Research Article
BibTex RIS Cite

Farklı Sulama Suyu Tuzluluk Seviyelerinin Çeltikte Çimlenme ve Erken Fide Gelişimi Üzerine Etkisi

Year 2023, Volume: 38 Issue: 2, 407 - 420, 04.07.2023
https://doi.org/10.7161/omuanajas.1296440

Abstract

Çeltik (Oryza sativa L.), dünya nüfusunun yarısından fazlasının temel besin kaynağını ve günlük kalori ihtiyacının neredeyse yarısını sağlayan hayati bir tahıl grubudur. Bununla birlikte, çeltik, çimlenme ve erken fide gelişimi sırasında tuz stresine karşı hassastır. Bu çalışma, farklı NaCl ve CaCl2+ konsantrasyonlarının çeltik çimlenmesi ve erken fide gelişimi üzerindeki etkisini belirlemek amacıyla yapılmıştır. Araştırmada ülkemizde yaygın olarak yetiştirilen Efe çeşidi kullanılmıştır. Çalışmada ülkemizde yaygın olarak yetiştirilen Efe çeşidi kullanılmıştır. Tohumlar, fide ve erken büyüme dönemlerinde 7 farklı NaCl ve CaCl+2 konsantrasyon seviyesinde hazırlanan solüsyonlar kullanılarak çimlendirildi ve sulandı: 0.38 dS m-1 (T0), 1.5 dS m-1 (T1), 3 dS m-1 (T2), 5 dS m-1 (T3), 7 dS m-1 (T4), 9 dS m-1 (T5) ve 11 dS m-1 (T6). Çimlenme oranı tohum ekiminden 5 gün sonra, fide büyüme parametreleri ile yaprak ve kök mineral içerikleri ise ekimden 15 gün sonra incelenmiştir. Tuz toleransı ve canlılık indeksi değerleri hesaplanmıştır. Çalışma tesadüf blokları deneme desenine göre 3 tekrarlamalı olarak yürütülmüştür. İncelenen özellikler arasında istatistiksel olarak önemli farklılıklar gözlenmiştir. Tuz konsantrasyonu arttıkça çimlenme oranı ve erken fide büyüme özellikleri azalmıştır. Kök mineral içeriğine bakıldığında, tuzluluk arttıkça Na+, K+ ve Ca+2 mineral içerikleri artarken, K+/Na+ ve Ca2+/Na+ oranları azalmıştır. Benzer şekilde fide mineral içeriği bakımından tuzluluk arttıkça Na+, K+ ve Ca+2 artarken, K+/Na+ ve Ca2+/Na oranları azalmıştır. Bu bulgular, çeltik bitkilerinin çimlenme ve erken fide büyüme aşamalarında tuz stresine duyarlı olduğunu göstermektedir. Yapılan analizler, ülkemizde yaygın olarak yetiştirilen Efe çeltik çeşidi için %80 çimlenme için maksimum tuz konsantrasyonunun 7 dS m-1 (T3) olduğunu göstermiştir.

References

  • Akay, H., Öztürk, E., Sezer, İ., Bahadır, M.C., 2019. Effects of different salt concentrations on germination and early seedling growth in sugar maize (Zea mays L. Var. sacharata sturt.) cultivars. Turkish Journal of Agriculture-Food Science and Technology, 7(sp2), 103-108. https://doi.org/10.24925/turjaf.v7isp2.103-108.3160
  • Atış, İ. 2011. Effects of Salt Stress on Germination and Seedling Growth of Some Sorgum (Sorghum bicolor L. Moench) Cultivars. Süleyman Demirel University. Journal of the Faculty of Agriculture, 6 (2):58-67.
  • Carrijo, D. R., Lundy, M. E., Linquist, B. A. 2017. Rice yields and water use under alternate wetting and drying irrigation: A meta-analysis. Field Crops Research, 203, 173-180. https://doi.org/10.1016/j.fcr.2016.12.002
  • Clarkson, D.T., Hanson, J.B., 1980. The Mineral Nutrition of Higher Plants. Ann. Rev. Plant Physiol. 31, 239-298.
  • Cooper, A.W., Dumbroff, E.B., 1973.Plant Adjustment to Osmotic Stress in Blanced Mineral Nutrient Media. Can J. Bot. 51, 763-773. https://doi.org/10.1139/b73-096
  • Dinç, U., Senol, S., Kapur, S., Atalay, I., Cangir, C., 1993. Turkish Lands. C.U. Faculty of Agriculture. General Publication No. 2: 51, p233.[Translate]
  • Epstein, E., 1981. Genetic Engineering of Osmoregulation. Impact of Plant Productivity for Food. Chemicals and Energy pp 7-21 Eds. D.W. Rains, C. Valentine and A. Hollander. Plenum Press, London.
  • Gates, C.T., Haydoc, K.P., Little, I.P., 1966. Response to Soalinity in Glycine. I. Glycine javinica. Aust. J. Exp. Agric. Animal. Husb. 6, 261-265. https://doi.org/10.1071/EA9660261
  • Gerona, M. E. B., Deocampo, M. P., Egdane, J. A., Ismail, A. M., Dionisio-Sese, M. L. 2019. Physiological responses of contrasting rice genotypes to salt stress at reproductive stage. Rice Science, 26(4), 207-219. https://doi.org/10.1016/j.rsci.2019.05.001
  • Ghoulam, C., Fares, K. 2001. Effect of salinity on seed germination and early seedling growth of sugar beet (Beta vulgaris L.). Seed science and technology, 29(2), 357-364.
  • Güneş, A., Post, W.H.K., Kirkby, E.A., Aktas, M., 1994. Influence of Partial Replacement on Nitrate by Amino acid Nitrogen or Urea in the Nutrient Medium on Nitrate Accumulation in NFT Grown Winter Lettuce. J. Plant. Nutr. 17(11):1929-1938. https://doi.org/10.1080/01904169409364855
  • Heong, K. L., Chen, Y. H., Johnson, D. E., Jahn, G. C., Hossain, M., & Hamilton, R. S. 2005. Debate over a GM rice trial in China. Science, 310(5746), 231-233. https://doi.org/10.1126/science.310.5746.231b
  • Inal, A., Günes, A., Aktas, M., 1995. Effects of Chloride and partial Substitution of Reduced Forms of Nitrogen for Nitrate in Nutrient Solution on the Hitrate, Total Nitrogen and Chlorine Contents of Onion. Journal of Plant Nutrition, 18(10), 2219-2227. https://doi.org/10.1080/01904169509365058
  • ISTA. 2003. International rules for seed testing. Edition 2003. International Seed Testing Association. Zurich, Switzerland.
  • Joshi, S. S. 1984. Effect of salinity stress on organic and mineral constituents in the leaves of pigeonpea (Cajanus cajan L. var. C-11). Plant and soil, 82, 69-76.
  • Kakar, N., Jumaa, S. H., Redoña, E. D., Warburton, M. L., Reddy, K. R. 2019. Evaluating rice for salinity using pot-culture provides a systematic tolerance assessment at the seedling stage. Rice, 12(1), 1-14 https://doi.org/10.1186/s12284-019-0317-7
  • Kendal, E. 2020 Investigation of genotype, yield ˟ traits (GYT) combination with the biplot technique: a new approach to the selection of genotypes based on multiple traits. Anatolian Journal of Agricultural Sciences, 35 (3), 382-395. https://doi.org/10.7161/omuanajas.754035
  • Khush, G. S. 1997. Origin, dispersal, cultivation and variation of rice. Plant molecular biology, 35(1), 25-34. https://doi.org/10.1023/A:1005810616885
  • Kirkby, E.A., Knight, A.H., 1977. The Influence of the Level of Nitrate Nutrition on lon Uptake and Assimilation, Organic acid Accumulation and Cation Anion Balance in Whole Tomato Plants. Plant Physiology 60:349-353. https://doi.org/10.1104/pp.60.3.349
  • Lacerda, C. F., Cambraia, J., Oliva, M. A., Ruiz, H. A., Prisco, J. T. 2003. Solute accumulation and distribution during shoot and leaf development in two sorghum genotypes under salt stress. Environmental and Experimental Botany, 49(2), 107-120. https://doi.org/10.1016/S0098-8472(02)00064-3
  • Lewitt, J., 1980.Salt stresses in: Responses of Plants to Environmental Stresses. Vol II, pp. 365-454., Academic press.
  • Maathuis FJM, Altmann A, 1999. K+ Nutrition and Na+ toxicity: The basis of cellular K+ /Na+ ratios. Ann. Bot., 10: 123- 133. https://doi.org/10.1006/anbo.1999.0912
  • Matwijcuk, A., Kornarzynski, K., Pietruszewski, S. 2012. Effect of magnetic field on seed germination and seedling growth of sunflower. International Agrophysics, 26: 271-278. https://doi.org/10.2478/v10247-012-0039-1
  • Mori, I.K. and Kinoshita, T. (1987) Salt Tolerance of Rice Callus Clones. Rice Genetics Newsletter, 4, 112-113.
  • Munns, R. (2002). Comparative physiology of salt and water stress. Plant, cell & environment, 25(2), 239-250. https://doi.org/10.1046/j.0016-8025.2001.00808.x
  • Öztürk, E., Hasan, Akay., Sezer, İ. 2021. The Effect of Salicylic Acid Pre-Application Against Salt Stress During Germination and Early Seedling Development in Sugar Corn. Journal of the Institute of Science and Technology, 11(4), 3213-3221. https://doi.org/10.21597/jist.953388
  • Ravikovitch, S., Porath, A., 1967. The Effect of Nutrients on The Salt Tolerance of Crops. Plant and Soil, 26, 49-71.
  • Rehman, S., Harris, P.J.C., Bourne, W.F., Wilkin, J., 1996. The Effect of Sodium Chloride on Germination and the Potassium and Calcium Content of Acacies Seeds. Seed Sci. Technol., 25: 45-57.
  • Riaz, U., Kharal, M. A., Murtaza, G., uz Zaman, Q., Javaid, S., Malik, H. A., Abbas, Z. 2019. Prospective roles and mechanisms of caffeic acid in counter plant stress: A mini review. Pakistan Journal of Agricultural Research, 32(1), 8. https://doi.org/10.175822/journal.pjar/2019/32.1.8.19
  • Siegel, S.M., Siegel, B.Z., Massey, J., Lahne, P., Chen, J., 1980. Growth of Corn in Saline waters. Physiol. Plant. 50:71-73. https://doi.org/10.1111/j.1399-3054.1980.tb02686.x
  • Steduto, P., Hsiao, T. C., Fereres, E., Raes, D. 2012. Crop yield response to water (Vol. 1028). Rome: Food and Agriculture Organization of the United Nations.
  • Uyanık, M., Kara, M.Ş., Korkmaz, K., 2014. Determination of Responses of Some Winter Canola (Brassica napus L.) Cultivars to Salt Stress at Germination Period Journal of Agricultural Sciences, 20: 368-375. https://doi.org/10.15832/tbd.61947
  • Vibhuti, C. S., Bargali, K., Bargali, S. S. 2015. Seed germination and seedling growth parameters of rice (Oryza sativa L.) varieties as affected by salt and water stress. Indian Journal of Agricultural Sciences, 85(1), 102-108.

The Effect of Different Irrigation Water Salinity Levels on Rice Germination and Early Seedling Development

Year 2023, Volume: 38 Issue: 2, 407 - 420, 04.07.2023
https://doi.org/10.7161/omuanajas.1296440

Abstract

Rice (Oryza sativa L.) is a vital cereal group that provides the basic food source for over half of the world's population and almost half of the daily calorie requirement. However, rice is susceptible to salt stress during germination and early seedling development. This study was conducted to determine the effect of different NaCl and CaCl2+ concentrations on rice germination and early seedling development. The Efe variety, commonly grown in our country, was used in the study. The study utilized the Efe variety, commonly grown in our country. Seeds were germinated and irrigated during the seedling and early growth stages using solutions prepared at 7 different NaCl and CaCl+2 concentration levels: 0.38 dS m-1 (T0), 1.5 dS m-1 (T1), 3 dS m-1 (T2), 5 dS m-1 (T3), 7 dS m-1 (T4), 9 dS m-1 (T5), and 11 dS m-1 (T6). The germination rate was examined 5 days after seed planting, while seedling growth parameters and leaf and root mineral contents were examined 15 days after planting. Salt tolerance and vigor index values were calculated. The study was conducted with 3 replications according to the randomized complete block design. Statistically significant differences were observed among the studied traits. The germination rate and early seedling growth traits decreased as the salt concentration increased. Regarding root mineral content, as salinity increased, Na+, K+, and Ca+2 increased while the K+/Na+ and Ca2+/Na+ ratios decreased. Similarly, regarding seedling mineral content, as salinity increased, Na+, K+, and Ca+2 increased while the K+/Na+ and Ca2+/Na+ ratios decreased. These findings indicate that rice plants are sensitive to salt stress during the germination and early seedling growth stages. The analysis showed that the maximum salt concentration for 80% germination was 7 dS m-1 (T3) for the Efe rice variety commonly grown in our country.

References

  • Akay, H., Öztürk, E., Sezer, İ., Bahadır, M.C., 2019. Effects of different salt concentrations on germination and early seedling growth in sugar maize (Zea mays L. Var. sacharata sturt.) cultivars. Turkish Journal of Agriculture-Food Science and Technology, 7(sp2), 103-108. https://doi.org/10.24925/turjaf.v7isp2.103-108.3160
  • Atış, İ. 2011. Effects of Salt Stress on Germination and Seedling Growth of Some Sorgum (Sorghum bicolor L. Moench) Cultivars. Süleyman Demirel University. Journal of the Faculty of Agriculture, 6 (2):58-67.
  • Carrijo, D. R., Lundy, M. E., Linquist, B. A. 2017. Rice yields and water use under alternate wetting and drying irrigation: A meta-analysis. Field Crops Research, 203, 173-180. https://doi.org/10.1016/j.fcr.2016.12.002
  • Clarkson, D.T., Hanson, J.B., 1980. The Mineral Nutrition of Higher Plants. Ann. Rev. Plant Physiol. 31, 239-298.
  • Cooper, A.W., Dumbroff, E.B., 1973.Plant Adjustment to Osmotic Stress in Blanced Mineral Nutrient Media. Can J. Bot. 51, 763-773. https://doi.org/10.1139/b73-096
  • Dinç, U., Senol, S., Kapur, S., Atalay, I., Cangir, C., 1993. Turkish Lands. C.U. Faculty of Agriculture. General Publication No. 2: 51, p233.[Translate]
  • Epstein, E., 1981. Genetic Engineering of Osmoregulation. Impact of Plant Productivity for Food. Chemicals and Energy pp 7-21 Eds. D.W. Rains, C. Valentine and A. Hollander. Plenum Press, London.
  • Gates, C.T., Haydoc, K.P., Little, I.P., 1966. Response to Soalinity in Glycine. I. Glycine javinica. Aust. J. Exp. Agric. Animal. Husb. 6, 261-265. https://doi.org/10.1071/EA9660261
  • Gerona, M. E. B., Deocampo, M. P., Egdane, J. A., Ismail, A. M., Dionisio-Sese, M. L. 2019. Physiological responses of contrasting rice genotypes to salt stress at reproductive stage. Rice Science, 26(4), 207-219. https://doi.org/10.1016/j.rsci.2019.05.001
  • Ghoulam, C., Fares, K. 2001. Effect of salinity on seed germination and early seedling growth of sugar beet (Beta vulgaris L.). Seed science and technology, 29(2), 357-364.
  • Güneş, A., Post, W.H.K., Kirkby, E.A., Aktas, M., 1994. Influence of Partial Replacement on Nitrate by Amino acid Nitrogen or Urea in the Nutrient Medium on Nitrate Accumulation in NFT Grown Winter Lettuce. J. Plant. Nutr. 17(11):1929-1938. https://doi.org/10.1080/01904169409364855
  • Heong, K. L., Chen, Y. H., Johnson, D. E., Jahn, G. C., Hossain, M., & Hamilton, R. S. 2005. Debate over a GM rice trial in China. Science, 310(5746), 231-233. https://doi.org/10.1126/science.310.5746.231b
  • Inal, A., Günes, A., Aktas, M., 1995. Effects of Chloride and partial Substitution of Reduced Forms of Nitrogen for Nitrate in Nutrient Solution on the Hitrate, Total Nitrogen and Chlorine Contents of Onion. Journal of Plant Nutrition, 18(10), 2219-2227. https://doi.org/10.1080/01904169509365058
  • ISTA. 2003. International rules for seed testing. Edition 2003. International Seed Testing Association. Zurich, Switzerland.
  • Joshi, S. S. 1984. Effect of salinity stress on organic and mineral constituents in the leaves of pigeonpea (Cajanus cajan L. var. C-11). Plant and soil, 82, 69-76.
  • Kakar, N., Jumaa, S. H., Redoña, E. D., Warburton, M. L., Reddy, K. R. 2019. Evaluating rice for salinity using pot-culture provides a systematic tolerance assessment at the seedling stage. Rice, 12(1), 1-14 https://doi.org/10.1186/s12284-019-0317-7
  • Kendal, E. 2020 Investigation of genotype, yield ˟ traits (GYT) combination with the biplot technique: a new approach to the selection of genotypes based on multiple traits. Anatolian Journal of Agricultural Sciences, 35 (3), 382-395. https://doi.org/10.7161/omuanajas.754035
  • Khush, G. S. 1997. Origin, dispersal, cultivation and variation of rice. Plant molecular biology, 35(1), 25-34. https://doi.org/10.1023/A:1005810616885
  • Kirkby, E.A., Knight, A.H., 1977. The Influence of the Level of Nitrate Nutrition on lon Uptake and Assimilation, Organic acid Accumulation and Cation Anion Balance in Whole Tomato Plants. Plant Physiology 60:349-353. https://doi.org/10.1104/pp.60.3.349
  • Lacerda, C. F., Cambraia, J., Oliva, M. A., Ruiz, H. A., Prisco, J. T. 2003. Solute accumulation and distribution during shoot and leaf development in two sorghum genotypes under salt stress. Environmental and Experimental Botany, 49(2), 107-120. https://doi.org/10.1016/S0098-8472(02)00064-3
  • Lewitt, J., 1980.Salt stresses in: Responses of Plants to Environmental Stresses. Vol II, pp. 365-454., Academic press.
  • Maathuis FJM, Altmann A, 1999. K+ Nutrition and Na+ toxicity: The basis of cellular K+ /Na+ ratios. Ann. Bot., 10: 123- 133. https://doi.org/10.1006/anbo.1999.0912
  • Matwijcuk, A., Kornarzynski, K., Pietruszewski, S. 2012. Effect of magnetic field on seed germination and seedling growth of sunflower. International Agrophysics, 26: 271-278. https://doi.org/10.2478/v10247-012-0039-1
  • Mori, I.K. and Kinoshita, T. (1987) Salt Tolerance of Rice Callus Clones. Rice Genetics Newsletter, 4, 112-113.
  • Munns, R. (2002). Comparative physiology of salt and water stress. Plant, cell & environment, 25(2), 239-250. https://doi.org/10.1046/j.0016-8025.2001.00808.x
  • Öztürk, E., Hasan, Akay., Sezer, İ. 2021. The Effect of Salicylic Acid Pre-Application Against Salt Stress During Germination and Early Seedling Development in Sugar Corn. Journal of the Institute of Science and Technology, 11(4), 3213-3221. https://doi.org/10.21597/jist.953388
  • Ravikovitch, S., Porath, A., 1967. The Effect of Nutrients on The Salt Tolerance of Crops. Plant and Soil, 26, 49-71.
  • Rehman, S., Harris, P.J.C., Bourne, W.F., Wilkin, J., 1996. The Effect of Sodium Chloride on Germination and the Potassium and Calcium Content of Acacies Seeds. Seed Sci. Technol., 25: 45-57.
  • Riaz, U., Kharal, M. A., Murtaza, G., uz Zaman, Q., Javaid, S., Malik, H. A., Abbas, Z. 2019. Prospective roles and mechanisms of caffeic acid in counter plant stress: A mini review. Pakistan Journal of Agricultural Research, 32(1), 8. https://doi.org/10.175822/journal.pjar/2019/32.1.8.19
  • Siegel, S.M., Siegel, B.Z., Massey, J., Lahne, P., Chen, J., 1980. Growth of Corn in Saline waters. Physiol. Plant. 50:71-73. https://doi.org/10.1111/j.1399-3054.1980.tb02686.x
  • Steduto, P., Hsiao, T. C., Fereres, E., Raes, D. 2012. Crop yield response to water (Vol. 1028). Rome: Food and Agriculture Organization of the United Nations.
  • Uyanık, M., Kara, M.Ş., Korkmaz, K., 2014. Determination of Responses of Some Winter Canola (Brassica napus L.) Cultivars to Salt Stress at Germination Period Journal of Agricultural Sciences, 20: 368-375. https://doi.org/10.15832/tbd.61947
  • Vibhuti, C. S., Bargali, K., Bargali, S. S. 2015. Seed germination and seedling growth parameters of rice (Oryza sativa L.) varieties as affected by salt and water stress. Indian Journal of Agricultural Sciences, 85(1), 102-108.
There are 33 citations in total.

Details

Primary Language Turkish
Journal Section Anadolu Tarım Bilimleri Dergisi
Authors

Hamide Duman 0000-0002-6462-431X

Elif Öztürk 0000-0001-9723-6092

Hasan Akay 0000-0003-1198-8686

Early Pub Date June 30, 2023
Publication Date July 4, 2023
Acceptance Date June 5, 2023
Published in Issue Year 2023 Volume: 38 Issue: 2

Cite

APA Duman, H., Öztürk, E., & Akay, H. (2023). Farklı Sulama Suyu Tuzluluk Seviyelerinin Çeltikte Çimlenme ve Erken Fide Gelişimi Üzerine Etkisi. Anadolu Tarım Bilimleri Dergisi, 38(2), 407-420. https://doi.org/10.7161/omuanajas.1296440
AMA Duman H, Öztürk E, Akay H. Farklı Sulama Suyu Tuzluluk Seviyelerinin Çeltikte Çimlenme ve Erken Fide Gelişimi Üzerine Etkisi. ANAJAS. July 2023;38(2):407-420. doi:10.7161/omuanajas.1296440
Chicago Duman, Hamide, Elif Öztürk, and Hasan Akay. “Farklı Sulama Suyu Tuzluluk Seviyelerinin Çeltikte Çimlenme Ve Erken Fide Gelişimi Üzerine Etkisi”. Anadolu Tarım Bilimleri Dergisi 38, no. 2 (July 2023): 407-20. https://doi.org/10.7161/omuanajas.1296440.
EndNote Duman H, Öztürk E, Akay H (July 1, 2023) Farklı Sulama Suyu Tuzluluk Seviyelerinin Çeltikte Çimlenme ve Erken Fide Gelişimi Üzerine Etkisi. Anadolu Tarım Bilimleri Dergisi 38 2 407–420.
IEEE H. Duman, E. Öztürk, and H. Akay, “Farklı Sulama Suyu Tuzluluk Seviyelerinin Çeltikte Çimlenme ve Erken Fide Gelişimi Üzerine Etkisi”, ANAJAS, vol. 38, no. 2, pp. 407–420, 2023, doi: 10.7161/omuanajas.1296440.
ISNAD Duman, Hamide et al. “Farklı Sulama Suyu Tuzluluk Seviyelerinin Çeltikte Çimlenme Ve Erken Fide Gelişimi Üzerine Etkisi”. Anadolu Tarım Bilimleri Dergisi 38/2 (July 2023), 407-420. https://doi.org/10.7161/omuanajas.1296440.
JAMA Duman H, Öztürk E, Akay H. Farklı Sulama Suyu Tuzluluk Seviyelerinin Çeltikte Çimlenme ve Erken Fide Gelişimi Üzerine Etkisi. ANAJAS. 2023;38:407–420.
MLA Duman, Hamide et al. “Farklı Sulama Suyu Tuzluluk Seviyelerinin Çeltikte Çimlenme Ve Erken Fide Gelişimi Üzerine Etkisi”. Anadolu Tarım Bilimleri Dergisi, vol. 38, no. 2, 2023, pp. 407-20, doi:10.7161/omuanajas.1296440.
Vancouver Duman H, Öztürk E, Akay H. Farklı Sulama Suyu Tuzluluk Seviyelerinin Çeltikte Çimlenme ve Erken Fide Gelişimi Üzerine Etkisi. ANAJAS. 2023;38(2):407-20.
Online ISSN: 1308-8769