Research Article
BibTex RIS Cite

NUMERICAL INVESTIGATION OF THE EFFECT OF SOLAR IRRADIATION ON THE SKIN TEMPERATURE AND TISSUE DAMAGE

Year 2016, Volume: 57 Issue: 682, 34 - 41, 19.12.2016

Abstract

The solar irradiation reaching to the skin surface is absorbed at the upper layers of the tissue; whereas
there is heat transfer from the surface of the tissue to the environment through perspiration, conduction
and radiation. In this study, in order to investigate the change of temperature at the upper and lower
layers of the skin, a mathematical model is developed and the numerical solution is done using a
commercially available software namely COMSOL Multiphysics. On the basis of the temperature
distribution found, the tissue damage ratio is calculated according to the Arrhenius approach. The
results of a case study in which this model is applied show that the temperature of the tissue reaches
up to 321 K at the dermis layer under the effect of solar irradiation and thermal damage is formed in
the skin tissue.

References

  • 1. Deng, Z. S., Liu, J. 2013. “Analytical Study on Bioheat Transfer Problems with Spatial or Transient Heating on Skin Surface or Inside Biological Bodies,” ASME Journal of Biomechanical Engineering, vol. 124, p. 638-649.
  • 2. Shih, T. C., Yuan, P., Lin, W. L., Kou, H. S. 2007. “Analytical Analysis of the Pennes Bioheat Transfer Equation with Sinusoidal Heat Flux Condition on Skin Surface,” Medical Engineering & Physics, vol. 29, p. 946–953.
  • 3. Yuan, P., Liu, H. E., Chen, C. W., Kou, H. S. 2008. “Temperature Response in Biological Tissue by Alternating Heating and Cooling Modalities with Sinusoidal Temperature Oscillation on the Skin,” International Communications in Heat and Mass Transfer, vol. 35, p. 1091–1096.
  • 4. Liu, J., Chen, X., Xu, L. X. 1999. “New Thermal Wave Aspects on Burn Evaluation of Skin Subjected to Instantaneous Heating,” IEEE Transactions on Biomedical Engineering, vol.46 (4), p. 420-428.
  • 5. Diller, K. R., Hayes, L. J. 1983. “A Finite Element Model of Burn Injury in Blood-Perfused Skin,” ASME Journal of Biomechanical Engineering, vol. 105, p. 300-307.
  • 6. Scott, B. W., Vance, A. S. 1988. “A Tissue Heat Transfer Model for Relating Dynamic Skin Temperature Changes to Physiological Parameters,” Phys. Med. Biol., vol. 33 (8), p. 895-912.
  • 7. Ng, E., Chua, L. 2002. “Prediction of Skin Burn Injury: Part 1. Numerical Modeling,” J Eng. Med., vol. 216, p.157-170.
  • 8. Ng, E., Chua, L. 2002. “Prediction of Skin Burn Injury. Part 2: Parametric and Sensitivity Analysis,” Journal of Eng. Med., vol. 216, p.171–183.
  • 9. Jiang, S. C, Ma, N., Li, H. J., Zhang, X. X. 2002. “Effects of Thermal Properties And Geometrical Dimensions on Skin Burn Injuries,” Burns, vol. 28, p. 713–717.
  • 10. Deng, Z. S., Liu, J. 2004. “Mathematical Modeling of Temperature Mapping Over Skin Surface and its Implementation in Thermal Disease Diagnostics,” Computers in Biology and Medicine, vol. 34, p. 495–521.
  • 11. Fu, M., Weng, W., Yuan, H. 2014. “Numerical Simulation of the Effects of Blood Perfusion, Water Diffusion, and Vaporization on the Skin Temperature and Burn Injuries,” Numerical Heat Transfer, Part A: Applications, vol. 65 (12), p. 1187-1203.
  • 12. Aijaz, M., Khanday, M. A. 2016. “ Temperature Distribution and Thermal Damage of Peripheral Tissue in Human Limbs During Heat Stress: A Mathematical Model,” Journal of Mechanics in Medicine and Biology, vol. 16, p. 1-17.
  • 13. Anderson, R., R. Parrish, J. A. 1981. “The Optics of Human Skin,” Journal of Investigative Dermatology, vol. 77, p. 13-19.
  • 14. Incropera, F. P., Dewitt, D. P. 1996. Fundamentals of Heat Transfer, Wiley & Sons, USA, 4th Edition, p. 284-332.
  • 15. Diller, K. R., Pearce, J. A. 1999. “Issues in Modeling Thermal Alterations in Tissues,” Annals New York Academy of Sciences, vol. 888, p.153-164.
  • 16. Xu, F., Lu, T. 2011. Introduction to Skin Biothermomechanics and Thermal Pain, Springer, Heidelberg-DordrechtLondon-New York, p. 42-57.

GÜNEŞ IŞINIMININ DERİ SICAKLIĞINA VE DOKU HASARINA ETKİSİNİN SAYISAL İNCELENMESİ

Year 2016, Volume: 57 Issue: 682, 34 - 41, 19.12.2016

Abstract

Deri yüzeyine gelen güneş ışınımı doku üst tabakalarında emilmekte, buna karşılık doku yüzeyinden
çevreye terleme, taşınım ve ışınım ile ısı kaybı olmaktadır. Bu çalışmada, deri üst yüzeyi ve alt katmanlarındaki sıcaklığın belirtilen etkiler altındaki değişiminin incelenebilmesi için matematiksel bir
model geliştirilmiş ve modelin sayısal çözümlemesi ticari bir yazılım olan COMSOL Multiphysics
kullanılarak gerçekleştirilmiştir. Elde edilen sıcaklık dağılımı esas alınarak dokudaki hasar oranı Arrhenius yaklaşımına göre hesaplanmış. Bir durum çalışmasına uygulanan bu modelin sonuçları, güneş
ışınımı etkisi altında doku sıcaklığının dermis katmanında 321 K’e kadar ulaştığını ve deri dokusunda
sıcaklığa bağlı hasar oluştuğunu göstermektedir.

References

  • 1. Deng, Z. S., Liu, J. 2013. “Analytical Study on Bioheat Transfer Problems with Spatial or Transient Heating on Skin Surface or Inside Biological Bodies,” ASME Journal of Biomechanical Engineering, vol. 124, p. 638-649.
  • 2. Shih, T. C., Yuan, P., Lin, W. L., Kou, H. S. 2007. “Analytical Analysis of the Pennes Bioheat Transfer Equation with Sinusoidal Heat Flux Condition on Skin Surface,” Medical Engineering & Physics, vol. 29, p. 946–953.
  • 3. Yuan, P., Liu, H. E., Chen, C. W., Kou, H. S. 2008. “Temperature Response in Biological Tissue by Alternating Heating and Cooling Modalities with Sinusoidal Temperature Oscillation on the Skin,” International Communications in Heat and Mass Transfer, vol. 35, p. 1091–1096.
  • 4. Liu, J., Chen, X., Xu, L. X. 1999. “New Thermal Wave Aspects on Burn Evaluation of Skin Subjected to Instantaneous Heating,” IEEE Transactions on Biomedical Engineering, vol.46 (4), p. 420-428.
  • 5. Diller, K. R., Hayes, L. J. 1983. “A Finite Element Model of Burn Injury in Blood-Perfused Skin,” ASME Journal of Biomechanical Engineering, vol. 105, p. 300-307.
  • 6. Scott, B. W., Vance, A. S. 1988. “A Tissue Heat Transfer Model for Relating Dynamic Skin Temperature Changes to Physiological Parameters,” Phys. Med. Biol., vol. 33 (8), p. 895-912.
  • 7. Ng, E., Chua, L. 2002. “Prediction of Skin Burn Injury: Part 1. Numerical Modeling,” J Eng. Med., vol. 216, p.157-170.
  • 8. Ng, E., Chua, L. 2002. “Prediction of Skin Burn Injury. Part 2: Parametric and Sensitivity Analysis,” Journal of Eng. Med., vol. 216, p.171–183.
  • 9. Jiang, S. C, Ma, N., Li, H. J., Zhang, X. X. 2002. “Effects of Thermal Properties And Geometrical Dimensions on Skin Burn Injuries,” Burns, vol. 28, p. 713–717.
  • 10. Deng, Z. S., Liu, J. 2004. “Mathematical Modeling of Temperature Mapping Over Skin Surface and its Implementation in Thermal Disease Diagnostics,” Computers in Biology and Medicine, vol. 34, p. 495–521.
  • 11. Fu, M., Weng, W., Yuan, H. 2014. “Numerical Simulation of the Effects of Blood Perfusion, Water Diffusion, and Vaporization on the Skin Temperature and Burn Injuries,” Numerical Heat Transfer, Part A: Applications, vol. 65 (12), p. 1187-1203.
  • 12. Aijaz, M., Khanday, M. A. 2016. “ Temperature Distribution and Thermal Damage of Peripheral Tissue in Human Limbs During Heat Stress: A Mathematical Model,” Journal of Mechanics in Medicine and Biology, vol. 16, p. 1-17.
  • 13. Anderson, R., R. Parrish, J. A. 1981. “The Optics of Human Skin,” Journal of Investigative Dermatology, vol. 77, p. 13-19.
  • 14. Incropera, F. P., Dewitt, D. P. 1996. Fundamentals of Heat Transfer, Wiley & Sons, USA, 4th Edition, p. 284-332.
  • 15. Diller, K. R., Pearce, J. A. 1999. “Issues in Modeling Thermal Alterations in Tissues,” Annals New York Academy of Sciences, vol. 888, p.153-164.
  • 16. Xu, F., Lu, T. 2011. Introduction to Skin Biothermomechanics and Thermal Pain, Springer, Heidelberg-DordrechtLondon-New York, p. 42-57.
There are 16 citations in total.

Details

Primary Language Turkish
Journal Section Energy Performance Evaluation of University Buildings: MCBU Köprübaşı Vocational School Example
Authors

Serhan Küçüka

İlkay Özanlağan This is me

Can Özgür Çolpan

Publication Date December 19, 2016
Submission Date August 10, 2016
Acceptance Date November 17, 2016
Published in Issue Year 2016 Volume: 57 Issue: 682

Cite

APA Küçüka, S., Özanlağan, İ., & Çolpan, C. Ö. (2016). GÜNEŞ IŞINIMININ DERİ SICAKLIĞINA VE DOKU HASARINA ETKİSİNİN SAYISAL İNCELENMESİ. Mühendis Ve Makina, 57(682), 34-41.

Derginin DergiPark'a aktarımı devam ettiğinden arşiv sayılarına https://www.mmo.org.tr/muhendismakina adresinden erişebilirsiniz.

ISSN : 1300-3402

E-ISSN : 2667-7520