Review
BibTex RIS Cite

Ağır metal maruziyetinde disbiyozis ve probiyotikler

Year 2021, Volume: 14 Issue: 1, 146 - 158, 30.04.2021
https://doi.org/10.26559/mersinsbd.709342

Abstract

Modern yaşamda ağır metallerin artan kullanımı, ağır metal maruziyetinde önemli ölçüde artışa sebep olmuştur. Ağır metallerin doğada yüksek kalıcılıkları ve yaygın maruziyet sebebiyle bu durum ağır metal maruziyetini önemli bir halk sağlığı problemi haline getirmiştir. Ağır metaller intestinal mikrobiyotanın yapısını ve çeşitliliğini etkileyerek disbiyozise sebep olmaktadır. Ağır metal maruziyetinin sebep olduğu disbiyozisin; oksidatif stres, karaciğer hasarı ve obezite gibi çeşitli sağlık sorunları ile ilişkili olabileceği bildirilmiştir. Probiyotiklerin ağır metallerin neden olduğu hasarı azaltmada, mikrobiyotanın yeniden dengelenmesinde ve sağlığının sürdürülmesinde umut verici olduğu belirtilmektedir. Bu derlemenin amacı, ağır metal maruziyetinin intestinal mikrobiyotaya olası etkilerini, bu etkilerin metabolik sonuçlarını ve probiyotik takviyesinin ağır metal toksisitesini iyileştirme potansiyelini değerlendirmektir

References

  • Kaynaklar 1. Jaishankar M, Tseten T, Anbalagan N, Mathew BB, Beeregowda KN. Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol. 2014; 7(2): 60-72.
  • 2. Rehman K, Fatima F, Waheed I, Akash MSH. Prevalence of exposure of heavy metals and their impact on health consequences. J Cell Biochem. 2018; 119(1): 157-184.
  • 3. Yılmaz K, Altındiş M. Sindirim sistemi mikrobiyotası ve fekal transplantasyon. Nobel Med 2017; 13(1): 9-15.
  • 4. Koçak T, Şanlıer N. Mikrobesin öğeleri ve mikrobiyota etkileşimi. Gümüşhane Üniversitesi Sağlık Bilimleri Dergisi. 2017; 6(4): 290-302.
  • 5. Richardson JB, Dancy BCR, Horton CL, et al. Exposure to toxic metals triggers unique responses from the rat gut microbiota. Sci Rep. 2018; 8(1): 6578.
  • 6. Lu K, Abo RP, Schlieper KA, Graffam ME. Levine S, Wishnok JS, Swenberg JA, Tannenbaum SR, Fox JG. Arsenic exposure perturbs the gut microbiome and its metabolic profile in mice: an integrated metagenomics and metabolomics analysis. Environmental Health Perspectives. 2014; 122(3): 284-291.
  • 7. Lu K, Abo RP, Schlieper KA, Graffam ME, Levine, S, Wishnok, JS, Swenberg JA, Tannenbaum SR, Fox JG. Arsenic exposure perturbs the gut microbiome and its metabolic profile in mice: an integrated metagenomics and metabolomics analysis. Environmental Health Perspectives. 2014; 122(3): 284-291.
  • 8. Lu K, Mahbub R, Cable PH, Ru H, Parry NM, Bodnar WM, Wishnok JS, Styblo M, Swenberg JA, Fox JG, Tannenbaum SR. Gut microbiome phenotypes driven by host genetics affect arsenic metabolism. Chem Res Toxicol 2014; 27: 172–174.
  • 9. Guo X, Liu S, Wang Z, Zhang XX, Li M, Wu B. Metagenomic profiles and antibiotic resistance genes in gut microbiota of mice exposed to arsenic and iron. Chemosphere. 2014; 112: 1-8.
  • 10. Dahan D, Jude BA, Lamendella R, Keesing F, Perron GG. Exposure to arsenic alters the microbiome of larval zebrafish. Frontiers in Microbiology. 2018; 9: 1323.
  • 11. Gao B, Chi L, Mahbub R, Bian X, Tu P, Ru H, Lu K. Multi-omics reveals that lead exposure disturbs gut microbiome development, key metabolites, and metabolic pathways. Chem Res Toxicol. 2017; 30(4): 996-1005. doi: 10.1021/acs.chemrestox.6b00401.
  • 12. Xia J, Lu L, Jin C, Wang S, Zhou J, Ni Y, Fu Z, Jin Y. Effects of short term lead exposure on gut microbiota and hepatic metabolism in adult zebrafish. Comp Biochem Physiol C Toxicol Pharmacol 2018; 209: 1–8.
  • 13. Wu J, Wen XW, Faulk C, Boehnke K, Zhang H, Dolinoy DC, Xi C. Perinatal lead exposure alters gut microbiota composition and results in sex-specific bodyweight ıncreases in adult mice. Toxicol Sci. 2016; 151(2): 324-333.
  • 14. Breton J, Massart S, Vandamme P, De Brandt E, Pot B, Foligné B. Ecotoxicology inside the gut: impact of heavy metals on the mouse microbiome. BMC Pharmacol Toxicol. 2013; 14: 62.
  • 15. Cani PD, Everard A. Akkermansia muciniphila: a novel target controlling obesity, type 2 diabetes and inflammation. Medecine Sciences: M/S. 2014; 30(2): 125-127.
  • 16. Li Y, Liu K, Shen J, Liu Y. Wheat bran intake can attenuate chronic cadmium toxicity in mice gut microbiota. Food Funct 2016; 7(8): 3524-3530.
  • 17. Zhang S, Jin Y, Zeng Z, Liu Z, Fu Z. Subchronic exposure of mice to cadmium perturbs their hepatic energy metabolism and gut microbiome. chem Res Toxicol. 2015; 28(10): 2000-2009.
  • 18. Tinkov AA, Gritsenko VA, Skalnaya MG, Cherkasov SV, Aaseth J, Skalny AV. Gut as a target for cadmium toxicity. Environ Pollut. 2018; 235: 429-434.
  • 19. Plunkett CH, Nagler CR. The ınfluence of the microbiome on allergic sensitization to food. J Immunol. 2017; 198(2): 581-589.
  • 20. Ba Q, Li M, Chen P, et al. Sex-dependent effects of cadmium exposure in early life on gut microbiota and fat accumulation in mice. Environmental Health Perspectives. 2017; 125(3): 437-446.
  • 21. Jafarpour, D.; Shekarforoush, S. S.; Ghaisari, H. R.; Nazifi, S.; Sajedianfard, J. Impact of synbiotic diets ıncluding ınulin, bacillus coagulans and lactobacillus plantarum on ıntestinal microbiota of rat exposed to cadmium and mercury. Vet Sci Develop 2015; 5: 2.
  • 22. Wu G, Xiao X, Feng P, Xie F, Yu Z, Yuan W,et al. Gut remediation: A potential approach to reducing chromium accumulation using Lactobacillus plantarum TW1-1. Sci Rep 2017; 7: 15000.
  • 23. Gillois K, Lévêque M, Théodorou V, Robert H, Mercier-bonin m. mucus: an underestimated gut target for environmental pollutants and food additives. Microorganisms. 2018; 6(2): 53.
  • 24. Zhai Q, Li T, Yu L, Xiao Y, Feng S, Wu J, Zhao J, Zhang H, Chen W. Effects of subchronic oral toxic metal exposure on the intestinal microbiota of mice. Sci Bull 2017; 62(12): 831-840.
  • 25. Richardson JB, Dancy BCR, Horton CL, et al. Exposure to toxic metals triggers unique responses from the rat gut microbiota. Sci Rep. 2018;8(1):6578.
  • 26. Rosenfeld CS. Gut dysbiosis in animals due to environmental chemical exposures. front cell ınfect Microbiol. 2017; 7: 396.
  • 27. Feng P, Ye Z, Kakade A, Virk AK, Li X, Liu P. A Review on gut remediation of selected environmental contaminants: possible roles of probiotics and gut microbiota. Nutrients. 2018; 11(1): 22.
  • 28. Zhai Q, Wang G, Zhao J, Zhao, J, Liu X, Tian F, Zhang H, Chen W. Protective effects of Lactobacillus plantarum CCFM8610 against acute cadmium toxicity in mice. Appl Environ Microbiol. 2013; 79(5): 1508-1515.
  • 29. Zhai Q, Wang G, Zhao J, Liu X, Narbad A, Chen YQ, Zhang H, Tian F, Chen W. Protective effects of Lactobacillus plantarum CCFM8610 against chronic cadmium toxicity in mice indicate routes of protection besides intestinal sequestration. Appl Environ Microbiol. 2014; 80(13): 4063-71.
  • 30. Chattopadhyay S, Khatun S, Maity M, Jana S, Perveen H, Dash M, Dey A, Jana LR, Maity PP. Association of vitamin B12, lactate dehydrogenase, and regulation of nf-κb in the mitigation of sodium arsenite-ınduced ros generation in uterine tissue by commercially available probiotics. Probiotics Antimicrob Proteins. 2019; 11(1): 30-42.
  • 31. Jama AM, Mitic-Culafic D, Kolarevic S Durasevic SF, Knezevic-Vukcevic J. Protective effect of probiotic bacteria against cadmium-induced genotoxicity in rat hepatocytes in vivo and in vitro. Arch Biol Sci 2012; 64(3): 1197–1206.
  • 32. Djurasevic S, Jama A, Jasnic N, Vujovic P, Jovanovic M, Mitic-Culafic D, Knezevic-Vukcevic J, Cakic-Milosevic M, Ilijevic K, Djordjevic J. The protective effects of probiotic bacteria on cadmium toxicity in rats. J Med Food. 2017; 20(2): 189-196.
  • 33. Majlesi M, Shekarforoush SS, Ghaisari HR, Nazifi S, Sajedianfard J, Eskandari MH. Effect of probiotic bacillus coagulans and lactobacillus plantarum on alleviation of mercury toxicity in rat. Probiotics Antimicrob Proteins. 2017; 9(3): 300-309.
  • 34. Li B, Jin D, Yu S, Etareri Evivie S, Muhammad Z, Huo G, Liu F. In Vitro and In Vivo Evaluation of Lactobacillus delbrueckii subsp. bulgaricus KLDS1.0207 for the Alleviative Effect on Lead Toxicity. Nutrients. 2017; 9(8): 845.
  • 35. Zhai Q, Liu Y, Wang C, Zhao J, Zhang H, Tian F, Lee YK, Chen W. Increased cadmium excretion due to oral administration of lactobacillus plantarum strains by regulating enterohepatic circulation in mice. J Agric Food Chem. 2019; 67(14): 3956-3965.
  • 36. Dheer R, Patterson J, Dudash M, et al. Arsenic induces structural and compositional colonic microbiome change and promotes host nitrogen and amino acid metabolism. Toxicol Appl Pharmacol. 2015; 289(3): 397-408.
  • 37. Chi L, Bian X, Gao B, Ru H, Tu P, Lu K. Sex-Specific Effects of arsenic exposure on the trajectory and function of the gut microbiome. Chem Res Toxicol. 2016; 29(6): 949-51.
  • 38. Calatayud M, Vélez D, Devesa V. Metabolism of inorganic arsenic in intestinal epithelial cell lines. Chemical Research in Toxicology. 2012; 25(11): 2402-2411.
  • 39. Liu Y, Li Y, Liu K, Shen J. Exposing to cadmium stress cause profound toxic effect on microbiota of the mice intestinal tract. PLoS One. 2014 ;9(2): e85323.
  • 40. Fazeli M, Hassanzadeh P, Alaei S. Cadmium chloride exhibits a profound toxic effect on bacterial microflora of the mice gastrointestinal tract. Hum Exp Toxicol. 2011; 30(2): 15

Dysbiosis in heavy metal exposure and the probiotics

Year 2021, Volume: 14 Issue: 1, 146 - 158, 30.04.2021
https://doi.org/10.26559/mersinsbd.709342

Abstract

The increasing use of heavy metals in modern life has led to a significant increase in heavy metal exposure. Heavy metals have become an important public health problem due to their high persistence and widespread exposure in nature. Heavy metals cause dysbiosis by affecting the structure and diversity of the intestinal microbiota. Exposure to heavy metals is an important public health problem due to their high persistence and widespread exposure in nature. Dysbiosis in microbiota caused by heavy metal exposure has been reported that it may be associated with various health problems such as oxidative stress, liver damage, and obesity. It is stated that probiotics are promising in reducing the damage caused by heavy metals, rebalancing microbiota and maintaining their health. The purpose of this review is to evaluate the potential effects of heavy metal exposure to the intestinal microbiota, the metabolic results of these effects and the potential of the probiotic supplement to improve heavy metal toxicity.

References

  • Kaynaklar 1. Jaishankar M, Tseten T, Anbalagan N, Mathew BB, Beeregowda KN. Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol. 2014; 7(2): 60-72.
  • 2. Rehman K, Fatima F, Waheed I, Akash MSH. Prevalence of exposure of heavy metals and their impact on health consequences. J Cell Biochem. 2018; 119(1): 157-184.
  • 3. Yılmaz K, Altındiş M. Sindirim sistemi mikrobiyotası ve fekal transplantasyon. Nobel Med 2017; 13(1): 9-15.
  • 4. Koçak T, Şanlıer N. Mikrobesin öğeleri ve mikrobiyota etkileşimi. Gümüşhane Üniversitesi Sağlık Bilimleri Dergisi. 2017; 6(4): 290-302.
  • 5. Richardson JB, Dancy BCR, Horton CL, et al. Exposure to toxic metals triggers unique responses from the rat gut microbiota. Sci Rep. 2018; 8(1): 6578.
  • 6. Lu K, Abo RP, Schlieper KA, Graffam ME. Levine S, Wishnok JS, Swenberg JA, Tannenbaum SR, Fox JG. Arsenic exposure perturbs the gut microbiome and its metabolic profile in mice: an integrated metagenomics and metabolomics analysis. Environmental Health Perspectives. 2014; 122(3): 284-291.
  • 7. Lu K, Abo RP, Schlieper KA, Graffam ME, Levine, S, Wishnok, JS, Swenberg JA, Tannenbaum SR, Fox JG. Arsenic exposure perturbs the gut microbiome and its metabolic profile in mice: an integrated metagenomics and metabolomics analysis. Environmental Health Perspectives. 2014; 122(3): 284-291.
  • 8. Lu K, Mahbub R, Cable PH, Ru H, Parry NM, Bodnar WM, Wishnok JS, Styblo M, Swenberg JA, Fox JG, Tannenbaum SR. Gut microbiome phenotypes driven by host genetics affect arsenic metabolism. Chem Res Toxicol 2014; 27: 172–174.
  • 9. Guo X, Liu S, Wang Z, Zhang XX, Li M, Wu B. Metagenomic profiles and antibiotic resistance genes in gut microbiota of mice exposed to arsenic and iron. Chemosphere. 2014; 112: 1-8.
  • 10. Dahan D, Jude BA, Lamendella R, Keesing F, Perron GG. Exposure to arsenic alters the microbiome of larval zebrafish. Frontiers in Microbiology. 2018; 9: 1323.
  • 11. Gao B, Chi L, Mahbub R, Bian X, Tu P, Ru H, Lu K. Multi-omics reveals that lead exposure disturbs gut microbiome development, key metabolites, and metabolic pathways. Chem Res Toxicol. 2017; 30(4): 996-1005. doi: 10.1021/acs.chemrestox.6b00401.
  • 12. Xia J, Lu L, Jin C, Wang S, Zhou J, Ni Y, Fu Z, Jin Y. Effects of short term lead exposure on gut microbiota and hepatic metabolism in adult zebrafish. Comp Biochem Physiol C Toxicol Pharmacol 2018; 209: 1–8.
  • 13. Wu J, Wen XW, Faulk C, Boehnke K, Zhang H, Dolinoy DC, Xi C. Perinatal lead exposure alters gut microbiota composition and results in sex-specific bodyweight ıncreases in adult mice. Toxicol Sci. 2016; 151(2): 324-333.
  • 14. Breton J, Massart S, Vandamme P, De Brandt E, Pot B, Foligné B. Ecotoxicology inside the gut: impact of heavy metals on the mouse microbiome. BMC Pharmacol Toxicol. 2013; 14: 62.
  • 15. Cani PD, Everard A. Akkermansia muciniphila: a novel target controlling obesity, type 2 diabetes and inflammation. Medecine Sciences: M/S. 2014; 30(2): 125-127.
  • 16. Li Y, Liu K, Shen J, Liu Y. Wheat bran intake can attenuate chronic cadmium toxicity in mice gut microbiota. Food Funct 2016; 7(8): 3524-3530.
  • 17. Zhang S, Jin Y, Zeng Z, Liu Z, Fu Z. Subchronic exposure of mice to cadmium perturbs their hepatic energy metabolism and gut microbiome. chem Res Toxicol. 2015; 28(10): 2000-2009.
  • 18. Tinkov AA, Gritsenko VA, Skalnaya MG, Cherkasov SV, Aaseth J, Skalny AV. Gut as a target for cadmium toxicity. Environ Pollut. 2018; 235: 429-434.
  • 19. Plunkett CH, Nagler CR. The ınfluence of the microbiome on allergic sensitization to food. J Immunol. 2017; 198(2): 581-589.
  • 20. Ba Q, Li M, Chen P, et al. Sex-dependent effects of cadmium exposure in early life on gut microbiota and fat accumulation in mice. Environmental Health Perspectives. 2017; 125(3): 437-446.
  • 21. Jafarpour, D.; Shekarforoush, S. S.; Ghaisari, H. R.; Nazifi, S.; Sajedianfard, J. Impact of synbiotic diets ıncluding ınulin, bacillus coagulans and lactobacillus plantarum on ıntestinal microbiota of rat exposed to cadmium and mercury. Vet Sci Develop 2015; 5: 2.
  • 22. Wu G, Xiao X, Feng P, Xie F, Yu Z, Yuan W,et al. Gut remediation: A potential approach to reducing chromium accumulation using Lactobacillus plantarum TW1-1. Sci Rep 2017; 7: 15000.
  • 23. Gillois K, Lévêque M, Théodorou V, Robert H, Mercier-bonin m. mucus: an underestimated gut target for environmental pollutants and food additives. Microorganisms. 2018; 6(2): 53.
  • 24. Zhai Q, Li T, Yu L, Xiao Y, Feng S, Wu J, Zhao J, Zhang H, Chen W. Effects of subchronic oral toxic metal exposure on the intestinal microbiota of mice. Sci Bull 2017; 62(12): 831-840.
  • 25. Richardson JB, Dancy BCR, Horton CL, et al. Exposure to toxic metals triggers unique responses from the rat gut microbiota. Sci Rep. 2018;8(1):6578.
  • 26. Rosenfeld CS. Gut dysbiosis in animals due to environmental chemical exposures. front cell ınfect Microbiol. 2017; 7: 396.
  • 27. Feng P, Ye Z, Kakade A, Virk AK, Li X, Liu P. A Review on gut remediation of selected environmental contaminants: possible roles of probiotics and gut microbiota. Nutrients. 2018; 11(1): 22.
  • 28. Zhai Q, Wang G, Zhao J, Zhao, J, Liu X, Tian F, Zhang H, Chen W. Protective effects of Lactobacillus plantarum CCFM8610 against acute cadmium toxicity in mice. Appl Environ Microbiol. 2013; 79(5): 1508-1515.
  • 29. Zhai Q, Wang G, Zhao J, Liu X, Narbad A, Chen YQ, Zhang H, Tian F, Chen W. Protective effects of Lactobacillus plantarum CCFM8610 against chronic cadmium toxicity in mice indicate routes of protection besides intestinal sequestration. Appl Environ Microbiol. 2014; 80(13): 4063-71.
  • 30. Chattopadhyay S, Khatun S, Maity M, Jana S, Perveen H, Dash M, Dey A, Jana LR, Maity PP. Association of vitamin B12, lactate dehydrogenase, and regulation of nf-κb in the mitigation of sodium arsenite-ınduced ros generation in uterine tissue by commercially available probiotics. Probiotics Antimicrob Proteins. 2019; 11(1): 30-42.
  • 31. Jama AM, Mitic-Culafic D, Kolarevic S Durasevic SF, Knezevic-Vukcevic J. Protective effect of probiotic bacteria against cadmium-induced genotoxicity in rat hepatocytes in vivo and in vitro. Arch Biol Sci 2012; 64(3): 1197–1206.
  • 32. Djurasevic S, Jama A, Jasnic N, Vujovic P, Jovanovic M, Mitic-Culafic D, Knezevic-Vukcevic J, Cakic-Milosevic M, Ilijevic K, Djordjevic J. The protective effects of probiotic bacteria on cadmium toxicity in rats. J Med Food. 2017; 20(2): 189-196.
  • 33. Majlesi M, Shekarforoush SS, Ghaisari HR, Nazifi S, Sajedianfard J, Eskandari MH. Effect of probiotic bacillus coagulans and lactobacillus plantarum on alleviation of mercury toxicity in rat. Probiotics Antimicrob Proteins. 2017; 9(3): 300-309.
  • 34. Li B, Jin D, Yu S, Etareri Evivie S, Muhammad Z, Huo G, Liu F. In Vitro and In Vivo Evaluation of Lactobacillus delbrueckii subsp. bulgaricus KLDS1.0207 for the Alleviative Effect on Lead Toxicity. Nutrients. 2017; 9(8): 845.
  • 35. Zhai Q, Liu Y, Wang C, Zhao J, Zhang H, Tian F, Lee YK, Chen W. Increased cadmium excretion due to oral administration of lactobacillus plantarum strains by regulating enterohepatic circulation in mice. J Agric Food Chem. 2019; 67(14): 3956-3965.
  • 36. Dheer R, Patterson J, Dudash M, et al. Arsenic induces structural and compositional colonic microbiome change and promotes host nitrogen and amino acid metabolism. Toxicol Appl Pharmacol. 2015; 289(3): 397-408.
  • 37. Chi L, Bian X, Gao B, Ru H, Tu P, Lu K. Sex-Specific Effects of arsenic exposure on the trajectory and function of the gut microbiome. Chem Res Toxicol. 2016; 29(6): 949-51.
  • 38. Calatayud M, Vélez D, Devesa V. Metabolism of inorganic arsenic in intestinal epithelial cell lines. Chemical Research in Toxicology. 2012; 25(11): 2402-2411.
  • 39. Liu Y, Li Y, Liu K, Shen J. Exposing to cadmium stress cause profound toxic effect on microbiota of the mice intestinal tract. PLoS One. 2014 ;9(2): e85323.
  • 40. Fazeli M, Hassanzadeh P, Alaei S. Cadmium chloride exhibits a profound toxic effect on bacterial microflora of the mice gastrointestinal tract. Hum Exp Toxicol. 2011; 30(2): 15
There are 40 citations in total.

Details

Primary Language Turkish
Subjects Health Care Administration
Journal Section Articles
Authors

Kevser Başoğlu 0000-0003-1601-0994

Aylin Ayaz 0000-0002-3543-7881

Publication Date April 30, 2021
Submission Date March 27, 2020
Acceptance Date January 24, 2021
Published in Issue Year 2021 Volume: 14 Issue: 1

Cite

APA Başoğlu, K., & Ayaz, A. (2021). Ağır metal maruziyetinde disbiyozis ve probiyotikler. Mersin Üniversitesi Sağlık Bilimleri Dergisi, 14(1), 146-158. https://doi.org/10.26559/mersinsbd.709342
AMA Başoğlu K, Ayaz A. Ağır metal maruziyetinde disbiyozis ve probiyotikler. Mersin Univ Saglık Bilim derg. April 2021;14(1):146-158. doi:10.26559/mersinsbd.709342
Chicago Başoğlu, Kevser, and Aylin Ayaz. “Ağır Metal Maruziyetinde Disbiyozis Ve Probiyotikler”. Mersin Üniversitesi Sağlık Bilimleri Dergisi 14, no. 1 (April 2021): 146-58. https://doi.org/10.26559/mersinsbd.709342.
EndNote Başoğlu K, Ayaz A (April 1, 2021) Ağır metal maruziyetinde disbiyozis ve probiyotikler. Mersin Üniversitesi Sağlık Bilimleri Dergisi 14 1 146–158.
IEEE K. Başoğlu and A. Ayaz, “Ağır metal maruziyetinde disbiyozis ve probiyotikler”, Mersin Univ Saglık Bilim derg, vol. 14, no. 1, pp. 146–158, 2021, doi: 10.26559/mersinsbd.709342.
ISNAD Başoğlu, Kevser - Ayaz, Aylin. “Ağır Metal Maruziyetinde Disbiyozis Ve Probiyotikler”. Mersin Üniversitesi Sağlık Bilimleri Dergisi 14/1 (April 2021), 146-158. https://doi.org/10.26559/mersinsbd.709342.
JAMA Başoğlu K, Ayaz A. Ağır metal maruziyetinde disbiyozis ve probiyotikler. Mersin Univ Saglık Bilim derg. 2021;14:146–158.
MLA Başoğlu, Kevser and Aylin Ayaz. “Ağır Metal Maruziyetinde Disbiyozis Ve Probiyotikler”. Mersin Üniversitesi Sağlık Bilimleri Dergisi, vol. 14, no. 1, 2021, pp. 146-58, doi:10.26559/mersinsbd.709342.
Vancouver Başoğlu K, Ayaz A. Ağır metal maruziyetinde disbiyozis ve probiyotikler. Mersin Univ Saglık Bilim derg. 2021;14(1):146-58.

MEU Journal of Health Sciences Assoc was began to the publishing process in 2008 under the supervision of Assoc. Prof. Gönül Aslan, Editor-in-Chief, and affiliated to Mersin University Institute of Health Sciences. In March 2015, Prof. Dr. Caferi Tayyar Şaşmaz undertook the Editor-in Chief position and since then he has been in charge.

Publishing in three issues per year (April - August - December), it is a multisectoral refereed scientific journal. In addition to research articles, scientific articles such as reviews, case reports and letters to the editor are published in the journal. Our journal, which has been published via e-mail since its inception, has been published both online and in print. Following the Participation Agreement signed with TÜBİTAK-ULAKBİM Dergi Park in April 2015, it has started to accept and evaluate online publications.

Mersin University Journal of Health Sciences have been indexed by Turkey Citation Index since November 16, 2011.

Mersin University Journal of Health Sciences have been indexed by ULAKBIM Medical Database from the first issue of 2016.

Mersin University Journal of Health Sciences have been indexed by DOAJ since October 02, 2019.

Article Publishing Charge Policy: Our journal has adopted an open access policy and there is no fee for article application, evaluation, and publication in our journal. All the articles published in our journal can be accessed from the Archive free of charge.

154561545815459

Creative Commons Lisansı
This work is licensed with Attribution-NonCommercial 4.0 International.