöz, A., Aslan, A. 2005. Antiviral and Cytotoxic Activity of Some Lichen Extracts. Biologia, 60(3), 281–286.
  • [14] Halici, M., Odabasoglu, F., Suleyman, H., Cakir, A., Aslan, A., Bayir, Y. 2005. Effects of Water Extract of Usnea longissima on Antioxidant Enzyme Activity and Mucosal Damage Caused by Indomethacin in Rats. Phytomedicine, 12(9), 656–662.
  • [15] Emsen, B., Turkez, H., Togar, B., Aslan, A. 2017. Evaluation of Antioxidant and Cytotoxic Effects of Olivetoric and Physodic Acid in Cultured Human Amnion Fibroblasts. Human & Experimental Toxicology, 36(4), 376–385.
  • [16] Ögmundsdóttir, H. M., Zoëga, G. M., Gissurarson, S. R., Ingólfsdottir, K. 1998. Anti-Proliferative Effects of Lichen-Derived Inhibitors of 5-Lipoxygenase on Malignant Cell-Lines and Mitogen-Stimulated Lymphocytes. Journal of Pharmacy and Pharmacology, 50(1), 107–115.
  • [17] Turkez, H., Geyikoglu, F., Aslan, A., Karagöz, Y., Turkez, O., Anar, M. 2010. Antimutagenic Effects of Lichen Pseudovernia furfuracea (L.) Zoph. Extracts against the Mutagenicity of Aflatoxin B1 In Vitro. Toxicology and Industrial Health, 26(9), 625–631.
  • [18] Vartia, K. O. 1973. Antibiotics in Lichens. The Lichens. ss 547. Ahmadjian, V., Hale, M.E., ed. Academic Press, New York.
  • [19] Dülger, B., Gücin, F., Aslan, A. 1998. Antimicrobial Activity of Cetraria islandica (L) Ach Lichen. Turkish Journal of Biology, 22, 111–118.
  • [20] Russo, A., Piovano, M., Lombardo, L., Garbarino, J., Cardile, V. 2008. Lichen Metabolites Prevent UV Light and Nitric Oxide-Mediated Plasmid DNA Damage and Induce Apoptosis in Human Melanoma Cells. Life Sciences, 83(13–14), 468–474.
  • [21] Bézivin, C., Tomasi, S., Lohézic-Le Dévéhat, F., Boustie, J. 2003. Cytotoxic Activity of Some Lichen Extracts on Murine and Human Cancer Cell Lines. Phytomedicine, 10(6–7), 499–503.
  • [22] Ghate, N. B., Chaudhuri, D., Sarkar, R., Sajem, A. L., Panja, S., Rout, J., Mandal, N. 2013. An Antioxidant Extract of Tropical Lichen, Parmotrema reticulatum, Induces Cell Cycle Arrest and Apoptosis in Breast Carcinoma Cell Line MCF-7. Plos One, 8(12), e82293.
  • [23] Singh, N., Nambiar, D., Kale, R. K., Singh, R. P. 2013. Usnic Acid Inhibits Growth and Induces Cell Cycle Arrest and Apoptosis in Human Lung Carcinoma A549 Cells. Nutrition and Cancer, 65(1), 36–43.
  • [24] Emsen, B., Aslan, A., Togar, B., Turkez, H. 2016. In Vitro Antitumor Activities of the Lichen Compounds Olivetoric, Physodic and Psoromic Acid in Rat Neuron and Glioblastoma Cells. Pharmaceutical Biology, 54(9), 1748–1762.
  • [25] Wirth, V. 1995. Die Flechten Baden Württembergs. Ulmer, Stuttgart, 1006s.
  • [26] Purvis, O. W., Coppins, B. J., Hawksworth, D. L., James, P. W., Moore, D. M. 1992. The Lichen Flora of Great Britain and Ireland. Natural History Museum Publications in Association with the British Lichen Society, London, 710s.
  • [27] Berridge, M. V, Herst, P. M., Tan, A. S. 2005. Tetrazolium Dyes as Tools in Cell Biology: New Insights into Their Cellular Reduction. Biotechnology Annual Review, 11, 127–152.
  • [28] Haslam, G., Wyatt, D., Kitos, P. A. 2000. Estimating the Number of Viable Animal Cells in Multi-Well Cultures Based on Their Lactate Dehydrogenase Activities. Cytotechnology, 32(1), 63–75.
  • [29] Erel, O. 2004. A Novel Automated Direct Measurement Method for Total Antioxidant Capacity Using a New Generation, More Stable ABTS Radical Cation. Clinical Biochemistry, 37(4), 277–285.
  • [30] Erel, O. 2005. A New Automated Colorimetric Method for Measuring Total Oxidant Status. Clinical Biochemistry, 38(12), 1103–1111.
  • [31] Gan, W., Nie, B., Shi, F., Xu, X. M., Qian, J. C., Takagi, Y., Hayakawa, H., Sekiguchi, M., Cai, J. P. 2012. Age-Dependent Increases in the Oxidative Damage of DNA, RNA, and Their Metabolites in Normal and Senescence-Accelerated Mice Analyzed by LC-MS/MS: Urinary 8-Oxoguanosine as a Novel Biomarker of Aging. Free Radical Biology & Medicine, 52(9), 1700–1707.
  • [32] Behradmanesh, S., Derees, F., Rafieian-Kopaei, M. 2013. Effect of Salvia officinalis on Diabetic Patients. Journal of Renal Injury Prevention, 2(2), 51–54.
  • [33] Khajehdehi, P. 2012. Turmeric: Reemerging of a Neglected Asian Traditional Remedy. Journal of Nephropathology, 1(1), 17–22.
  • [34] Tavafi, M. 2013. Diabetic Nephropathy and Antioxidants. Journal of Nephropathology, 2(1), 20–27.
  • [35] Manojlović, N., Ranković, B., Kosanić, M., Vasiljević, P., Stanojković, T. 2012. Chemical Composition of Three Parmelia Lichens and Antioxidant, Antimicrobial and Cytotoxic Activities of Some Their Major Metabolites. Phytomedicine, 19(13), 1166–1172.
  • [36] Schinkovitz, A., Kaur, A., Urban, E., Zehl, M., Páchniková, G., Wang, Y., Kretschmer, N., Slaninová, I., Pauli, G. F., Franzblau, S. G., Krupitza, G., Bauer, R., Kopp, B. 2014. Cytotoxic Constituents from Lobaria scrobiculata and a Comparison of Two Bioassays for Their Evaluation. Journal of Natural Products, 77(4), 1069–1073.
  • [37] Brandao, L. F. G., Alcantara, G. B., Matos, M. D. F. C., Bogo, D., Freitas, D. D. S., Oyama, N. M., Honda, N. K. 2013. Cytotoxic Evaluation of Phenolic Compounds from Lichens against Melanoma Cells. Chemical & Pharmaceutical Bulletin, 61(2), 176–183.
  • [38] Nguyen, T. T., Yoon, S., Yang, Y., Lee, H. Bin, Oh, S., Jeong, M. H., Kim, J. J., Yee, S. T., Crişan, F., Moon, C., Lee, K. Y., Kim, K. K., Hur, J. S., Kim, H. 2014. Lichen Secondary Metabolites in Flavocetraria cucullata Exhibit Anti-Cancer Effects on Human Cancer Cells through the Induction of Apoptosis and Suppression of Tumorigenic Potentials. Plos One, 9(10), e111575.
  • [39] Bazin, M. A., Le Lamer, A. C., Delcros, J. G., Rouaud, I., Uriac, P., Boustie, J., Corbel, J. C., Tomasi, S. 2008. Synthesis and Cytotoxic Activities of Usnic Acid Derivatives. Bioorganic & Medicinal Chemistry, 16(14), 6860–6866.
  • [40] Han, D., Matsumaru, K., Rettori, D., Kaplowitz, N. 2004. Usnic Acid-Induced Necrosis of Cultured Mouse Hepatocytes: Inhibition of Mitochondrial Function and Oxidative Stress. Biochemical Pharmacology, 67(3), 439–451.
  • [41] Demir, L., Toğar, B., Hasan Türkez, Sozio, P., Aslan, A., Stefano, A. Di. 2015. The Investigation of Cytogenetic and Oxidative Effects of Diffractaic Acid on Human Lymphocyte Cultures. Brazilian Archives of Biology and Technology, 58(1), 75–81.
  • [42] Leandro, L. F., Munari, C. C., Sato, V. L. F. L., Alves, J. M., de Oliveira, P. F., Mastrocola, D. F. P., Martins, S. de P. L., Moraes, T. da S., de Oliveira, A. I., Tozatti, M. G., Cunha, W. R., Tavares, D. C. 2013. Assessment of the Genotoxicity and Antigenotoxicity of (+)-Usnic Acid in V79 Cells and Swiss Mice by the Micronucleus and Comet Assays. Mutation Research, 753(2), 101–106.
  • [43] Alpsoy, L., Orhan, F., Nardemir, G., Agar, G., Gulluce, M., Aslan, A. 2015. Antigenotoxic Potencies of a Lichen Species, Evernia prunastri. Toxicology and Industrial Health, 31(2), 153–161.
  • [44] Fernández-Moriano, C., Gómez-Serranillos, M., Crespo, A. 2016. Antioxidant Potential of Lichen Species and Their Secondary Metabolites. A Systematic Review. Pharmaceutical Biology, 54(1), 1–17.
  • [45] Pavithra, G. M., Vinayaka, K. S., Rakesh, K. N., Junaid, S., Dileep, N., Kekuda, P. T. R., Siddiqua, S., Naik, A. S. 2013. Antimicrobial and Antioxidant Activities of a Macrolichen Usnea pictoides G. Awasthi (Parmeliaceae). Journal of Applied Pharmaceutical Science, 3(8), 154–160.
  • [46] Toledo Marante, F. J., García Castellano, a., Estévez Rosas, F., Quintana Aguiar, J., Bermejo Barrera, J. 2003. Identification and Quantitation of Allelochemicals from the Lichen Lethariella canariensis: Phytotoxicity and Antioxidative Activity. Journal of Chemical Ecology, 29(9), 2049–2071.
There are 46 citations in total.

Details

Journal Section Articles
Authors

Buğrahan Emsen

Ali Aslan

Abdullah Kaya

Publication Date August 15, 2018
Published in Issue Year 2018 Volume: 22 Issue: 2

Cite

APA Emsen, B., Aslan, A., & Kaya, A. (2018). Platismatia glauca (L.) W.L.Culb. & C.F.Culb.’nın İnsan Lenfositleri Üzerindeki Biyolojik Aktiviteleri. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 22(2), 840-848. https://doi.org/10.19113/sdufbed.00743
AMA Emsen B, Aslan A, Kaya A. Platismatia glauca (L.) W.L.Culb. & C.F.Culb.’nın İnsan Lenfositleri Üzerindeki Biyolojik Aktiviteleri. SDÜ Fen Bil Enst Der. August 2018;22(2):840-848. doi:10.19113/sdufbed.00743
Chicago Emsen, Buğrahan, Ali Aslan, and Abdullah Kaya. “Platismatia glauca (L.) W.L.Culb. & C.F.Culb.’nın İnsan Lenfositleri Üzerindeki Biyolojik Aktiviteleri”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22, no. 2 (August 2018): 840-48. https://doi.org/10.19113/sdufbed.00743.
EndNote Emsen B, Aslan A, Kaya A (August 1, 2018) Platismatia glauca (L.) W.L.Culb. & C.F.Culb.’nın İnsan Lenfositleri Üzerindeki Biyolojik Aktiviteleri. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22 2 840–848.
IEEE B. Emsen, A. Aslan, and A. Kaya, “Platismatia glauca (L.) W.L.Culb. & C.F.Culb.’nın İnsan Lenfositleri Üzerindeki Biyolojik Aktiviteleri”, SDÜ Fen Bil Enst Der, vol. 22, no. 2, pp. 840–848, 2018, doi: 10.19113/sdufbed.00743.
ISNAD Emsen, Buğrahan et al. “Platismatia glauca (L.) W.L.Culb. & C.F.Culb.’nın İnsan Lenfositleri Üzerindeki Biyolojik Aktiviteleri”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22/2 (August 2018), 840-848. https://doi.org/10.19113/sdufbed.00743.
JAMA Emsen B, Aslan A, Kaya A. Platismatia glauca (L.) W.L.Culb. & C.F.Culb.’nın İnsan Lenfositleri Üzerindeki Biyolojik Aktiviteleri. SDÜ Fen Bil Enst Der. 2018;22:840–848.
MLA Emsen, Buğrahan et al. “Platismatia glauca (L.) W.L.Culb. & C.F.Culb.’nın İnsan Lenfositleri Üzerindeki Biyolojik Aktiviteleri”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 22, no. 2, 2018, pp. 840-8, doi:10.19113/sdufbed.00743.
Vancouver Emsen B, Aslan A, Kaya A. Platismatia glauca (L.) W.L.Culb. & C.F.Culb.’nın İnsan Lenfositleri Üzerindeki Biyolojik Aktiviteleri. SDÜ Fen Bil Enst Der. 2018;22(2):840-8.

e-ISSN: 1308-6529