Research Article
BibTex RIS Cite

Determination of some trace elements in various lichens as biomonitors of pollution and assessment of pollution status

Year 2023, Volume: 12 Issue: 3, 672 - 681, 15.07.2023
https://doi.org/10.28948/ngumuh.1243269

Abstract

Some trace elements in various lichens as biomonitors of pollution were investigated. Also, the pollution status was assessed by enrichment factor, contamination factor, and pollution load index. Investigated elements were Ta, Bi, Hf, Nb, Ga, Sc, Li, Y, Ce, and Sr. The lichen species were Rhizoplaca chrysoleuca, Umbilicaria vellea, Aspicilia calcarea, Pseudevernia furfuracea, and Cetraria islandica. According to the results, lichen species accumulate Sr element well. The highest trace element accumulated by Pseudevernia furfuracea (21.7±1.0 mg/kg; 75%), Rhizoplaca chrysoleuca (31.9±1.6 mg/kg; 61%), Umbilicaria vellea (16.3±0.8 mg/kg; 59%), Aspicilia calcarea (77.9±3.8 mg/kg; 88%), and Cetraria islandica (22.7±1.1 mg/kg; 75%) was determined as Sr. The highest CFs in lichens investigated were calculated for Sr, Ta, and Li. PLI values for Cetraria islandica, Aspicilia calcarea, and Umbilicaria vellea were greater than 1. As a result, it has been proven that these lichen species can be used as good biomonitors of pollution.

References

  • M. Sethurajan and S. Gaydardzhiev, Bioprocessing of spent lithium ion batteries for critical metals recovery – A review. Resources, Conservation and Recycling, 165, 105225, 2021. https://doi.org/10.1016/j.resconrec. 2020.105225.
  • S. V. Thakkar and L. Malfatti, Silica-graphene porous nanocomposites for environmental remediation: A critical review. Journal of Environmental Management, 278, 111519, 2021. https://doi.org/ 10.1016/j. jenvman. 2020.111519.
  • D. Poddalgoda, S. M. Hays and A. Nong, Derivation of biomonitoring equivalents (BE values) for bismuth. Regulatory Toxicology and Pharmacology, 114, 104672, 2020. https://doi.org10.1016/j.yrtph.2020.10 4672.
  • M. Jia and J. T. Newberg, Surface chemistry of liquid bismuth under oxygen and water vapor studied by ambient pressure X-ray photoelectron spectroscopy. Applied Surface Science, 539, 148219, 2021. https://doi.org/10.1016/j.apsusc.2020.148219.
  • E. Allahkarami and B. Rezai, A literature review of cerium recovery from different aqueous solutions. Journal of Environmental Chemical Engineering, 9 (1), 104956, 2021. https://doi.org/10.1016/j.jece.2020.104 956.
  • P. Velmuzhov, M. V. Sukhanov, E. A. Tyurina, A. D. Plekhovic, D. A. Fadeeva, L. A. Ketkova, M. F. Churbanov and V. S. Shiryaev, Physicochemical, optical properties and stability against crystallization of GaxGey-xS100-y (x=0–8; y = 40–42) glasses. Journal of Non-Crystalline Solids, 554, 120615, 2021. https://doi.org/10.1016/j.jnoncrysol.2020.120615.
  • M. Maarefvand, S. Sheibani and F. Rashchi, Recovery of gallium from waste LEDs by oxidation and subsequent leaching. Hydrometallurgy, 191, 105230, 2020. https://doi.org/10.1016/j.hydromet.2019.10523 0.
  • J. B. Hedrick, Mineral commodity summaries 2010: scandium, US Geological Survey, 2010. https://doi.org/10.3133/mineral2010.
  • S. C. Li, S. C. Kim and C. S. Kang, Recovery of scandium from KOH sub-molten salt leaching cake of fergusonite. Minerals Engineering, 137, 200-206, 2019. https://doi.org/10.1016/j.mineng.2018.11.052.
  • L. I. Deqian, A review on yttrium solvent extraction chemistry and separation process. Journal of Rare Earths, 35, 107-119, 2017. https://doi.org/10.1016/S 100 2-0721(17)60888-3.
  • Q. Liao, D. Zou, W. Pan, W. Linghu, R. Shen, X. Li, A. M. Asiri, K. A. Alamry, G. Sheng, L. Zhan and X. Wu, Highly efficient capture of Eu(III), La(III), Nd(III), Th(IV) from aqueous solutions using g-C3N4 nanosheets. Journal of Molecular Liquids, 252, 351-361, 2018. https://doi.org/10.1016/j.molliq.2017. 12.145.
  • M. E. Mahmoud and A. K. Mohamed, Removal of yttrium (III) from aqueous solution using surface metal sequestration methodology by 3‑azo‑phenolate salicylic acid. Journal of Molecular Liquids, 274, 25-32,2019. https://doi.org/10.1016/j.molliq.2018.10.065.
  • G. Pagano, M. Guida, F. Tommasi and R. Oral, Health effects and toxicity mechanisms of rare earth elements-knowledge gaps and research prospects. Ecotoxicology Environment Safety, 115, 40-48, 2015. https://doi.org/10.1016/j.ecoenv.2015.01.030.
  • A. Hulanicki, J. Surgiewicz and I. Jaron, Determination of hafnium in air dust filters by inductively coupled plasma atomic emission spectrometry. Talanta, 44(7), 1159-1162, 1997. https://doi.org/10.1016/S0039-9140(96)02152-2.
  • A. Shikika, M. Sethurajan, M. Muvundja, M. C. Mugumaoderha and St. Gaydardzhiev, A review on extractive metallurgy of tantalum and niobium, Hydrometallurgy, 198, 105496, 2020. https://doi.or g/10.101 6/j.hydromet.2020.105496.
  • M. Wiśniewska, G. Fijałkowska, I. Ostolska, W. Franus, A. Nosal-Wiercińska, B. Tomaszewska, J. Goscianska and G. Wójcik, Investigations of the possibility of lithium acquisition from geothermal water using natural and synthetic zeolites applying poly(acrylic acid). Journal of Cleaner Production, 195, 821-830, 2018. https://doi.org/10.1016/j.jclepro.2018.05.287.
  • Y. Zhang, W. Sun, R. Xu, L. Wang and H. Tang, Lithium extraction from water lithium resources through green electrochemical-battery approaches: A comprehensive review. Journal of Cleaner Production, 285, 124905, 2020. https://doi.org/10.1016/j.jclepro .2020.12490
  • Y. Miao, L. Liu, C. Liu, Y. L. Deng, P. P. Chen, Q. Luo, F. P. Cui, M. Zhang, W. Q. Lu and Q. Zeng, Urinary biomarker of strontium exposure is positively associated with semen quality among men from an infertility clinic. Ecotoxicology and Environmental Safety, 208, 111694, 2021. https://doi.org/10.1016 /j.ecoe nv.2020.111694.
  • X. Liu, Z. Ren, T. Yang, Y. Hao, Q. Wang and J. Zhou, Tunable dielectric metamaterial based on strontium titanate artificial atoms. Scripta Materialia, 184, 30-33, 2020. https://doi.org/10.1016/j.scriptamat.2020.03.04 1.
  • Y. Li, S. Le, Z. Wang, Y. Hong, K. Li and Q. Pu, Preparation and characterization of the Sr2+-doped gamma-Ce2S3@c-SiO2 red pigments exhibiting improved temperature and acid stability. Applied Surface Science, 508, 2020. https://doi.org/10.1016/j .apsusc.2020.145266.
  • C. Liu, X. Yu, C. Ma, Y. Guo and T. Deng, Selective recovery of strontium from oilfield water by ion-imprinted alginate microspheres modified with thioglycollic acid. Chemical Engineering Journal, 410, 128267, 2021. https://doi.org/10.1016/j.cej.2020.128 267
  • WHO (World Health Organization), Press Release: 9 Out of 10 People Worldwide Breathe Polluted Air, but More Countries Are Taking Action, https://www.who.int/news-room/detail/02-05-2018-9-out-of-10-people-worldwide-breathe-polluted-air-but-more-countries-are-taking-action, Accessed 2th Feb 2021.
  • A. Parviainen, E. M. Papaslioti, M. Casares-Porcel and C. J. Garrido, Antimony as a tracer of non-exhaust traffic emissions in air pollution in Granada (S Spain) using lichen bioindicators. Environmental Pollution, 263, 114482, 2020. https://doi.org/10.1016/j.envpol.20 20.114482.
  • IARC, (International Agency for Research on Cancer), 2013. Outdoor air pollution a leading environmental cause of cancer deaths. The International Agency for Research on Cancer, Press release N 221, https://www.iarc.fr/wp-content/uploads/2018/07/pr221 _E.pdf, Accessed 2 Feb 2021.
  • L. Massimi, F. Castellani, C. Protano, M. E. Conti, A. Antonucci, M. A. Frezzini, M. Galletti, G. Mele, A. Pilerie, M. Ristorini, M. Vitali and S. Canepari, Lichen transplants for high spatial resolution biomonitoring of Persistent Organic Pollutants (POPs) in a multi-source polluted area of Central Italy. Ecological Indicators, 120, 106921, 2021. https://doi.org/10.1016/j.ecolind.2 020.106921.
  • T. Taylor, H. Hass, W. Remy and H. Kerp, The oldest fossil lichen. Nature, 378, 244-244, 1995. https://doi.org/10.1038/378244a0.
  • X. Yuan, S. Xiao and T. N. Taylor, Lichen-like symbiosis 600 million years ago. Science, 308, 1017-1020, 2005. https://doi.org/10.1126/science.1111347.
  • M. Goel, R. Kalra, P. Ponnan, J. A. A. S. Jayaweera and W. W. Kumbukgolla, Inhibition of penicillin-binding protein 2a (PBP2a) in methicillin resistant Staphylococcus aureus (MRSA) by combination of oxacillin and a bioactive compound from Ramalinaroesleri. Microbial Pathogenesis, 150, 104676, 2021. https://doi.org/10.1016/j.micpath.2020. 104676.
  • R. Bargagli, Moss and lichen biomonitoring of atmospheric mercury: a review. Science of the Total Environment, 572, 216-231, 2016. https://doi.org/10.1 016/ j.scitotenv.2016.07.202.
  • L. Fortuna, A. G. González, M. Tretiach and O. S. Pokrovsky, Influence of secondary metabolites on surface chemistry and metal adsorption of a devitalized lichen biomonitor. Environmental Pollution, 273, 116500, 2021. https://doi.org/10.1016/j.envpol.2021. 116500.
  • J. M. H. Knops, T. N. Iii, V. L. Boucher and W. H. Schlesinger, Mineral cycling and epiphytic lichens: implications at the ecosystem level. Lichenologist, 23, 309-321, 1991.
  • T. Hájek and L. Adamec, Mineral nutrient economy in competing species of Sphagnum mosses. Ecological Research, 24, 291-302, 2009. https://doi.org/10.1007 /s11284-008-0506-0.
  • Y. Tao and Y. M. Zhang, Effects of leaf hair points of a desert moss on water retention and dew formation: implications for desiccation tolerance. Journal of Plant Research, 125, 351-360, 2012. https://doi.org/10.1007 /s10265-011-0449-3.
  • F. Petruzzellis, T. Savi, S. Bertuzzi, A. Montagner, M. Tretiach and A. Nardini, Relationships between water status and photosystem functionality in a chlorolichen and its isolated photobiont. Planta, 247, 705-714, 2018. https://doi.org/10.1007/s00425-017-2814-5.
  • H. F. Van Dobben, H. T. Wolterbeek, G. W. W. Wamelink and C. J. F. Ter Braak, Relationship between epiphytic lichens, trace elements and gaseous atmospheric pollutants. Environmental Pollution, 112, 163-169, 2001. https://doi.org/10.1016/S0269-7491(00) 00121-4.
  • A. Ares, J. Aboal, A. Carballeira and J. A. Fernández, Do moss bags containing devitalized Sphagnum denticulatum reflect heavy metal concentrations in bulk deposition?. Ecological Indicators, 50, 90-98, 2015. https://doi.org/10.1016/j.ecolind.2014.10.030
  • H. A. Carreras, J. H. Rodriguez, C. M. González, E. D. Wannaz, F. Garcia Ferreyra, C. A. Perez and M. L. Pignata, Assessment of the relationship between total suspended particles and the response of two biological indicators transplanted to an urban area in central Argentina. Atmospheric Environment, 43(18), 2944-2949, 2009. https://doi.org/10.1016/j.atmosenv.2009. 02.060.
  • D. Bubach, S. P. Catán, C. D. Fonzo, L. Dopchiz, M. Arribére and M. Ansaldo, Elemental composition of Usnea sp lichen from Potter Peninsula, 25 de Mayo (King George) Island, Antarctica. Environmental Pollution, 210, 238-245, 2016. https://doi.org/10.101 6/j.envpol.2015.11.045.
  • Y. Koroleva and V. Revunkov, Air Pollution Monitoring in the South-East Baltic Using the Epiphytic Lichen Hypogymnia physodes, Atmosphere, 8 (7), 119, 2007. https://doi.org/10.3390/atmos807 0119.
  • M. S. Landis, W. B. Studabaker, J. P. Pancras, J. R. Graney, K. Puckett, E. M. White and E. S. Edgerton, Source apportionment of an epiphytic lichen biomonitor to elucidate the sources and spatial distribution of polycyclic aromatic hydrocarbons in the Athabasca Oil Sands Region, Alberta, Canada. Science of The Total Environment, 654, 1241-1257, 2019. https://doi.org/10.1016/j.scitotenv.2018.11.131
  • E. Cecconi, G. Incerti, F. Capozzi, P. Adamo, R. Bargagli, R. Benesperi, F. Candotto Carniel, S. E. Favero-Longo, S. Giordano, D. Puntillo, S. Ravera, V. Spagnuolo and M. Tretiach, Background element content of the lichen Pseudevernia furfuracea: a supra-national state of art implemented by novel field data from Italy. Science of the Total Environment, 622, 282–292, 2018. https://doi.org/10.1007/s10661-019-7405-4.
  • B. Markert, Establishing of Reference Plant for Inorganic Characterization of Different Plant Species By Chemical Fingerprinting. Water Air Soil Pollution, 64:533-538, 1992. https://doi.org/10.1007/BF00483363.
  • H. Salo, M. S. Bu´cko, E. Vaahtovuo, J. Limo, J. Mäkinen, and L. J. Pesonen, Biomonitoring of air pollution in SW Finland by magnetic and chemical measurements of moss bags and lichens. Journal of Geochemical Exploration, 115, 69–81, 2012. https://doi.org/10.1016/j.gexplo.2012.02.009.
  • A. Stojanowska, J. Rybak, M. Bożym, T. Olszowski, J. S. Bihałowicz, Spider Webs and Lichens as Bioindicators of Heavy Metals: A Comparison Study in the Vicinity of a Copper Smelter (Poland). Sustainability, 12 (19), 8066, 2020. https://doi.org/10.3390/su12198066.
  • G. Gürdal, H. Hoşgörmez, D. Özcan, X. Li, H. Liu and W. Song, The properties of Çan Basin coals (Çanakkale—Turkey): Spontaneous combustion and combustion by-products. International Journal of Coal Geology, 138, 1-15, 2015. https://doi.org/10.1016/j. coal.2014.12.004.
  • Y. Z. Sun, Y. H. Li, C. L. Zhao, M. Y. Lin, J. X. Wang and S. J. Qin, Concentrations of lithium in Chinese coals. Energy Exploration and Exploitation, 28 (2), 97–104, 2010. https://doi.org/10.1260/0144-5987.28.2.97.
  • Y. Z. Sun, J. J. Yang and C. L. Zhao, Minimum mining grade of associated Li deposits in coal seams. Energy Exploration and Exploitation, 30 (2), 167–170, 2012. https://doi.org/10.1260/0144-5987.30.2.167.
  • S. F. Dai, Y. F. Jiang, C. R. Ward, L. D. Gu, V. V. Seredin, H. D. Liu, D. Zhou, X. B. Wang, Y. Z. Sun, J. H. Zou and D. Y. Ren, Mineralogical and geochemical compositions of the coal in the Guanbanwusu Mine, Inner Mongolia, China: Further evidence for the existence of an Al (Ga and REE) ore deposit in the Jungar Coalfield. International Journal of Coal Geology, 98, 10–40, 2012. https://doi.org/10.126 0/1708-5284.12.6.551.
  • S. Qin, C. Zhao, Y. Li and Y. Zhang, Review of coal as a promising source of lithium. International Journal of Oil Gas and Coal Technology, 9 (2):215–229, 2015. https://doi.org/10.1504/IJOGCT.2015.067490.
  • R. C. Bhangare, P. Y. Ajmal, S. K. Sahu, G. G. Pandit, and V. D. Puranik, Distribution of trace elements in coal and combustion residues from five thermal power plants in India. International Journal of Coal Geology, 86 (4), 349–356, 2011. https://doi.org/10.10 16 /j.coal.2011.03.008.
  • Ö. Tufan Çetin and H. Sümbül, Hava kirliliğinin belirlenmesinde likenlerin kullanımı. Mehmet Akif Üniversitesi, Fen Bilimleri Enstitüsü Dergisi, 2, 73-85, 2010. https://dergipark.org.tr/tr/pub/makufebed/issue/ 19425/206572.
  • J. Garty, Biomonitoring atmospheric heavy metals with lichens: Theory and Application. Critical Reviews in Plant Sciences, 20, 309-371, 2001. https://doi.org/10.1080/20013591099254.
  • G. Çobanoğlu, The use of lichens for biomonitoring of atmospheric pollution, Sigma Journal of Engineering and Natural Sciences, 33, 591-613, 2015.
  • V. Işık, Xanthoria Parietina (L.) Th. Fr. likeni kullanılarak Ankara İli’nde yapılan ağır metal biyoizleme (=biyomonitoring) çalışması, Yüksek Lisans Tezi, Ankara Üniversitesi, Türkiye, 2021

Kirliliğin biyomonitörleri olarak çeşitli likenlerdeki bazı eser elementlerin belirlenmesi ve kirlilik durumunun değerlendirilmesi

Year 2023, Volume: 12 Issue: 3, 672 - 681, 15.07.2023
https://doi.org/10.28948/ngumuh.1243269

Abstract

Çeşitli likenlerde kirliliğin biyomonitörleri olarak bazı eser elementler incelenmiştir. Ayrıca, kirlilik durumu zenginleştirme faktörü, kirlilik faktörü ve kirlilik yükleme indeksi ile değerlendirildi. Araştırılan elementler Ta, Bi, Hf, Nb, Ga, Sc, Li, Y, Ce ve Sr’dur. Liken türleri Rhizoplaca chrysoleuca, Umbilicaria vellea, Aspicilia calcarea, Pseudevernia furfuracea ve Cetraria Islandica’dır. Elde edilen sonuçlara göre liken türleri Sr elementini iyi akümüle ettiği belirlendi. Pseudevernia furfuracea (21,7±1,0 mg/kg; %75), Rhizoplaca chrysoleuca (31,9±1,6 mg/kg; %61), Umbilicaria vellea (16,3±0,8 mg/kg; %59), Aspicilia calcarean (77,9±3,8 mg/kg; 88%) ve Cetraria islandica (22,7±1,1 mg/kg; 75%) tarafından akümüle edilen en yüksek eser element Sr olarak belirlendi. İncelenen likenlerde en yüksek CF’ler Sr, Ta ve Li için hesaplanmıştır. Cetraria islandica, Aspicilia calcarea ve Umbilicaria vellea için PLI değerleri 1'den büyüktü. Sonuç olarak, bu liken türlerinin kirlilik için iyi bir biyomonitör olarak kullanılabileceği kanıtlanmıştır.

References

  • M. Sethurajan and S. Gaydardzhiev, Bioprocessing of spent lithium ion batteries for critical metals recovery – A review. Resources, Conservation and Recycling, 165, 105225, 2021. https://doi.org/10.1016/j.resconrec. 2020.105225.
  • S. V. Thakkar and L. Malfatti, Silica-graphene porous nanocomposites for environmental remediation: A critical review. Journal of Environmental Management, 278, 111519, 2021. https://doi.org/ 10.1016/j. jenvman. 2020.111519.
  • D. Poddalgoda, S. M. Hays and A. Nong, Derivation of biomonitoring equivalents (BE values) for bismuth. Regulatory Toxicology and Pharmacology, 114, 104672, 2020. https://doi.org10.1016/j.yrtph.2020.10 4672.
  • M. Jia and J. T. Newberg, Surface chemistry of liquid bismuth under oxygen and water vapor studied by ambient pressure X-ray photoelectron spectroscopy. Applied Surface Science, 539, 148219, 2021. https://doi.org/10.1016/j.apsusc.2020.148219.
  • E. Allahkarami and B. Rezai, A literature review of cerium recovery from different aqueous solutions. Journal of Environmental Chemical Engineering, 9 (1), 104956, 2021. https://doi.org/10.1016/j.jece.2020.104 956.
  • P. Velmuzhov, M. V. Sukhanov, E. A. Tyurina, A. D. Plekhovic, D. A. Fadeeva, L. A. Ketkova, M. F. Churbanov and V. S. Shiryaev, Physicochemical, optical properties and stability against crystallization of GaxGey-xS100-y (x=0–8; y = 40–42) glasses. Journal of Non-Crystalline Solids, 554, 120615, 2021. https://doi.org/10.1016/j.jnoncrysol.2020.120615.
  • M. Maarefvand, S. Sheibani and F. Rashchi, Recovery of gallium from waste LEDs by oxidation and subsequent leaching. Hydrometallurgy, 191, 105230, 2020. https://doi.org/10.1016/j.hydromet.2019.10523 0.
  • J. B. Hedrick, Mineral commodity summaries 2010: scandium, US Geological Survey, 2010. https://doi.org/10.3133/mineral2010.
  • S. C. Li, S. C. Kim and C. S. Kang, Recovery of scandium from KOH sub-molten salt leaching cake of fergusonite. Minerals Engineering, 137, 200-206, 2019. https://doi.org/10.1016/j.mineng.2018.11.052.
  • L. I. Deqian, A review on yttrium solvent extraction chemistry and separation process. Journal of Rare Earths, 35, 107-119, 2017. https://doi.org/10.1016/S 100 2-0721(17)60888-3.
  • Q. Liao, D. Zou, W. Pan, W. Linghu, R. Shen, X. Li, A. M. Asiri, K. A. Alamry, G. Sheng, L. Zhan and X. Wu, Highly efficient capture of Eu(III), La(III), Nd(III), Th(IV) from aqueous solutions using g-C3N4 nanosheets. Journal of Molecular Liquids, 252, 351-361, 2018. https://doi.org/10.1016/j.molliq.2017. 12.145.
  • M. E. Mahmoud and A. K. Mohamed, Removal of yttrium (III) from aqueous solution using surface metal sequestration methodology by 3‑azo‑phenolate salicylic acid. Journal of Molecular Liquids, 274, 25-32,2019. https://doi.org/10.1016/j.molliq.2018.10.065.
  • G. Pagano, M. Guida, F. Tommasi and R. Oral, Health effects and toxicity mechanisms of rare earth elements-knowledge gaps and research prospects. Ecotoxicology Environment Safety, 115, 40-48, 2015. https://doi.org/10.1016/j.ecoenv.2015.01.030.
  • A. Hulanicki, J. Surgiewicz and I. Jaron, Determination of hafnium in air dust filters by inductively coupled plasma atomic emission spectrometry. Talanta, 44(7), 1159-1162, 1997. https://doi.org/10.1016/S0039-9140(96)02152-2.
  • A. Shikika, M. Sethurajan, M. Muvundja, M. C. Mugumaoderha and St. Gaydardzhiev, A review on extractive metallurgy of tantalum and niobium, Hydrometallurgy, 198, 105496, 2020. https://doi.or g/10.101 6/j.hydromet.2020.105496.
  • M. Wiśniewska, G. Fijałkowska, I. Ostolska, W. Franus, A. Nosal-Wiercińska, B. Tomaszewska, J. Goscianska and G. Wójcik, Investigations of the possibility of lithium acquisition from geothermal water using natural and synthetic zeolites applying poly(acrylic acid). Journal of Cleaner Production, 195, 821-830, 2018. https://doi.org/10.1016/j.jclepro.2018.05.287.
  • Y. Zhang, W. Sun, R. Xu, L. Wang and H. Tang, Lithium extraction from water lithium resources through green electrochemical-battery approaches: A comprehensive review. Journal of Cleaner Production, 285, 124905, 2020. https://doi.org/10.1016/j.jclepro .2020.12490
  • Y. Miao, L. Liu, C. Liu, Y. L. Deng, P. P. Chen, Q. Luo, F. P. Cui, M. Zhang, W. Q. Lu and Q. Zeng, Urinary biomarker of strontium exposure is positively associated with semen quality among men from an infertility clinic. Ecotoxicology and Environmental Safety, 208, 111694, 2021. https://doi.org/10.1016 /j.ecoe nv.2020.111694.
  • X. Liu, Z. Ren, T. Yang, Y. Hao, Q. Wang and J. Zhou, Tunable dielectric metamaterial based on strontium titanate artificial atoms. Scripta Materialia, 184, 30-33, 2020. https://doi.org/10.1016/j.scriptamat.2020.03.04 1.
  • Y. Li, S. Le, Z. Wang, Y. Hong, K. Li and Q. Pu, Preparation and characterization of the Sr2+-doped gamma-Ce2S3@c-SiO2 red pigments exhibiting improved temperature and acid stability. Applied Surface Science, 508, 2020. https://doi.org/10.1016/j .apsusc.2020.145266.
  • C. Liu, X. Yu, C. Ma, Y. Guo and T. Deng, Selective recovery of strontium from oilfield water by ion-imprinted alginate microspheres modified with thioglycollic acid. Chemical Engineering Journal, 410, 128267, 2021. https://doi.org/10.1016/j.cej.2020.128 267
  • WHO (World Health Organization), Press Release: 9 Out of 10 People Worldwide Breathe Polluted Air, but More Countries Are Taking Action, https://www.who.int/news-room/detail/02-05-2018-9-out-of-10-people-worldwide-breathe-polluted-air-but-more-countries-are-taking-action, Accessed 2th Feb 2021.
  • A. Parviainen, E. M. Papaslioti, M. Casares-Porcel and C. J. Garrido, Antimony as a tracer of non-exhaust traffic emissions in air pollution in Granada (S Spain) using lichen bioindicators. Environmental Pollution, 263, 114482, 2020. https://doi.org/10.1016/j.envpol.20 20.114482.
  • IARC, (International Agency for Research on Cancer), 2013. Outdoor air pollution a leading environmental cause of cancer deaths. The International Agency for Research on Cancer, Press release N 221, https://www.iarc.fr/wp-content/uploads/2018/07/pr221 _E.pdf, Accessed 2 Feb 2021.
  • L. Massimi, F. Castellani, C. Protano, M. E. Conti, A. Antonucci, M. A. Frezzini, M. Galletti, G. Mele, A. Pilerie, M. Ristorini, M. Vitali and S. Canepari, Lichen transplants for high spatial resolution biomonitoring of Persistent Organic Pollutants (POPs) in a multi-source polluted area of Central Italy. Ecological Indicators, 120, 106921, 2021. https://doi.org/10.1016/j.ecolind.2 020.106921.
  • T. Taylor, H. Hass, W. Remy and H. Kerp, The oldest fossil lichen. Nature, 378, 244-244, 1995. https://doi.org/10.1038/378244a0.
  • X. Yuan, S. Xiao and T. N. Taylor, Lichen-like symbiosis 600 million years ago. Science, 308, 1017-1020, 2005. https://doi.org/10.1126/science.1111347.
  • M. Goel, R. Kalra, P. Ponnan, J. A. A. S. Jayaweera and W. W. Kumbukgolla, Inhibition of penicillin-binding protein 2a (PBP2a) in methicillin resistant Staphylococcus aureus (MRSA) by combination of oxacillin and a bioactive compound from Ramalinaroesleri. Microbial Pathogenesis, 150, 104676, 2021. https://doi.org/10.1016/j.micpath.2020. 104676.
  • R. Bargagli, Moss and lichen biomonitoring of atmospheric mercury: a review. Science of the Total Environment, 572, 216-231, 2016. https://doi.org/10.1 016/ j.scitotenv.2016.07.202.
  • L. Fortuna, A. G. González, M. Tretiach and O. S. Pokrovsky, Influence of secondary metabolites on surface chemistry and metal adsorption of a devitalized lichen biomonitor. Environmental Pollution, 273, 116500, 2021. https://doi.org/10.1016/j.envpol.2021. 116500.
  • J. M. H. Knops, T. N. Iii, V. L. Boucher and W. H. Schlesinger, Mineral cycling and epiphytic lichens: implications at the ecosystem level. Lichenologist, 23, 309-321, 1991.
  • T. Hájek and L. Adamec, Mineral nutrient economy in competing species of Sphagnum mosses. Ecological Research, 24, 291-302, 2009. https://doi.org/10.1007 /s11284-008-0506-0.
  • Y. Tao and Y. M. Zhang, Effects of leaf hair points of a desert moss on water retention and dew formation: implications for desiccation tolerance. Journal of Plant Research, 125, 351-360, 2012. https://doi.org/10.1007 /s10265-011-0449-3.
  • F. Petruzzellis, T. Savi, S. Bertuzzi, A. Montagner, M. Tretiach and A. Nardini, Relationships between water status and photosystem functionality in a chlorolichen and its isolated photobiont. Planta, 247, 705-714, 2018. https://doi.org/10.1007/s00425-017-2814-5.
  • H. F. Van Dobben, H. T. Wolterbeek, G. W. W. Wamelink and C. J. F. Ter Braak, Relationship between epiphytic lichens, trace elements and gaseous atmospheric pollutants. Environmental Pollution, 112, 163-169, 2001. https://doi.org/10.1016/S0269-7491(00) 00121-4.
  • A. Ares, J. Aboal, A. Carballeira and J. A. Fernández, Do moss bags containing devitalized Sphagnum denticulatum reflect heavy metal concentrations in bulk deposition?. Ecological Indicators, 50, 90-98, 2015. https://doi.org/10.1016/j.ecolind.2014.10.030
  • H. A. Carreras, J. H. Rodriguez, C. M. González, E. D. Wannaz, F. Garcia Ferreyra, C. A. Perez and M. L. Pignata, Assessment of the relationship between total suspended particles and the response of two biological indicators transplanted to an urban area in central Argentina. Atmospheric Environment, 43(18), 2944-2949, 2009. https://doi.org/10.1016/j.atmosenv.2009. 02.060.
  • D. Bubach, S. P. Catán, C. D. Fonzo, L. Dopchiz, M. Arribére and M. Ansaldo, Elemental composition of Usnea sp lichen from Potter Peninsula, 25 de Mayo (King George) Island, Antarctica. Environmental Pollution, 210, 238-245, 2016. https://doi.org/10.101 6/j.envpol.2015.11.045.
  • Y. Koroleva and V. Revunkov, Air Pollution Monitoring in the South-East Baltic Using the Epiphytic Lichen Hypogymnia physodes, Atmosphere, 8 (7), 119, 2007. https://doi.org/10.3390/atmos807 0119.
  • M. S. Landis, W. B. Studabaker, J. P. Pancras, J. R. Graney, K. Puckett, E. M. White and E. S. Edgerton, Source apportionment of an epiphytic lichen biomonitor to elucidate the sources and spatial distribution of polycyclic aromatic hydrocarbons in the Athabasca Oil Sands Region, Alberta, Canada. Science of The Total Environment, 654, 1241-1257, 2019. https://doi.org/10.1016/j.scitotenv.2018.11.131
  • E. Cecconi, G. Incerti, F. Capozzi, P. Adamo, R. Bargagli, R. Benesperi, F. Candotto Carniel, S. E. Favero-Longo, S. Giordano, D. Puntillo, S. Ravera, V. Spagnuolo and M. Tretiach, Background element content of the lichen Pseudevernia furfuracea: a supra-national state of art implemented by novel field data from Italy. Science of the Total Environment, 622, 282–292, 2018. https://doi.org/10.1007/s10661-019-7405-4.
  • B. Markert, Establishing of Reference Plant for Inorganic Characterization of Different Plant Species By Chemical Fingerprinting. Water Air Soil Pollution, 64:533-538, 1992. https://doi.org/10.1007/BF00483363.
  • H. Salo, M. S. Bu´cko, E. Vaahtovuo, J. Limo, J. Mäkinen, and L. J. Pesonen, Biomonitoring of air pollution in SW Finland by magnetic and chemical measurements of moss bags and lichens. Journal of Geochemical Exploration, 115, 69–81, 2012. https://doi.org/10.1016/j.gexplo.2012.02.009.
  • A. Stojanowska, J. Rybak, M. Bożym, T. Olszowski, J. S. Bihałowicz, Spider Webs and Lichens as Bioindicators of Heavy Metals: A Comparison Study in the Vicinity of a Copper Smelter (Poland). Sustainability, 12 (19), 8066, 2020. https://doi.org/10.3390/su12198066.
  • G. Gürdal, H. Hoşgörmez, D. Özcan, X. Li, H. Liu and W. Song, The properties of Çan Basin coals (Çanakkale—Turkey): Spontaneous combustion and combustion by-products. International Journal of Coal Geology, 138, 1-15, 2015. https://doi.org/10.1016/j. coal.2014.12.004.
  • Y. Z. Sun, Y. H. Li, C. L. Zhao, M. Y. Lin, J. X. Wang and S. J. Qin, Concentrations of lithium in Chinese coals. Energy Exploration and Exploitation, 28 (2), 97–104, 2010. https://doi.org/10.1260/0144-5987.28.2.97.
  • Y. Z. Sun, J. J. Yang and C. L. Zhao, Minimum mining grade of associated Li deposits in coal seams. Energy Exploration and Exploitation, 30 (2), 167–170, 2012. https://doi.org/10.1260/0144-5987.30.2.167.
  • S. F. Dai, Y. F. Jiang, C. R. Ward, L. D. Gu, V. V. Seredin, H. D. Liu, D. Zhou, X. B. Wang, Y. Z. Sun, J. H. Zou and D. Y. Ren, Mineralogical and geochemical compositions of the coal in the Guanbanwusu Mine, Inner Mongolia, China: Further evidence for the existence of an Al (Ga and REE) ore deposit in the Jungar Coalfield. International Journal of Coal Geology, 98, 10–40, 2012. https://doi.org/10.126 0/1708-5284.12.6.551.
  • S. Qin, C. Zhao, Y. Li and Y. Zhang, Review of coal as a promising source of lithium. International Journal of Oil Gas and Coal Technology, 9 (2):215–229, 2015. https://doi.org/10.1504/IJOGCT.2015.067490.
  • R. C. Bhangare, P. Y. Ajmal, S. K. Sahu, G. G. Pandit, and V. D. Puranik, Distribution of trace elements in coal and combustion residues from five thermal power plants in India. International Journal of Coal Geology, 86 (4), 349–356, 2011. https://doi.org/10.10 16 /j.coal.2011.03.008.
  • Ö. Tufan Çetin and H. Sümbül, Hava kirliliğinin belirlenmesinde likenlerin kullanımı. Mehmet Akif Üniversitesi, Fen Bilimleri Enstitüsü Dergisi, 2, 73-85, 2010. https://dergipark.org.tr/tr/pub/makufebed/issue/ 19425/206572.
  • J. Garty, Biomonitoring atmospheric heavy metals with lichens: Theory and Application. Critical Reviews in Plant Sciences, 20, 309-371, 2001. https://doi.org/10.1080/20013591099254.
  • G. Çobanoğlu, The use of lichens for biomonitoring of atmospheric pollution, Sigma Journal of Engineering and Natural Sciences, 33, 591-613, 2015.
  • V. Işık, Xanthoria Parietina (L.) Th. Fr. likeni kullanılarak Ankara İli’nde yapılan ağır metal biyoizleme (=biyomonitoring) çalışması, Yüksek Lisans Tezi, Ankara Üniversitesi, Türkiye, 2021
There are 54 citations in total.

Details

Primary Language English
Subjects Environmental Engineering
Journal Section Environmental Engineering
Authors

Murat Topal 0000-0003-0222-5409

Emine Işıl Arslan Topal 0000-0003-0309-7787

Erdal Öbek 0000-0002-4595-572X

Ali Aslan 0000-0002-5122-6646

Early Pub Date July 13, 2023
Publication Date July 15, 2023
Submission Date January 27, 2023
Acceptance Date June 16, 2023
Published in Issue Year 2023 Volume: 12 Issue: 3

Cite

APA Topal, M., Arslan Topal, E. I., Öbek, E., Aslan, A. (2023). Determination of some trace elements in various lichens as biomonitors of pollution and assessment of pollution status. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 12(3), 672-681. https://doi.org/10.28948/ngumuh.1243269
AMA Topal M, Arslan Topal EI, Öbek E, Aslan A. Determination of some trace elements in various lichens as biomonitors of pollution and assessment of pollution status. NOHU J. Eng. Sci. July 2023;12(3):672-681. doi:10.28948/ngumuh.1243269
Chicago Topal, Murat, Emine Işıl Arslan Topal, Erdal Öbek, and Ali Aslan. “Determination of Some Trace Elements in Various Lichens As Biomonitors of Pollution and Assessment of Pollution Status”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12, no. 3 (July 2023): 672-81. https://doi.org/10.28948/ngumuh.1243269.
EndNote Topal M, Arslan Topal EI, Öbek E, Aslan A (July 1, 2023) Determination of some trace elements in various lichens as biomonitors of pollution and assessment of pollution status. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12 3 672–681.
IEEE M. Topal, E. I. Arslan Topal, E. Öbek, and A. Aslan, “Determination of some trace elements in various lichens as biomonitors of pollution and assessment of pollution status”, NOHU J. Eng. Sci., vol. 12, no. 3, pp. 672–681, 2023, doi: 10.28948/ngumuh.1243269.
ISNAD Topal, Murat et al. “Determination of Some Trace Elements in Various Lichens As Biomonitors of Pollution and Assessment of Pollution Status”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12/3 (July 2023), 672-681. https://doi.org/10.28948/ngumuh.1243269.
JAMA Topal M, Arslan Topal EI, Öbek E, Aslan A. Determination of some trace elements in various lichens as biomonitors of pollution and assessment of pollution status. NOHU J. Eng. Sci. 2023;12:672–681.
MLA Topal, Murat et al. “Determination of Some Trace Elements in Various Lichens As Biomonitors of Pollution and Assessment of Pollution Status”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 12, no. 3, 2023, pp. 672-81, doi:10.28948/ngumuh.1243269.
Vancouver Topal M, Arslan Topal EI, Öbek E, Aslan A. Determination of some trace elements in various lichens as biomonitors of pollution and assessment of pollution status. NOHU J. Eng. Sci. 2023;12(3):672-81.

23135