Research Article
BibTex RIS Cite

Antifungal Activities of Copper (II) Ion and Histidine Incorporated Polymers on Yeast Saccharomyces cerevisiae

Year 2023, Volume: 5 Issue: 2, 267 - 277, 31.12.2023
https://doi.org/10.47112/neufmbd.2023.24

Abstract

One of the most serious concerns in biomedical implant occlusion and deep wound healing is microbial infections caused by bacteria and fungi. Therefore, it is crucial to design materials with antimicrobial and antifungal properties to prevent or cure infections in the wound, its surroundings, and the site where the implant will be placed. Cryo-hydrogels, called cryogels, are a valuable option for wound healing materials. In this study, various polymers were synthesized using the cryopolymerization process in order to examine the changes in the antifungal effects of the materials when metal ion and amino acid are incorporated. Swelling tests, Fourier transform infrared spectroscopy, scanning electron microscopy, and X-ray diffraction investigations were performed to characterize the polymers synthesized using 2-hydroxyethyl methacrylate (HEMA) as main monomer. The antifungal actions of the cryogels were examined on the eukaryotic yeast cell model S. cerevisiae, also referred to as baker's yeast or brewer's yeast. HEMA-based polymers exhibit porous morphology. Results showed that copper ions play an essential role in the antifungal activity of the HEMA-based polymers while attachment of additional histidine causes the recovery of cell metabolic activity.

References

  • S.H. Zainal, N.H. Mohd, N. Suhaili, F.H. Anuar, A.M. Lazim, R. Othaman, Preparation of cellulose-based hydrogel: a review, Journal of Materials Research and Technology. 10 (2021), 935–952. doi:10.1016/J.JMRT.2020.12.012.
  • J. Li, D.J. Mooney, Designing hydrogels for controlled drug delivery, Nature Reviews Materials. 1 (2016), 1–17. doi:10.1038/natrevmats.2016.71.
  • D. Wu, J. Xu, Y. Chen, M. Yi, Q. Wang, Gum Arabic: A promising candidate for the construction of physical hydrogels exhibiting highly stretchable, self-healing and tensility reinforcing performances, Carbohydrate Polymers. 181 (2018), 167–174. doi:10.1016/J.CARBPOL.2017.10.076.
  • H. Yuk, B. Lu, X. Zhao, Hydrogel bioelectronics, Chemical Society Reviews. 48 (2019), 1642–1667. doi:10.1039/C8CS00595H.
  • Z. Gu, K. Huang, Y. Luo, L. Zhang, T. Kuang, Z. Chen, G. Liao, Double network hydrogel for tissue engineering, Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology. 10 (2018), e1520. doi:10.1002/WNAN.1520.
  • B. Yetiskin, O. Okay, High-strength and self-recoverable silk fibroin cryogels with anisotropic swelling and mechanical properties, International Journal of Biological Macromolecules. 122 (2019), 1279–1289. doi:10.1016/J.IJBIOMAC.2018.09.087.
  • S.A. Bencherif, R.W. Sands, D. Bhatta, P. Arany, C.S. Verbeke, D.A. Edwards, D.J. Mooney, Injectable preformed scaffolds with shape-memory properties., Proceedings of the National Academy of Sciences of the United States of America. 109 (2012), 19590–5. doi:10.1073/pnas.1211516109.
  • V. Baudron, P. Gurikov, I. Smirnova, S. Whitehouse, Porous starch materials via supercritical- and freeze-drying, Gels. 5 (2019), 12. doi:10.3390/gels5010012.
  • V.I. Lozinsky, I.Y. Galaev, F.M. Plieva, I.N. Savina, H. Jungvid, B. Mattiasson, Polymeric cryogels as promising materials of biotechnological interest, Trends in Biotechnology. 21 (2003), 445–451. doi:10.1016/j.tibtech.2003.08.002.
  • V.M. Gun’ko, I.N. Savina, S. V. Mikhalovsky, Cryogels: Morphological, structural and adsorption characterisation, Advances in Colloid and Interface Science. 187–188 (2013), 1–46. doi:10.1016/J.CIS.2012.11.001.
  • M. Razavi, Y. Qiao, A.S. Thakor, Three-dimensional cryogels for biomedical applications, Journal of Biomedical Materials Research - Part A. 107 (2019), 2736–2755. doi:10.1002/jbm.a.36777.
  • S. Reichelt, Introduction to Macroporous Cryogels, in: Methods in Molecular Biology, Humana Press, New York, 2015: pp. 173–181. doi:10.1007/978-1-4939-2447-9_14.
  • K. Çetin, A. Denizli, Polyethylenimine-functionalized microcryogels for controlled release of diclofenac sodium, Reactive and Functional Polymers. 170 (2022), 105125. doi:10.1016/J.REACTFUNCTPOLYM.2021.105125.
  • R. Kumar Saini, L. Prasad Bagri, A.K. Bajpai, Nano-silver hydroxyapatite based antibacterial 3D scaffolds of gelatin/alginate/poly (vinyl alcohol) for bone tissue engineering applications, Colloids and Surfaces B: Biointerfaces. 177 (2019), 211–218. doi:10.1016/J.COLSURFB.2019.01.064.
  • M. Rezaeeyazdi, T. Colombani, A. Memic, S. Bencherif, M. Rezaeeyazdi, T. Colombani, A. Memic, S.A. Bencherif, Injectable hyaluronic acid-co-gelatin cryogels for tissue-engineering applications, Materials. 11 (2018), 1374. doi:10.3390/ma11081374.
  • K. Çetin, A. Denizli, Microcryogels as plastic antibodies for transferrin purification, Process Biochemistry. 79 (2019), 174–184. doi:10.1016/j.procbio.2018.12.020.
  • S. Niyomdecha, W. Limbut, A. Numnuam, P. Asawatreratanakul, P. Kanatharana, P. Thavarungkul, A novel BOD biosensor based on entrapped activated sludge in a porous chitosan-albumin cryogel incorporated with graphene and methylene blue, Sensors and Actuators B: Chemical. 241 (2017), 473–481. doi:10.1016/j.snb.2016.10.102.
  • T. Kangkamano, A. Numnuam, W. Limbut, P. Kanatharana, P. Thavarungkul, Chitosan cryogel with embedded gold nanoparticles decorated multiwalled carbon nanotubes modified electrode for highly sensitive flow based non-enzymatic glucose sensor, Sensors and Actuators B: Chemical. 246 (2017), 854–863. doi:10.1016/J.SNB.2017.02.105.
  • Z.M. Sahin, D. Alimli, M.M. Tonta, M.E. Kose, F. Yilmaz, Highly sensitive and reusable mercury (II) sensor based on fluorescence quenching of pyrene moiety in polyacrylamide-based cryogel, Sensors and Actuators B: Chemical. 242 (2017), 362–368. doi:10.1016/J.SNB.2016.11.048.
  • A. Zumbuehl, L. Ferreira, D. Kuhn, A. Astashkina, L. Long, Y. Yeo, T. Iaconis, M. Ghannoum, G.R. Fink, R. Langer, D.S. Kohane, Antifungal hydrogels, Proceedings of the National Academy of Sciences of the United States of America. 104 (2007), 12994–12998. doi:10.1073/PNAS.0705250104.
  • X. Zhao, H. Wu, B. Guo, R. Dong, Y. Qiu, P.X. Ma, Antibacterial anti-oxidant electroactive injectable hydrogel as self-healing wound dressing with hemostasis and adhesiveness for cutaneous wound healing, Biomaterials. 122 (2017), 34–47. doi:10.1016/J.BIOMATERIALS.2017.01.011.
  • F.A. Paskiabi, S. Bonakdar, M.A. Shokrgozar, M. Imani, Z. Jahanshiri, M. Shams-Ghahfarokhi, M. Razzaghi-Abyaneh, Terbinafine-loaded wound dressing for chronic superficial fungal infections, Materials Science and Engineering: C. 73 (2017), 130–136. doi:10.1016/J.MSEC.2016.12.078.
  • I. De Luca, P. Pedram, A. Moeini, P. Cerruti, G. Peluso, A. Di Salle, N. Germann, Nanotechnology development for formulating essential oils in wound dressing materials to promote the wound-healing process: A review, Applied Sciences 2021, Vol. 11, Page 1713. 11 (2021), 1713. doi:10.3390/APP11041713.
  • M.A. Matica, F.L. Aachmann, A. Tøndervik, H. Sletta, V. Ostafe, Chitosan as a wound dressing starting material: antimicrobial properties and mode of action, International Journal of Molecular Sciences 2019, Vol. 20, Page 5889. 20 (2019), 5889. doi:10.3390/IJMS20235889.
  • S.L. Iconaru, M.V. Predoi, P. Chapon, S. Gaiaschi, K. Rokosz, S. Raaen, M. Motelica-Heino, D. Predoi, Investigation of spin coating cerium-doped hydroxyapatite thin films with antifungal properties, Coatings 2021, Vol. 11, Page 464. 11 (2021), 464. doi:10.3390/COATINGS11040464.
  • Y. El Attar, M. Atef Shams Eldeen, R.M. Wahid, R. Alakad, Efficacy of topical vs combined oral and topical antifungals in white piedra of the scalp, Journal of Cosmetic Dermatology. 20 (2021), 1900–1905. doi:10.1111/JOCD.13769.
  • K.S. Constantino-González, P. Serrano-Castañeda, O.R. Guadarrama-Escobar, M. López-Cervantes, C.L. Domínguez-Delgado, J.J. Escobar-Chávez, Development and characterization of amikacin loaded emulgel for the treatment of mycetoma, Pharmaceutical Chemistry Journal. 54 (2021), 1024–1032. doi:10.1007/S11094-021-02315-1/TABLES/14.
  • P. Gupta, P. Mishra, L. Mehra, K. Rastogi, R. Prasad, G. Mittal, K.M. Poluri, Eugenol-acacia gum-based bifunctional nanofibers as a potent antifungal transdermal substitute, Future Medicine. 16 (2021), 2269–2289. doi:10.2217/NNM-2021-0274.
  • M. Lazaridou, S. Nanaki, A. Zamboulis, C. Papoulia, K. Chrissafis, P.A. Klonos, A. Kyritsis, S. Vergkizi-Nikolakaki, M. Kostoglou, D.N. Bikiaris, Super absorbent chitosan-based hydrogel sponges as carriers for caspofungin antifungal drug, International Journal of Pharmaceutics. 606 (2021), 120925. doi:10.1016/J.IJPHARM.2021.120925.
  • M.M. Iftime, I. Rosca, A.I. Sandu, L. Marin, Chitosan crosslinking with a vanillin isomer toward self-healing hydrogels with antifungal activity, International Journal of Biological Macromolecules. 205 (2022), 574–586. doi:10.1016/J.IJBIOMAC.2022.02.077.
  • Y. Zhu, S. Hideyoshi, H. Jiang, Y. Matsumura, J.L. Dziki, S.T. LoPresti, L. Huleihel, G.N.F. Faria, L.C. Fuhrman, R. Lodono, S.F. Badylak, W.R. Wagner, Injectable, porous, biohybrid hydrogels incorporating decellularized tissue components for soft tissue applications, Acta Biomaterialia. 73 (2018), 112–126. doi:10.1016/J.ACTBIO.2018.04.003.
  • X. Qu, A. Wirsén, A.C. Albertsson, Novel pH-sensitive chitosan hydrogels: swelling behavior and states of water, Polymer. 41 (2000), 4589–4598. doi:10.1016/S0032-3861(99)00685-0.
  • R. Rakhshaei, H. Namazi, A potential bioactive wound dressing based on carboxymethyl cellulose/ZnO impregnated MCM-41 nanocomposite hydrogel, Materials Science and Engineering: C. 73 (2017), 456–464. doi:10.1016/J.MSEC.2016.12.097.
  • K. Şarkaya, G. Akıncıoğlu, S. Akıncıoğlu, Investigation of tribological properties of HEMA-based cryogels as potential articular cartilage biomaterials, Polymer-Plastics Technology and Materials. 61 (2022), 1174–1190. doi:10.1080/25740881.2022.2039190.
  • I.N. Savina, V. Cnudde, S. D’Hollander, L. Van Hoorebeke, B. Mattiasson, I.Y. Galaev, F. Du Prez, Cryogels from poly(2-hydroxyethyl methacrylate): macroporous, interconnected materials with potential as cell scaffolds, Soft Matter. 3 (2007), 1176. doi:10.1039/b706654f.
  • D. Silva, A.C. Fernandes, T.G. Nunes, R. Colaço, A.P. Serro, The effect of albumin and cholesterol on the biotribological behavior of hydrogels for contact lenses, Acta Biomaterialia. 26 (2015), 184–194. doi:10.1016/J.ACTBIO.2015.08.011.
  • Z. Di, Z. Shi, M.W. Ullah, S. Li, G. Yang, A transparent wound dressing based on bacterial cellulose whisker and poly(2-hydroxyethyl methacrylate), International Journal of Biological Macromolecules. 105 (2017), 638–644. doi:10.1016/J.IJBIOMAC.2017.07.075.
  • K. Şarkaya, A. Demir, The comparative investigation on synthesis, characterizations of silver ion-imprinting and non-imprinting cryogels, their impedance spectroscopies and relaxation mechanisms, Polymer Bulletin. 76 (2019), 5701-5716. doi: 10.1007/s00289-018-2657-7.
  • P. Choudhury, S. Kumar, A. Singh, A. Kumar, N. Kaur, S. Sanyasi, S. Chawla, C. Goswami, L. Goswami, Hydroxyethyl methacrylate grafted carboxy methyl tamarind (CMT-g-HEMA) polysaccharide based matrix as a suitable scaffold for skin tissue engineering, Carbohydrate Polymers. 189 (2018), 87–98. doi:10.1016/J.CARBPOL.2018.01.079.
  • S. Demirci, N. Sahiner, Superporous neutral, anionic, and cationic cryogel reactors to improved enzymatic activity and stability of α-Glucosidase enzyme via entrapment method, Chemical Engineering Journal. 409 (2021), 128233. doi:10.1016/J.CEJ.2020.128233.
  • V.J. Hodgson, G.M. Walker, D. Button, A rapid colorimetric assay of killer toxin activity in yeast, FEMS Microbiology Letters. 120 (1994), 201–205. doi:10.1111/J.1574-6968.1994.TB07031.X.
  • X. Yang, L. Zhou, L. Lv, X. Zhao, L. Hao, Multi-stimuli-responsive poly(NIPA-co-HEMA-co-NVP) with spironaphthoxazine hydrogel for optical data storage application, Colloid and Polymer Science. 294 (2016), 1623–1632. doi:10.1007/S00396-016-3915-6.
  • K. Çetin, Metal-ion assisted imprinted hydrogels for recognition of lysozyme, Duzce University Journal of Science and Technology. 9 (2021), 545–555. doi:10.29130/DUBITED.891731.
  • X. Yang, L. Huang, L. Zhou, H. Xu, Z. Yi, A photochromic copolymer hydrogel contact lens: From synthesis to application, International Journal of Polymer Science. 2016 (2016),. doi:10.1155/2016/4374060.
  • E. Su, O. Okay, Cryogenic formation-structure-property relationships of poly(2-acrylamido-2-methyl-1-propanesulfonic acid) cryogels, Polymer. 178 (2019), 121603. doi:10.1016/J.POLYMER.2019.121603.
  • J. Ding, Q. Li, X. Xu, X. Zhang, Y. Su, Q. Yue, B. Gao, A wheat straw cellulose-based hydrogel for Cu (II) removal and preparation copper nanocomposite for reductive degradation of chloramphenicol, Carbohydrate Polymers. 190 (2018), 12–22. doi:10.1016/J.CARBPOL.2018.02.032.
  • A.A. Duina, M.E. Miller, J.B. Keeney, Budding yeast for budding geneticists: A Primer on the Saccharomyces cerevisiae model system, Genetics. 197 (2014), 33–48. doi:10.1534/genetics.114.163188.
  • G.G. Stewart, Saccharomyces species in the production of beer, Beverages. 2 (2016), 34. doi:10.3390/BEVERAGES2040034.
  • D. Greig, J.-Y. Leu, Natural history of budding yeast, Current Biology. 19 (2009), R886–R890. doi:10.1016/j.cub.2009.07.037.
  • A.J. Riquelme, M.A. Calvo, A.M. Guzmán, M.S. Depix, P. García, C. Pérez, M. Arrese, J.A. Labarca, Saccharomyces cerevisiae fungemia after Saccharomyces boulardii treatment in immunocompromised patients, Journal of Clinical Gastroenterology. 36 (2003).
  • P. Muñoz, E. Bouza, M. Cuenca-Estrella, J.M. Eiros, M.J. Pérez, M. Sánchez-Somolinos, C. Rincón, J. Hortal, T. Peláez, Saccharomyces cerevisiae fungemia: An emerging infectious disease, Clinical Infectious Diseases. 40 (2005), 1625–1634. doi:10.1086/429916/2/40-11-1625-FIG001.GIF.
  • M. Fadhel, S. Patel, E. Liu, M. Levitt, A. Asif, Saccharomyces cerevisiae fungemia in a critically ill patient with acute cholangitis and long term probiotic use, Medical Mycology Case Reports. 23 (2019), 23–25. doi:10.1016/J.MMCR.2018.11.003.
  • P. Suppakul, K. Sonneveld, S.W. Bigger, J. Miltz, Efficacy of polyethylene-based antimicrobial films containing principal constituents of basil, LWT - Food Science and Technology. 41 (2008), 779–788. doi:10.1016/J.LWT.2007.06.006.
  • K.K. Kuorwel, M.J. Cran, K. Sonneveld, J. Miltz, S.W. Bigger, Antimicrobial activity of natural agents against Saccharomyces cerevisiae, Packaging Technology and Science. 24 (2011), 299–307. doi:10.1002/PTS.939.
  • N. Peng, Y. Wang, Q. Ye, L. Liang, Y. An, Q. Li, C. Chang, Biocompatible cellulose-based superabsorbent hydrogels with antimicrobial activity, Carbohydrate Polymers. 137 (2016), 59–64. doi:10.1016/J.CARBPOL.2015.10.057.

Bakır (II) İyonu ve Histidin İçeren Polimerlerin Saccharomyces cerevisiae Mayası Üzerindeki Antifungal Etkileri

Year 2023, Volume: 5 Issue: 2, 267 - 277, 31.12.2023
https://doi.org/10.47112/neufmbd.2023.24

Abstract

Biyomedikal implant oklüzyonundaki ve derin yara iyileşmesindeki en ciddi endişelerden biri bakteri ve mantarların neden olduğu mikrobiyal enfeksiyonlardır. Bu nedenle, yarada, yaranın etrafında ve implantın yerleştirileceği bölgedeki enfeksiyonları önlemek veya tedavi etmek için antimikrobiyal ve antifungal özelliklere sahip malzemeler tasarlamak çok önemlidir. Kriyojel olarak adlandırılan kriyo-hidrojeller, yara iyileştirme malzemeleri için önemli bir seçenektir. Bu çalışmada, metal iyonu ve amino asit katıldığında malzemelerin antifungal etkilerindeki değişiklikleri incelemek amacıyla kriyopolimerizasyon işlemi kullanılarak çeşitli polimerler sentezlenmiştir. 2-Hidroksietil metakrilat’ın ana monomer olarak kullanılmasıyla sentezlenen polimerleri karakterize etmek için şişme testleri, Fourier dönüşümlü kızılötesi spektroskopisi, taramalı elektron mikroskobu ve X-ışını kırınımı incelemeleri yapılmıştır. Kriyojellerin antifungal aktiviteleri, fırıncı mayası veya bira mayası olarak da adlandırılan ökaryotik maya hücre modeli S. cerevisiae üzerinde incelenmiştir. 2-Hidroksietil metakrilat temelli polimerler gözenekli morfoloji sergilemektedir. Sonuçlar, bakır iyonlarının 2-Hidroksietil metakrilat temelli polimerlerin antifungal aktivitesinde önemli bir rol oynadığını, ek olarak histidin bağlanmasının ise hücresel metabolik aktivite yüzdelerinde artışa sebep olduğunu göstermiştir.

References

  • S.H. Zainal, N.H. Mohd, N. Suhaili, F.H. Anuar, A.M. Lazim, R. Othaman, Preparation of cellulose-based hydrogel: a review, Journal of Materials Research and Technology. 10 (2021), 935–952. doi:10.1016/J.JMRT.2020.12.012.
  • J. Li, D.J. Mooney, Designing hydrogels for controlled drug delivery, Nature Reviews Materials. 1 (2016), 1–17. doi:10.1038/natrevmats.2016.71.
  • D. Wu, J. Xu, Y. Chen, M. Yi, Q. Wang, Gum Arabic: A promising candidate for the construction of physical hydrogels exhibiting highly stretchable, self-healing and tensility reinforcing performances, Carbohydrate Polymers. 181 (2018), 167–174. doi:10.1016/J.CARBPOL.2017.10.076.
  • H. Yuk, B. Lu, X. Zhao, Hydrogel bioelectronics, Chemical Society Reviews. 48 (2019), 1642–1667. doi:10.1039/C8CS00595H.
  • Z. Gu, K. Huang, Y. Luo, L. Zhang, T. Kuang, Z. Chen, G. Liao, Double network hydrogel for tissue engineering, Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology. 10 (2018), e1520. doi:10.1002/WNAN.1520.
  • B. Yetiskin, O. Okay, High-strength and self-recoverable silk fibroin cryogels with anisotropic swelling and mechanical properties, International Journal of Biological Macromolecules. 122 (2019), 1279–1289. doi:10.1016/J.IJBIOMAC.2018.09.087.
  • S.A. Bencherif, R.W. Sands, D. Bhatta, P. Arany, C.S. Verbeke, D.A. Edwards, D.J. Mooney, Injectable preformed scaffolds with shape-memory properties., Proceedings of the National Academy of Sciences of the United States of America. 109 (2012), 19590–5. doi:10.1073/pnas.1211516109.
  • V. Baudron, P. Gurikov, I. Smirnova, S. Whitehouse, Porous starch materials via supercritical- and freeze-drying, Gels. 5 (2019), 12. doi:10.3390/gels5010012.
  • V.I. Lozinsky, I.Y. Galaev, F.M. Plieva, I.N. Savina, H. Jungvid, B. Mattiasson, Polymeric cryogels as promising materials of biotechnological interest, Trends in Biotechnology. 21 (2003), 445–451. doi:10.1016/j.tibtech.2003.08.002.
  • V.M. Gun’ko, I.N. Savina, S. V. Mikhalovsky, Cryogels: Morphological, structural and adsorption characterisation, Advances in Colloid and Interface Science. 187–188 (2013), 1–46. doi:10.1016/J.CIS.2012.11.001.
  • M. Razavi, Y. Qiao, A.S. Thakor, Three-dimensional cryogels for biomedical applications, Journal of Biomedical Materials Research - Part A. 107 (2019), 2736–2755. doi:10.1002/jbm.a.36777.
  • S. Reichelt, Introduction to Macroporous Cryogels, in: Methods in Molecular Biology, Humana Press, New York, 2015: pp. 173–181. doi:10.1007/978-1-4939-2447-9_14.
  • K. Çetin, A. Denizli, Polyethylenimine-functionalized microcryogels for controlled release of diclofenac sodium, Reactive and Functional Polymers. 170 (2022), 105125. doi:10.1016/J.REACTFUNCTPOLYM.2021.105125.
  • R. Kumar Saini, L. Prasad Bagri, A.K. Bajpai, Nano-silver hydroxyapatite based antibacterial 3D scaffolds of gelatin/alginate/poly (vinyl alcohol) for bone tissue engineering applications, Colloids and Surfaces B: Biointerfaces. 177 (2019), 211–218. doi:10.1016/J.COLSURFB.2019.01.064.
  • M. Rezaeeyazdi, T. Colombani, A. Memic, S. Bencherif, M. Rezaeeyazdi, T. Colombani, A. Memic, S.A. Bencherif, Injectable hyaluronic acid-co-gelatin cryogels for tissue-engineering applications, Materials. 11 (2018), 1374. doi:10.3390/ma11081374.
  • K. Çetin, A. Denizli, Microcryogels as plastic antibodies for transferrin purification, Process Biochemistry. 79 (2019), 174–184. doi:10.1016/j.procbio.2018.12.020.
  • S. Niyomdecha, W. Limbut, A. Numnuam, P. Asawatreratanakul, P. Kanatharana, P. Thavarungkul, A novel BOD biosensor based on entrapped activated sludge in a porous chitosan-albumin cryogel incorporated with graphene and methylene blue, Sensors and Actuators B: Chemical. 241 (2017), 473–481. doi:10.1016/j.snb.2016.10.102.
  • T. Kangkamano, A. Numnuam, W. Limbut, P. Kanatharana, P. Thavarungkul, Chitosan cryogel with embedded gold nanoparticles decorated multiwalled carbon nanotubes modified electrode for highly sensitive flow based non-enzymatic glucose sensor, Sensors and Actuators B: Chemical. 246 (2017), 854–863. doi:10.1016/J.SNB.2017.02.105.
  • Z.M. Sahin, D. Alimli, M.M. Tonta, M.E. Kose, F. Yilmaz, Highly sensitive and reusable mercury (II) sensor based on fluorescence quenching of pyrene moiety in polyacrylamide-based cryogel, Sensors and Actuators B: Chemical. 242 (2017), 362–368. doi:10.1016/J.SNB.2016.11.048.
  • A. Zumbuehl, L. Ferreira, D. Kuhn, A. Astashkina, L. Long, Y. Yeo, T. Iaconis, M. Ghannoum, G.R. Fink, R. Langer, D.S. Kohane, Antifungal hydrogels, Proceedings of the National Academy of Sciences of the United States of America. 104 (2007), 12994–12998. doi:10.1073/PNAS.0705250104.
  • X. Zhao, H. Wu, B. Guo, R. Dong, Y. Qiu, P.X. Ma, Antibacterial anti-oxidant electroactive injectable hydrogel as self-healing wound dressing with hemostasis and adhesiveness for cutaneous wound healing, Biomaterials. 122 (2017), 34–47. doi:10.1016/J.BIOMATERIALS.2017.01.011.
  • F.A. Paskiabi, S. Bonakdar, M.A. Shokrgozar, M. Imani, Z. Jahanshiri, M. Shams-Ghahfarokhi, M. Razzaghi-Abyaneh, Terbinafine-loaded wound dressing for chronic superficial fungal infections, Materials Science and Engineering: C. 73 (2017), 130–136. doi:10.1016/J.MSEC.2016.12.078.
  • I. De Luca, P. Pedram, A. Moeini, P. Cerruti, G. Peluso, A. Di Salle, N. Germann, Nanotechnology development for formulating essential oils in wound dressing materials to promote the wound-healing process: A review, Applied Sciences 2021, Vol. 11, Page 1713. 11 (2021), 1713. doi:10.3390/APP11041713.
  • M.A. Matica, F.L. Aachmann, A. Tøndervik, H. Sletta, V. Ostafe, Chitosan as a wound dressing starting material: antimicrobial properties and mode of action, International Journal of Molecular Sciences 2019, Vol. 20, Page 5889. 20 (2019), 5889. doi:10.3390/IJMS20235889.
  • S.L. Iconaru, M.V. Predoi, P. Chapon, S. Gaiaschi, K. Rokosz, S. Raaen, M. Motelica-Heino, D. Predoi, Investigation of spin coating cerium-doped hydroxyapatite thin films with antifungal properties, Coatings 2021, Vol. 11, Page 464. 11 (2021), 464. doi:10.3390/COATINGS11040464.
  • Y. El Attar, M. Atef Shams Eldeen, R.M. Wahid, R. Alakad, Efficacy of topical vs combined oral and topical antifungals in white piedra of the scalp, Journal of Cosmetic Dermatology. 20 (2021), 1900–1905. doi:10.1111/JOCD.13769.
  • K.S. Constantino-González, P. Serrano-Castañeda, O.R. Guadarrama-Escobar, M. López-Cervantes, C.L. Domínguez-Delgado, J.J. Escobar-Chávez, Development and characterization of amikacin loaded emulgel for the treatment of mycetoma, Pharmaceutical Chemistry Journal. 54 (2021), 1024–1032. doi:10.1007/S11094-021-02315-1/TABLES/14.
  • P. Gupta, P. Mishra, L. Mehra, K. Rastogi, R. Prasad, G. Mittal, K.M. Poluri, Eugenol-acacia gum-based bifunctional nanofibers as a potent antifungal transdermal substitute, Future Medicine. 16 (2021), 2269–2289. doi:10.2217/NNM-2021-0274.
  • M. Lazaridou, S. Nanaki, A. Zamboulis, C. Papoulia, K. Chrissafis, P.A. Klonos, A. Kyritsis, S. Vergkizi-Nikolakaki, M. Kostoglou, D.N. Bikiaris, Super absorbent chitosan-based hydrogel sponges as carriers for caspofungin antifungal drug, International Journal of Pharmaceutics. 606 (2021), 120925. doi:10.1016/J.IJPHARM.2021.120925.
  • M.M. Iftime, I. Rosca, A.I. Sandu, L. Marin, Chitosan crosslinking with a vanillin isomer toward self-healing hydrogels with antifungal activity, International Journal of Biological Macromolecules. 205 (2022), 574–586. doi:10.1016/J.IJBIOMAC.2022.02.077.
  • Y. Zhu, S. Hideyoshi, H. Jiang, Y. Matsumura, J.L. Dziki, S.T. LoPresti, L. Huleihel, G.N.F. Faria, L.C. Fuhrman, R. Lodono, S.F. Badylak, W.R. Wagner, Injectable, porous, biohybrid hydrogels incorporating decellularized tissue components for soft tissue applications, Acta Biomaterialia. 73 (2018), 112–126. doi:10.1016/J.ACTBIO.2018.04.003.
  • X. Qu, A. Wirsén, A.C. Albertsson, Novel pH-sensitive chitosan hydrogels: swelling behavior and states of water, Polymer. 41 (2000), 4589–4598. doi:10.1016/S0032-3861(99)00685-0.
  • R. Rakhshaei, H. Namazi, A potential bioactive wound dressing based on carboxymethyl cellulose/ZnO impregnated MCM-41 nanocomposite hydrogel, Materials Science and Engineering: C. 73 (2017), 456–464. doi:10.1016/J.MSEC.2016.12.097.
  • K. Şarkaya, G. Akıncıoğlu, S. Akıncıoğlu, Investigation of tribological properties of HEMA-based cryogels as potential articular cartilage biomaterials, Polymer-Plastics Technology and Materials. 61 (2022), 1174–1190. doi:10.1080/25740881.2022.2039190.
  • I.N. Savina, V. Cnudde, S. D’Hollander, L. Van Hoorebeke, B. Mattiasson, I.Y. Galaev, F. Du Prez, Cryogels from poly(2-hydroxyethyl methacrylate): macroporous, interconnected materials with potential as cell scaffolds, Soft Matter. 3 (2007), 1176. doi:10.1039/b706654f.
  • D. Silva, A.C. Fernandes, T.G. Nunes, R. Colaço, A.P. Serro, The effect of albumin and cholesterol on the biotribological behavior of hydrogels for contact lenses, Acta Biomaterialia. 26 (2015), 184–194. doi:10.1016/J.ACTBIO.2015.08.011.
  • Z. Di, Z. Shi, M.W. Ullah, S. Li, G. Yang, A transparent wound dressing based on bacterial cellulose whisker and poly(2-hydroxyethyl methacrylate), International Journal of Biological Macromolecules. 105 (2017), 638–644. doi:10.1016/J.IJBIOMAC.2017.07.075.
  • K. Şarkaya, A. Demir, The comparative investigation on synthesis, characterizations of silver ion-imprinting and non-imprinting cryogels, their impedance spectroscopies and relaxation mechanisms, Polymer Bulletin. 76 (2019), 5701-5716. doi: 10.1007/s00289-018-2657-7.
  • P. Choudhury, S. Kumar, A. Singh, A. Kumar, N. Kaur, S. Sanyasi, S. Chawla, C. Goswami, L. Goswami, Hydroxyethyl methacrylate grafted carboxy methyl tamarind (CMT-g-HEMA) polysaccharide based matrix as a suitable scaffold for skin tissue engineering, Carbohydrate Polymers. 189 (2018), 87–98. doi:10.1016/J.CARBPOL.2018.01.079.
  • S. Demirci, N. Sahiner, Superporous neutral, anionic, and cationic cryogel reactors to improved enzymatic activity and stability of α-Glucosidase enzyme via entrapment method, Chemical Engineering Journal. 409 (2021), 128233. doi:10.1016/J.CEJ.2020.128233.
  • V.J. Hodgson, G.M. Walker, D. Button, A rapid colorimetric assay of killer toxin activity in yeast, FEMS Microbiology Letters. 120 (1994), 201–205. doi:10.1111/J.1574-6968.1994.TB07031.X.
  • X. Yang, L. Zhou, L. Lv, X. Zhao, L. Hao, Multi-stimuli-responsive poly(NIPA-co-HEMA-co-NVP) with spironaphthoxazine hydrogel for optical data storage application, Colloid and Polymer Science. 294 (2016), 1623–1632. doi:10.1007/S00396-016-3915-6.
  • K. Çetin, Metal-ion assisted imprinted hydrogels for recognition of lysozyme, Duzce University Journal of Science and Technology. 9 (2021), 545–555. doi:10.29130/DUBITED.891731.
  • X. Yang, L. Huang, L. Zhou, H. Xu, Z. Yi, A photochromic copolymer hydrogel contact lens: From synthesis to application, International Journal of Polymer Science. 2016 (2016),. doi:10.1155/2016/4374060.
  • E. Su, O. Okay, Cryogenic formation-structure-property relationships of poly(2-acrylamido-2-methyl-1-propanesulfonic acid) cryogels, Polymer. 178 (2019), 121603. doi:10.1016/J.POLYMER.2019.121603.
  • J. Ding, Q. Li, X. Xu, X. Zhang, Y. Su, Q. Yue, B. Gao, A wheat straw cellulose-based hydrogel for Cu (II) removal and preparation copper nanocomposite for reductive degradation of chloramphenicol, Carbohydrate Polymers. 190 (2018), 12–22. doi:10.1016/J.CARBPOL.2018.02.032.
  • A.A. Duina, M.E. Miller, J.B. Keeney, Budding yeast for budding geneticists: A Primer on the Saccharomyces cerevisiae model system, Genetics. 197 (2014), 33–48. doi:10.1534/genetics.114.163188.
  • G.G. Stewart, Saccharomyces species in the production of beer, Beverages. 2 (2016), 34. doi:10.3390/BEVERAGES2040034.
  • D. Greig, J.-Y. Leu, Natural history of budding yeast, Current Biology. 19 (2009), R886–R890. doi:10.1016/j.cub.2009.07.037.
  • A.J. Riquelme, M.A. Calvo, A.M. Guzmán, M.S. Depix, P. García, C. Pérez, M. Arrese, J.A. Labarca, Saccharomyces cerevisiae fungemia after Saccharomyces boulardii treatment in immunocompromised patients, Journal of Clinical Gastroenterology. 36 (2003).
  • P. Muñoz, E. Bouza, M. Cuenca-Estrella, J.M. Eiros, M.J. Pérez, M. Sánchez-Somolinos, C. Rincón, J. Hortal, T. Peláez, Saccharomyces cerevisiae fungemia: An emerging infectious disease, Clinical Infectious Diseases. 40 (2005), 1625–1634. doi:10.1086/429916/2/40-11-1625-FIG001.GIF.
  • M. Fadhel, S. Patel, E. Liu, M. Levitt, A. Asif, Saccharomyces cerevisiae fungemia in a critically ill patient with acute cholangitis and long term probiotic use, Medical Mycology Case Reports. 23 (2019), 23–25. doi:10.1016/J.MMCR.2018.11.003.
  • P. Suppakul, K. Sonneveld, S.W. Bigger, J. Miltz, Efficacy of polyethylene-based antimicrobial films containing principal constituents of basil, LWT - Food Science and Technology. 41 (2008), 779–788. doi:10.1016/J.LWT.2007.06.006.
  • K.K. Kuorwel, M.J. Cran, K. Sonneveld, J. Miltz, S.W. Bigger, Antimicrobial activity of natural agents against Saccharomyces cerevisiae, Packaging Technology and Science. 24 (2011), 299–307. doi:10.1002/PTS.939.
  • N. Peng, Y. Wang, Q. Ye, L. Liang, Y. An, Q. Li, C. Chang, Biocompatible cellulose-based superabsorbent hydrogels with antimicrobial activity, Carbohydrate Polymers. 137 (2016), 59–64. doi:10.1016/J.CARBPOL.2015.10.057.
There are 55 citations in total.

Details

Primary Language English
Subjects Biomaterials in Biomedical Engineering
Journal Section Articles
Authors

Kemal Çetin 0000-0002-7393-7377

Koray Şarkaya 0000-0003-0177-5134

Berna Kavakcıoğlu Yardımcı 0000-0003-0719-9094

Early Pub Date December 28, 2023
Publication Date December 31, 2023
Acceptance Date October 6, 2023
Published in Issue Year 2023 Volume: 5 Issue: 2

Cite

APA Çetin, K., Şarkaya, K., & Kavakcıoğlu Yardımcı, B. (2023). Antifungal Activities of Copper (II) Ion and Histidine Incorporated Polymers on Yeast Saccharomyces cerevisiae. Necmettin Erbakan Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 5(2), 267-277. https://doi.org/10.47112/neufmbd.2023.24
AMA Çetin K, Şarkaya K, Kavakcıoğlu Yardımcı B. Antifungal Activities of Copper (II) Ion and Histidine Incorporated Polymers on Yeast Saccharomyces cerevisiae. NEJSE. December 2023;5(2):267-277. doi:10.47112/neufmbd.2023.24
Chicago Çetin, Kemal, Koray Şarkaya, and Berna Kavakcıoğlu Yardımcı. “Antifungal Activities of Copper (II) Ion and Histidine Incorporated Polymers on Yeast Saccharomyces Cerevisiae”. Necmettin Erbakan Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 5, no. 2 (December 2023): 267-77. https://doi.org/10.47112/neufmbd.2023.24.
EndNote Çetin K, Şarkaya K, Kavakcıoğlu Yardımcı B (December 1, 2023) Antifungal Activities of Copper (II) Ion and Histidine Incorporated Polymers on Yeast Saccharomyces cerevisiae. Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi 5 2 267–277.
IEEE K. Çetin, K. Şarkaya, and B. Kavakcıoğlu Yardımcı, “Antifungal Activities of Copper (II) Ion and Histidine Incorporated Polymers on Yeast Saccharomyces cerevisiae”, NEJSE, vol. 5, no. 2, pp. 267–277, 2023, doi: 10.47112/neufmbd.2023.24.
ISNAD Çetin, Kemal et al. “Antifungal Activities of Copper (II) Ion and Histidine Incorporated Polymers on Yeast Saccharomyces Cerevisiae”. Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi 5/2 (December 2023), 267-277. https://doi.org/10.47112/neufmbd.2023.24.
JAMA Çetin K, Şarkaya K, Kavakcıoğlu Yardımcı B. Antifungal Activities of Copper (II) Ion and Histidine Incorporated Polymers on Yeast Saccharomyces cerevisiae. NEJSE. 2023;5:267–277.
MLA Çetin, Kemal et al. “Antifungal Activities of Copper (II) Ion and Histidine Incorporated Polymers on Yeast Saccharomyces Cerevisiae”. Necmettin Erbakan Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 5, no. 2, 2023, pp. 267-7, doi:10.47112/neufmbd.2023.24.
Vancouver Çetin K, Şarkaya K, Kavakcıoğlu Yardımcı B. Antifungal Activities of Copper (II) Ion and Histidine Incorporated Polymers on Yeast Saccharomyces cerevisiae. NEJSE. 2023;5(2):267-7.

17157           17158