Research Article
BibTex RIS Cite

GO@Fe3O4 Katkılı Polimerik Kompozit Membranların Hazırlanması ve Karakterizasyonu

Year 2023, Volume: 5 Issue: 2, 38 - 52, 31.12.2023
https://doi.org/10.47112/neufmbd.2023.8

Abstract

Son zamanlarda giderek artan tarımsal ve endüstriyel faaliyetler nedeniyle sentetik organik/inorganik maddeler ve metaller gibi zararlı ve zehirli kirleticilerin su kaynaklarına salınması kamuoyunda giderek artan bir endişe yaratmaktadır. Bu zehirli ve zararlı maddelerden arsenik, bazı bölgelerde su kaynakları için önemli bir tehdit oluşturmaktadır. Arsenik zehirli, kanserojen ve her yerde bulunduğundan dünya çapında içme suyundan arseniğin giderimi önemlidir. Bu nedenle, içme suyundan arsenik giderimi için basit, daha az maliyetli ve çevre dostu tekniklerin geliştirilmesi gerekmektedir. Nanomalzemeler ile membranların güçlendirilmesi son zamanlarda yaygın olarak kullanılan bir yöntem haline gelmiştir. Ayrıca nano ölçekli inorganik katkı maddelerinin seçilip eklenmesiyle hazırlanan ince film nanokompozit hibrit malzemelerin kullanılması membran teknolojisine yeni bir boyut kazandırmıştır. Bu çalışmada, Fe3O4 nanoparçacıkları ile modifiye edilmiş grafen oksit (GO) katkılı polisülfon çözeltisinin gözenekli destek malzemesi üzerine kaplanması ile yüksek geçirgenlik ve reddetme oranına sahip nanomalzeme destekli membranlar geliştirilmiştir. Hazırlanan nanokompozit malzemeler ve membranlar taramalı elektron mikroskobu (SEM), atomik kuvvet mikroskobu (AFM), X-ışını fotoelektron spekrofotometresi (XPS) ve temas açısı (CA) teknikleri kullanılarak karakterize edilmiştir. Membran performans çalışmaları saf su geçirgenliği ve arsenik reddi çalışmaları ile gerçekleştirilmiş ve hazırlanan PSf bazlı nanokompozit membranlarda farklı GO/Fe3O4 oranlarında dahil olmak üzere yüksek performans gözlemlenmiş ve %95 arsenik reddi oranına ulaşılmıştır.

Supporting Institution

Necmettin Erbakan Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü ve Selçuk Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü

Project Number

141710001 ve 16401085

Thanks

Necmettin Erbakan Üniversitesi Bilimsel Araştırma Projeleri (Proje No:141710001) ve Selçuk Üniversitesi Bilimsel Araştırma Projeleri (Proje No: 16401085) Koordinatörlüklerine kısmi finansal desteklerinden dolayı teşekkür ederiz.

References

  • N. Yaşa, N. Koçak, N., Asit - Baz Konusunda Karşılaşılan Kavram Yanılgıları: Bir İçerik Analizi, Ahmet Keleşoğlu Eğitim Fakültesi Dergisi (AKEF) Dergisi. 4(1) (2022), 1-23. doi:10.38151/akef.2021.1
  • S. Akçay, H. Şengül, H., A Study on Environmental Literacy of Middle School Students. Ahmet Keleşoğlu Eğitim Fakültesi Dergisi (AKEF) Dergisi. 5(1) (2023), 139-169 doi:10.38151/akef.2023.48
  • A. Bhatnagar, M. Sillanpää, A review of emerging adsorbents for nitrate removal from water, Chemical Engineering Journal. 168 (2011), 493–504. doi:10.1016/j.cej.2011.01.103
  • C.K. Jain, I. Ali, Arsenic: occurrence, toxicity and speciation techniques, Water Research. 34 (2000), 4304–4312. doi:10.1016/s0043-1354(00)00182-2
  • M.F. Hossain, Arsenic contamination in Bangladesh – an overview, Agriculture, Ecosystems & Environment. 113 (2016), 1–16. doi:10.1016/j.agee.2005.08.034
  • M.C. Shih, An overview of arsenic removal by pressuredrivenmembrane processes. Desalination. 172(1) (2005), 85-97. doi:10.2478/acs-2018-0016
  • D. Mohan, Jr. C.U. Pittman, Functionalized graphene sheets for arsenic removal and desalination of sea water, Journal of Hazardous Materials. 142 (2007), 1-53. doi:10.1016/j.desal.2011.01.038
  • P.L. Smedley, D.G. Kinniburgh, A review of the source, behaviour and distribution of arsenic in natural waters, Applied Geochemistry. 17(5) (2002), 517-68. doi:10.1016/s0883-2927(02)00018-5
  • H. Saitua, R. Gil, A.P. Padilla, Experimental investigation on arsenic removal with a nanofiltration pilot plant from naturally contaminated groundwater, Desalination. 274 (2011), 1–6. doi:10.1016/j.desal.2011.02.044
  • S. Addo Ntim, S. Mitra, Adsorption of arsenic on multiwall carbon nanotube– zirconia nanohybrid for potential drinking water purification, Journal of Colloid and Interface Science. 375 (2012), 154–9. doi:10.1016/j.jcis.2012.01.063
  • R. Ebrahimi, A. Maleki, B. Shahmoradi, H. Daraei, A.H. Mahvi, A.H. Barati, Elimination of arsenic contamination from water using chemically modified wheat straw, Desalination and Water Treatment. 51(2013), 2306–16. doi:10.1080/19443994.2012.734675
  • T.S. Singh, K.K. Pant, Equilibrium, kinetics and thermodynamic studies for adsorption of As(III) on activated alumina, Separation and Purification Technology. 36 (2) (2004), 139–147. doi: 10.1016/s1383-5866(03)00209-0
  • V.K. Gupta, V.K. Saini, N. Jain, Adsorption of As(III) from aqueous solutions by iron oxide-coated sand, Journal of Colloid and Interface Science. 288 (1) (2005), 55–60. doi: 10.1016/j.jcis.2005.02.054
  • K. Vaaramaa, J. Lehto, Removal of metals and anions from drinking water by ion exchange, Desalination 155 (2) (2003), 157–170. doi: 10.1016/s0011-9164(03)00293-5
  • W. Zhang, P. Singh, E. Paling, S. Delides, Arsenic removal from contaminated water by natural iron ores, Minerals Engineeering. 17 (2004), 517–524. doi: 10.1016/j.mineng.2003.11.020
  • J. Pattanayak, K. Mondal, S. Mathew, S.B. Lalvani, A parametric evaluation of the removal of As(V) and As(III) by carbon-based adsorbents, Carbon. 38 (2000), 589–596. doi:10.1016/s0008-6223(99)00144-x
  • B. Daus, B. Wennrich, H. Weiss, Sorption materials for arsenic removal from water: a comparative study, Water Research. 38 (2004), 2948–2954. doi: 10.1016/j.watres.2004.04.003
  • M.P. Elizalde-Gonzalez, J. Mattusch, W.D. Einicke, R, Wennrich, Sorption on natural solids for arsenic removal, Chemical Engineering Journal. 81 (2001), 187–195. doi: 10.1016/s1385-8947(00)00201-1
  • K.N. Ghimire, K. Inoue, H. Yamaguchi, K. Makino, T. Miyajima, Adsorptive separation of arsenate and arsenite anions from aqueous medium by using orange waste, Water Research. 37(2004), 4945–4953. doi: 10.1016/j.watres.2003.08.029
  • M.X. Loukidou, K.A. Matis, A.I. Zouboulis, M. Liakopoulou-Kyriakidou, Removal of As(V) from wastewaters by chemically modified fungal biomass, Water Research. 37 (2003), 4544–4552. doi: 10.1016/s0043-1354(03)00415-9
  • A.K. Mishra, S. Ramaprabhu, Graphene oxide/ferric hydroxide composites for efficient arsenate removal from drinking water, Desalination. 282 (2011), 39-45. doi:10.1016/j.jhazmat.2010.06.010
  • H.Y. Koo, H.J. Lee, H.A. Go, Y.B. Lee, T.S. Bae, J.K. Kim, W.S. Choi, Graphene-based multifunctional iron oxide nanosheets with tunable properties, Chemistry Europe Journal. 17 (2011), 1214-1219. doi: 10.1002/chem.201002252
  • L. Li, G. Zhou, Z. Weng, X.Y. Shan, F. Li, H.M. Cheng, Monolithic Fe2O3/graphene hybrid for highly efficient lithium storage and arsenic removal, Carbon. 67 (2014), 500-507. doi:10.1016/j.carbon.2013.10.022
  • K. Zhang, V. Dwivedi, C. Chi, J. Wu, Graphene oxide/ferric hydroxide composites for efficient arsenate removal from drinking water, Journal of Hazardous Materials. 182 (2010), 162-168. doi: 10.1016/j.jhazmat.2010.06.010
  • G. Sheng, Y. Li, X. Yang, X. Ren, S. Yang, J. Hu, X. Wang, Efficient removal of arsenate by versatile magnetic graphene oxide composites, RSC Advanced. 2 (2014), 12400-12407. doi:10.1039/c2ra21623j
  • Y. Gu, D. Yu, Y. Zhou, Z. Guo, X. Liang, Facile synthesis of UiO-66/PAN adsorptive membrane for effective arsenic removal, Materials Today Sustainability.(2023), 100354. doi:10.1016/j.mtsust.2023.100354
  • V. Chandra, J. Park, Y. Chun, J.W. Lee, I.C. Hwang, K.S. Kim, Water dispersible magnetite-reduced graphene oxide composites for arsenic removal, ACS Nano. 4 (2010), 3979-3986. doi:10.1021/nn1008897
  • X. Luo, C. Wang, S. Luo, R. Dong, X. Tu, G. Zeng, Adsorption of As(III) and As(V) from water using magnetite Fe3O4-reduced graphite oxide-MnO2 nanocomposites, Chemical Engineering Journal. 187 (2012), 45-52. doi:10.1016/j.cej.2012.01.073
  • M.C. Shih, An overview of arsenic removal by pressure-driven membrane processes, Desalination. 172 (2005), 85–97 https://doi.org/10.1016/j.desal.2004.07.031
  • W. Duan, A. Dudchenko, E. Mende, C. Flyer, X. Zhu, D. Jassby, Electrochemical Mineral Scale Prevention and Removal on Electrically Conducting Carbon Nanotube-Polyamide Reverse Osmosis Membranes. Environ. Sci.: Processes Impacts. 16 (2014),1300-1308. doi: 10.1039/c3em00635b.
  • J.G. Gai, X.L. Gong, W.W. Wang, X. Zhang, W.L. Kang, An Ultrafast Water Transport Forward Osmosis Membrane: Porous Graphene, Journal of Materials Chemistry A. 2(2014), 4023−4028. doi:10.1039/c3ta14256f
  • J.R. Ellerie, O.G. Apul, T. Karanfil, D.A. Ladner, Comparing Graphene, Carbon Nanotubes, and Superfine Powdered Activated Carbon as Adsorptive Coating Materials for Microfiltration Membranes, Journal of Hazardous Materials. 261 (2013), 91−98. doi:10.1016/j.jhazmat.2013.07.009
  • R. Das, M.E. Ali, S.B.A. Hamid, S. Ramakrishna, Z.A. Chowdhury, Carbon Nanotube Membranes for Water Purification: A Bright Future in Water Desalination, Desalination. 336 (2014), 97−109. doi:10.1016/j.desal.2013.12.026
  • S. Zinadini, A.A. Zinatizadeh, M. Rahimi, V. Vatanpour, H. Zangeneh, Preparation of A Novel Antifouling Mixed Matrix PES Membrane by Embedding Graphene Oxide Nanoplates, Journal of Membrane Science. 453 (2014), 292−301. doi:10.1016/j.memsci.2013.10.070
  • F. Jin, W. Lv, C. Zhang, Z. Li, R. Su, W. Qi, Q.H. Yang, Z. He, High-Performance Ultrafiltration Membranes Based on Polyethersulfone−Graphene Oxide Composites, RSC Advanced. 3 (2013), 21394−21397. doi:10.1039/c3ra42908c
  • K. Sint, B. Wang, P. Kral, Selective Ion Pass Age Through Functionalized Graphene Nanopores, Journal of the American Chemical Society. 130 (2008), 16448−16449. doi:10.1021/ja804409f
  • Y. Han, Z. Xu, C. Gao, Ultra Thin Graphene Nano Filtration Membrane for Water Purification. Advanced Functional Materials. 23 (2013), 3693− 3700. doi:10.1002/adfm.201202601
  • P. Sun, M. Zhu, K. Wang, M. Zhong, J. Wei, D. Wu, Z. Xu, H. Zhu, Selective Ion Penetration of Graphene Oxide Membranes, ACS Nano. 7 (2013), 428−437. doi:10.1021/nn304471w
  • Y. Heo, H. Im, J. Kim, The Effect of Sulfonated Graphene Oxide on Sulfonated Poly (Etheretherketone) Membrane for Direct Methanol Fuel Cells, Journal of Membrane Science. 425(426) (2013), 11−22. doi:10.1023/A:1026336524991
  • Y. Zhao, Z. Xu, M. Shan, C. Min, B. Zhou, Y. Li, B. Li, L. Liu, X. Qian, Effect of Graphite Oxide and Multi-Walled Carbon Nano Tubes on the Micro Structure and Performance of PVDF Membranes, Separation and Purification Technology. 103 (2013), 78−83. doi:10.1016/j.seppur.2012.10.012
  • I. Akin, M. Ersoz, Preparation and characterization of CTA/m-ZnO composite membrane for transport of Rhodamine B. Desalination and Water Treatment. 57(7) (2016), 3037-3047. doi:10.1080/19443994.2014.980327
  • S.T. Hwang, K. Kammermeyer, Membranes in Separations, Techniques of Chemistry; Wiley-Interscience: New York (1975).
  • D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, Improved Synthesis of Graphene Oxide, ACS Nano. 4 (2010), 4806−4814. doi:10.1021/nn1006368
  • P. Liu, W. Zhong, X. Wu, J. Qiu, Facile synergetic dispersion approach for magnetic Fe3O4@graphene oxide/polystyrene tri-component nanocomposite via radical bulk polymerization, Chemical Engineering Journal. 219 (2013), 10–18. doi:10.1016/j.cej.2012.12.062
  • X.Y. Yang, X.Y. Zhang, Y.F. Ma, Y. Huang, Y.S. Wang, Y.S., Chen, Superparamagnetic grapheme oxide-Fe3O4 nanoparticles hybrid for controlled targeted drug carriers, Journal of Materials Chemistry. 19 (2009), 2710–2714. doi:10.1039/B821416F
  • G. Arslan, A. Tor, H. Muslu, M. Ozmen, I. Akin, Y. Cengeloglu, M. Ersoz, Facilitated Transport of Cr(VI) Through a Novel Activated Composite Membrane Containing Cyanex 923 as a Carrier, Journal of Membrane Science. 337 (2009), 224−231. doi:10.1016/j.memsci.2009.03.049
  • V. Vatanpour, S.S. Madaeni, R. Moradian, S. Zinadini, B. Astinchap, Novel Antibifouling Nanofiltration Polyethersulfone Membrane Fabricated from Embedding TiO2 Coated Multi Walled Carbon Nanotubes, Separation and Purification Technology. 90 (2012), 69-82. doi:10.1016/j.seppur.2012.02.014
  • N.A.A. Hamid, A.F. Ismail, T. Matsuura, A.W. Zularisam, W.J. Lau, E. Yuliwati, M.S. Abdullah, Morphological and Separation Performance Study of Polysulfone/Titanium Dioxide (PSF/TiO2) Ultrafiltration Membranes for Humic Acid Removal, Desalination. 273 (2011), 85-92. doi:10.1016/j.desal.2010.12.052
  • I. Akin, E. Zor, H. Bingol, M. Ersoz, Green synthesis of reduced graphene oxide/polyaniline composite and its application for salt rejection by polysulfone-based composite membranes, Journal of Physical Chemistry B. 118 (21) (2014), 5707–5716. doi:10.1021/jp5025894
  • A. Sarıalioğlu Güngör, M.E. Örcün, N. Dönmez, Farklı beyazlatıcı diş macunlarının minenin renk değişimi ve yüzey pürüzlülüğü üzerindeki etkilerinin in vitro olarak değerlendirilmesi, Necmettin Erbakan Üniversitesi Diş Hekimliği Dergisi. 5 (2023), 25-34. doi:10.51122/neudentj.2023.55
  • C.M. Wu, T.W. Xu, W.H. Yang, Fundamental Studies of a New Hybrid (Inorganic−Organic) Positively Charged Membrane: Membrane Preparation and Characterizations, Journal of Membarne Science. 216 (2003), 269−278. doi:10.1016/s0376-7388(03)00082-6
  • E. Celik, L. Liu, H. Choi, Protein Fouling Behavior of Carbon Nanotube/Polyethersulfone Composite Membranes During Water Filtration, Water Research, 45 (2011), 5287−5294. doi:10.1016/j.watres.2011.07.036
  • R. Wu, Y. Tan, Y. Meng, Y. Zhang, Y.X. Huang, PVDF/MAF-4 composite membrane for high flux and scaling-resistant membrane distillation, Desalination, 540 (2022), 116013. doi:10.1016/j.desal.2022.116013
  • H. Wu, B. Tang, P. Wu, Development of Novel SiO2−GO Nanohybrid/Polysulfone Membrane with Enhanced Performance. Journal of Membrane Science. 451 (2014), 94−102. doi:10.1016/j.memsci.2013.09.018
  • N. Kong, C. Chen, Q. Zeng, B. Li, L. Shen, H. Lin, Enriching Fe3O4@MoS2 composites in surface layer to fabricate polyethersulfone (PES) composite membrane: The improved performance and mechanisms, Separation and Purification Technology. 302(1) (2022), 122178. doi:10.1016/j.seppur.2022.122178

Preparation and Characterization of GO/Fe3O4 Doped Polymeric Composite Membranes

Year 2023, Volume: 5 Issue: 2, 38 - 52, 31.12.2023
https://doi.org/10.47112/neufmbd.2023.8

Abstract

The release of harmful and toxic pollutants such as synthetic organic/inorganic substances and metals into water resources due to increasing agricultural and industrial activities in recent times has been creating increasing public concern.Arsenic, one of these toxic and harmful substances, poses a significant threat to water resources in some regions. Removal of arsenic from drinking water is important worldwide because arsenic is toxic, carcinogenic and ubiquitous. Therefore, it is necessary to develop simple, less costly and environmentally friendly techniques for arsenic removal from drinking water. Strengthening membranes with nanomaterials has recently become a widely used method. In addition, the use of thin-film nanocomposite hybrid materials prepared by selecting and adding nano-scale inorganic additives has added a new dimension to membrane technology. In this study, nanomaterial supported membranes with high permeability and rejection rate were developed by coating the polysulfone solution modified with Fe3O4 nanoparticles on the porous support sheet material. The prepared nanocomposite materials and membranes were characterized using scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray photoelectron spectrophotometer (XPS) and contact angle (CA) techniques.Membrane performance studies have been carried out with pure water permeability and arsenic rejection studies and prepared PSf-based including at different GO/Fe3O4 ratios in the nanocomposites membranes have been observed high performance and achieved 95% arsenic rejection rate.

Project Number

141710001 ve 16401085

References

  • N. Yaşa, N. Koçak, N., Asit - Baz Konusunda Karşılaşılan Kavram Yanılgıları: Bir İçerik Analizi, Ahmet Keleşoğlu Eğitim Fakültesi Dergisi (AKEF) Dergisi. 4(1) (2022), 1-23. doi:10.38151/akef.2021.1
  • S. Akçay, H. Şengül, H., A Study on Environmental Literacy of Middle School Students. Ahmet Keleşoğlu Eğitim Fakültesi Dergisi (AKEF) Dergisi. 5(1) (2023), 139-169 doi:10.38151/akef.2023.48
  • A. Bhatnagar, M. Sillanpää, A review of emerging adsorbents for nitrate removal from water, Chemical Engineering Journal. 168 (2011), 493–504. doi:10.1016/j.cej.2011.01.103
  • C.K. Jain, I. Ali, Arsenic: occurrence, toxicity and speciation techniques, Water Research. 34 (2000), 4304–4312. doi:10.1016/s0043-1354(00)00182-2
  • M.F. Hossain, Arsenic contamination in Bangladesh – an overview, Agriculture, Ecosystems & Environment. 113 (2016), 1–16. doi:10.1016/j.agee.2005.08.034
  • M.C. Shih, An overview of arsenic removal by pressuredrivenmembrane processes. Desalination. 172(1) (2005), 85-97. doi:10.2478/acs-2018-0016
  • D. Mohan, Jr. C.U. Pittman, Functionalized graphene sheets for arsenic removal and desalination of sea water, Journal of Hazardous Materials. 142 (2007), 1-53. doi:10.1016/j.desal.2011.01.038
  • P.L. Smedley, D.G. Kinniburgh, A review of the source, behaviour and distribution of arsenic in natural waters, Applied Geochemistry. 17(5) (2002), 517-68. doi:10.1016/s0883-2927(02)00018-5
  • H. Saitua, R. Gil, A.P. Padilla, Experimental investigation on arsenic removal with a nanofiltration pilot plant from naturally contaminated groundwater, Desalination. 274 (2011), 1–6. doi:10.1016/j.desal.2011.02.044
  • S. Addo Ntim, S. Mitra, Adsorption of arsenic on multiwall carbon nanotube– zirconia nanohybrid for potential drinking water purification, Journal of Colloid and Interface Science. 375 (2012), 154–9. doi:10.1016/j.jcis.2012.01.063
  • R. Ebrahimi, A. Maleki, B. Shahmoradi, H. Daraei, A.H. Mahvi, A.H. Barati, Elimination of arsenic contamination from water using chemically modified wheat straw, Desalination and Water Treatment. 51(2013), 2306–16. doi:10.1080/19443994.2012.734675
  • T.S. Singh, K.K. Pant, Equilibrium, kinetics and thermodynamic studies for adsorption of As(III) on activated alumina, Separation and Purification Technology. 36 (2) (2004), 139–147. doi: 10.1016/s1383-5866(03)00209-0
  • V.K. Gupta, V.K. Saini, N. Jain, Adsorption of As(III) from aqueous solutions by iron oxide-coated sand, Journal of Colloid and Interface Science. 288 (1) (2005), 55–60. doi: 10.1016/j.jcis.2005.02.054
  • K. Vaaramaa, J. Lehto, Removal of metals and anions from drinking water by ion exchange, Desalination 155 (2) (2003), 157–170. doi: 10.1016/s0011-9164(03)00293-5
  • W. Zhang, P. Singh, E. Paling, S. Delides, Arsenic removal from contaminated water by natural iron ores, Minerals Engineeering. 17 (2004), 517–524. doi: 10.1016/j.mineng.2003.11.020
  • J. Pattanayak, K. Mondal, S. Mathew, S.B. Lalvani, A parametric evaluation of the removal of As(V) and As(III) by carbon-based adsorbents, Carbon. 38 (2000), 589–596. doi:10.1016/s0008-6223(99)00144-x
  • B. Daus, B. Wennrich, H. Weiss, Sorption materials for arsenic removal from water: a comparative study, Water Research. 38 (2004), 2948–2954. doi: 10.1016/j.watres.2004.04.003
  • M.P. Elizalde-Gonzalez, J. Mattusch, W.D. Einicke, R, Wennrich, Sorption on natural solids for arsenic removal, Chemical Engineering Journal. 81 (2001), 187–195. doi: 10.1016/s1385-8947(00)00201-1
  • K.N. Ghimire, K. Inoue, H. Yamaguchi, K. Makino, T. Miyajima, Adsorptive separation of arsenate and arsenite anions from aqueous medium by using orange waste, Water Research. 37(2004), 4945–4953. doi: 10.1016/j.watres.2003.08.029
  • M.X. Loukidou, K.A. Matis, A.I. Zouboulis, M. Liakopoulou-Kyriakidou, Removal of As(V) from wastewaters by chemically modified fungal biomass, Water Research. 37 (2003), 4544–4552. doi: 10.1016/s0043-1354(03)00415-9
  • A.K. Mishra, S. Ramaprabhu, Graphene oxide/ferric hydroxide composites for efficient arsenate removal from drinking water, Desalination. 282 (2011), 39-45. doi:10.1016/j.jhazmat.2010.06.010
  • H.Y. Koo, H.J. Lee, H.A. Go, Y.B. Lee, T.S. Bae, J.K. Kim, W.S. Choi, Graphene-based multifunctional iron oxide nanosheets with tunable properties, Chemistry Europe Journal. 17 (2011), 1214-1219. doi: 10.1002/chem.201002252
  • L. Li, G. Zhou, Z. Weng, X.Y. Shan, F. Li, H.M. Cheng, Monolithic Fe2O3/graphene hybrid for highly efficient lithium storage and arsenic removal, Carbon. 67 (2014), 500-507. doi:10.1016/j.carbon.2013.10.022
  • K. Zhang, V. Dwivedi, C. Chi, J. Wu, Graphene oxide/ferric hydroxide composites for efficient arsenate removal from drinking water, Journal of Hazardous Materials. 182 (2010), 162-168. doi: 10.1016/j.jhazmat.2010.06.010
  • G. Sheng, Y. Li, X. Yang, X. Ren, S. Yang, J. Hu, X. Wang, Efficient removal of arsenate by versatile magnetic graphene oxide composites, RSC Advanced. 2 (2014), 12400-12407. doi:10.1039/c2ra21623j
  • Y. Gu, D. Yu, Y. Zhou, Z. Guo, X. Liang, Facile synthesis of UiO-66/PAN adsorptive membrane for effective arsenic removal, Materials Today Sustainability.(2023), 100354. doi:10.1016/j.mtsust.2023.100354
  • V. Chandra, J. Park, Y. Chun, J.W. Lee, I.C. Hwang, K.S. Kim, Water dispersible magnetite-reduced graphene oxide composites for arsenic removal, ACS Nano. 4 (2010), 3979-3986. doi:10.1021/nn1008897
  • X. Luo, C. Wang, S. Luo, R. Dong, X. Tu, G. Zeng, Adsorption of As(III) and As(V) from water using magnetite Fe3O4-reduced graphite oxide-MnO2 nanocomposites, Chemical Engineering Journal. 187 (2012), 45-52. doi:10.1016/j.cej.2012.01.073
  • M.C. Shih, An overview of arsenic removal by pressure-driven membrane processes, Desalination. 172 (2005), 85–97 https://doi.org/10.1016/j.desal.2004.07.031
  • W. Duan, A. Dudchenko, E. Mende, C. Flyer, X. Zhu, D. Jassby, Electrochemical Mineral Scale Prevention and Removal on Electrically Conducting Carbon Nanotube-Polyamide Reverse Osmosis Membranes. Environ. Sci.: Processes Impacts. 16 (2014),1300-1308. doi: 10.1039/c3em00635b.
  • J.G. Gai, X.L. Gong, W.W. Wang, X. Zhang, W.L. Kang, An Ultrafast Water Transport Forward Osmosis Membrane: Porous Graphene, Journal of Materials Chemistry A. 2(2014), 4023−4028. doi:10.1039/c3ta14256f
  • J.R. Ellerie, O.G. Apul, T. Karanfil, D.A. Ladner, Comparing Graphene, Carbon Nanotubes, and Superfine Powdered Activated Carbon as Adsorptive Coating Materials for Microfiltration Membranes, Journal of Hazardous Materials. 261 (2013), 91−98. doi:10.1016/j.jhazmat.2013.07.009
  • R. Das, M.E. Ali, S.B.A. Hamid, S. Ramakrishna, Z.A. Chowdhury, Carbon Nanotube Membranes for Water Purification: A Bright Future in Water Desalination, Desalination. 336 (2014), 97−109. doi:10.1016/j.desal.2013.12.026
  • S. Zinadini, A.A. Zinatizadeh, M. Rahimi, V. Vatanpour, H. Zangeneh, Preparation of A Novel Antifouling Mixed Matrix PES Membrane by Embedding Graphene Oxide Nanoplates, Journal of Membrane Science. 453 (2014), 292−301. doi:10.1016/j.memsci.2013.10.070
  • F. Jin, W. Lv, C. Zhang, Z. Li, R. Su, W. Qi, Q.H. Yang, Z. He, High-Performance Ultrafiltration Membranes Based on Polyethersulfone−Graphene Oxide Composites, RSC Advanced. 3 (2013), 21394−21397. doi:10.1039/c3ra42908c
  • K. Sint, B. Wang, P. Kral, Selective Ion Pass Age Through Functionalized Graphene Nanopores, Journal of the American Chemical Society. 130 (2008), 16448−16449. doi:10.1021/ja804409f
  • Y. Han, Z. Xu, C. Gao, Ultra Thin Graphene Nano Filtration Membrane for Water Purification. Advanced Functional Materials. 23 (2013), 3693− 3700. doi:10.1002/adfm.201202601
  • P. Sun, M. Zhu, K. Wang, M. Zhong, J. Wei, D. Wu, Z. Xu, H. Zhu, Selective Ion Penetration of Graphene Oxide Membranes, ACS Nano. 7 (2013), 428−437. doi:10.1021/nn304471w
  • Y. Heo, H. Im, J. Kim, The Effect of Sulfonated Graphene Oxide on Sulfonated Poly (Etheretherketone) Membrane for Direct Methanol Fuel Cells, Journal of Membrane Science. 425(426) (2013), 11−22. doi:10.1023/A:1026336524991
  • Y. Zhao, Z. Xu, M. Shan, C. Min, B. Zhou, Y. Li, B. Li, L. Liu, X. Qian, Effect of Graphite Oxide and Multi-Walled Carbon Nano Tubes on the Micro Structure and Performance of PVDF Membranes, Separation and Purification Technology. 103 (2013), 78−83. doi:10.1016/j.seppur.2012.10.012
  • I. Akin, M. Ersoz, Preparation and characterization of CTA/m-ZnO composite membrane for transport of Rhodamine B. Desalination and Water Treatment. 57(7) (2016), 3037-3047. doi:10.1080/19443994.2014.980327
  • S.T. Hwang, K. Kammermeyer, Membranes in Separations, Techniques of Chemistry; Wiley-Interscience: New York (1975).
  • D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, Improved Synthesis of Graphene Oxide, ACS Nano. 4 (2010), 4806−4814. doi:10.1021/nn1006368
  • P. Liu, W. Zhong, X. Wu, J. Qiu, Facile synergetic dispersion approach for magnetic Fe3O4@graphene oxide/polystyrene tri-component nanocomposite via radical bulk polymerization, Chemical Engineering Journal. 219 (2013), 10–18. doi:10.1016/j.cej.2012.12.062
  • X.Y. Yang, X.Y. Zhang, Y.F. Ma, Y. Huang, Y.S. Wang, Y.S., Chen, Superparamagnetic grapheme oxide-Fe3O4 nanoparticles hybrid for controlled targeted drug carriers, Journal of Materials Chemistry. 19 (2009), 2710–2714. doi:10.1039/B821416F
  • G. Arslan, A. Tor, H. Muslu, M. Ozmen, I. Akin, Y. Cengeloglu, M. Ersoz, Facilitated Transport of Cr(VI) Through a Novel Activated Composite Membrane Containing Cyanex 923 as a Carrier, Journal of Membrane Science. 337 (2009), 224−231. doi:10.1016/j.memsci.2009.03.049
  • V. Vatanpour, S.S. Madaeni, R. Moradian, S. Zinadini, B. Astinchap, Novel Antibifouling Nanofiltration Polyethersulfone Membrane Fabricated from Embedding TiO2 Coated Multi Walled Carbon Nanotubes, Separation and Purification Technology. 90 (2012), 69-82. doi:10.1016/j.seppur.2012.02.014
  • N.A.A. Hamid, A.F. Ismail, T. Matsuura, A.W. Zularisam, W.J. Lau, E. Yuliwati, M.S. Abdullah, Morphological and Separation Performance Study of Polysulfone/Titanium Dioxide (PSF/TiO2) Ultrafiltration Membranes for Humic Acid Removal, Desalination. 273 (2011), 85-92. doi:10.1016/j.desal.2010.12.052
  • I. Akin, E. Zor, H. Bingol, M. Ersoz, Green synthesis of reduced graphene oxide/polyaniline composite and its application for salt rejection by polysulfone-based composite membranes, Journal of Physical Chemistry B. 118 (21) (2014), 5707–5716. doi:10.1021/jp5025894
  • A. Sarıalioğlu Güngör, M.E. Örcün, N. Dönmez, Farklı beyazlatıcı diş macunlarının minenin renk değişimi ve yüzey pürüzlülüğü üzerindeki etkilerinin in vitro olarak değerlendirilmesi, Necmettin Erbakan Üniversitesi Diş Hekimliği Dergisi. 5 (2023), 25-34. doi:10.51122/neudentj.2023.55
  • C.M. Wu, T.W. Xu, W.H. Yang, Fundamental Studies of a New Hybrid (Inorganic−Organic) Positively Charged Membrane: Membrane Preparation and Characterizations, Journal of Membarne Science. 216 (2003), 269−278. doi:10.1016/s0376-7388(03)00082-6
  • E. Celik, L. Liu, H. Choi, Protein Fouling Behavior of Carbon Nanotube/Polyethersulfone Composite Membranes During Water Filtration, Water Research, 45 (2011), 5287−5294. doi:10.1016/j.watres.2011.07.036
  • R. Wu, Y. Tan, Y. Meng, Y. Zhang, Y.X. Huang, PVDF/MAF-4 composite membrane for high flux and scaling-resistant membrane distillation, Desalination, 540 (2022), 116013. doi:10.1016/j.desal.2022.116013
  • H. Wu, B. Tang, P. Wu, Development of Novel SiO2−GO Nanohybrid/Polysulfone Membrane with Enhanced Performance. Journal of Membrane Science. 451 (2014), 94−102. doi:10.1016/j.memsci.2013.09.018
  • N. Kong, C. Chen, Q. Zeng, B. Li, L. Shen, H. Lin, Enriching Fe3O4@MoS2 composites in surface layer to fabricate polyethersulfone (PES) composite membrane: The improved performance and mechanisms, Separation and Purification Technology. 302(1) (2022), 122178. doi:10.1016/j.seppur.2022.122178
There are 55 citations in total.

Details

Primary Language Turkish
Subjects Separation Science, Analytical Chemistry (Other), Inorganic Materials, Water Treatment Processes
Journal Section Articles
Authors

İlker Akın 0000-0002-8683-0210

Erhan Zor 0000-0002-2325-6354

Haluk Bingöl 0000-0002-6466-6851

Project Number 141710001 ve 16401085
Early Pub Date December 4, 2023
Publication Date December 31, 2023
Acceptance Date July 15, 2023
Published in Issue Year 2023 Volume: 5 Issue: 2

Cite

APA Akın, İ., Zor, E., & Bingöl, H. (2023). GO@Fe3O4 Katkılı Polimerik Kompozit Membranların Hazırlanması ve Karakterizasyonu. Necmettin Erbakan Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 5(2), 38-52. https://doi.org/10.47112/neufmbd.2023.8
AMA Akın İ, Zor E, Bingöl H. GO@Fe3O4 Katkılı Polimerik Kompozit Membranların Hazırlanması ve Karakterizasyonu. NEJSE. December 2023;5(2):38-52. doi:10.47112/neufmbd.2023.8
Chicago Akın, İlker, Erhan Zor, and Haluk Bingöl. “GO@Fe3O4 Katkılı Polimerik Kompozit Membranların Hazırlanması Ve Karakterizasyonu”. Necmettin Erbakan Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 5, no. 2 (December 2023): 38-52. https://doi.org/10.47112/neufmbd.2023.8.
EndNote Akın İ, Zor E, Bingöl H (December 1, 2023) GO@Fe3O4 Katkılı Polimerik Kompozit Membranların Hazırlanması ve Karakterizasyonu. Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi 5 2 38–52.
IEEE İ. Akın, E. Zor, and H. Bingöl, “GO@Fe3O4 Katkılı Polimerik Kompozit Membranların Hazırlanması ve Karakterizasyonu”, NEJSE, vol. 5, no. 2, pp. 38–52, 2023, doi: 10.47112/neufmbd.2023.8.
ISNAD Akın, İlker et al. “GO@Fe3O4 Katkılı Polimerik Kompozit Membranların Hazırlanması Ve Karakterizasyonu”. Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi 5/2 (December 2023), 38-52. https://doi.org/10.47112/neufmbd.2023.8.
JAMA Akın İ, Zor E, Bingöl H. GO@Fe3O4 Katkılı Polimerik Kompozit Membranların Hazırlanması ve Karakterizasyonu. NEJSE. 2023;5:38–52.
MLA Akın, İlker et al. “GO@Fe3O4 Katkılı Polimerik Kompozit Membranların Hazırlanması Ve Karakterizasyonu”. Necmettin Erbakan Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 5, no. 2, 2023, pp. 38-52, doi:10.47112/neufmbd.2023.8.
Vancouver Akın İ, Zor E, Bingöl H. GO@Fe3O4 Katkılı Polimerik Kompozit Membranların Hazırlanması ve Karakterizasyonu. NEJSE. 2023;5(2):38-52.

17157           17158