Research Article
BibTex RIS Cite

Gıdalarda polifenol oksidaz enzimi inaktivasyonunun modellenmesi ve simülasyonu

Year 2020, Volume: 6 Issue: 4, 248 - 260, 19.08.2020
https://doi.org/10.3153/FH20025

Abstract

Bu çalışmanın amacı polifenol oksidaz (PPO) enziminin gerçek sıcaklık ve basınç senaryolarındaki inaktivasyon simülasyonlarının yapılması ile meyve ve sebzelerin daha taze kalması, esmerleşme reaksiyonlarının ve besin kayıplarının önlenmesinde daha gerçekçi modellerin ortaya konulmasıdır. Isıl işlem ve yüksek basınç uygulamaları dinamik yöntemler olup sabit sıcaklık ve basınç değerlerinde yapılan modeller yetersiz olmaktadır. Modellerin endüstride uygulandığı şekilde yani ısınma-soğuma süreleri ve sıcaklık değişimleri ile basınçlama-genleşme süreleri ve basınç değişimleri göz önüne alınarak yapılması gerekmektedir. Bu amaçla sabit sıcaklık ve basınç koşullarında ananas püresi ve elma suyu örneklerinde PPO enziminin inaktivasyonu üzerine yapılan çalışmalar modellenerek sabit olmayan sıcaklık ve basınç değerlerindeki inaktivasyon profilleri tahmin edilmiştir. En yüksek PPO inaktivasyonun % 98,8’lik oranla üç tekrarlı basınç döngüsünün uygulandığı senaryoda elde edildiği gözlenmiştir. Bu simülasyon modellerinin farklı meyve ve sebzelerdeki farklı enzimlere de uyarlanması ile gıda endüstrisinde enzim inaktivasyonu için uygulanan yöntemlerden maksimum fayda sağlamak mümkün olacaktır.  

Thanks

Bu makaledeki bilgi birikiminin oluşmasına katkı sağlayan Prof. Dr. Sencer Buzrul’a teşekkür ederim.

References

  • Amiali, M.,Ngadi, M.,Smith, J.ve Raghavan, G. (2007). Synergistic effect of temperature and pulsed electric field on inactivation of Escherichia coli O157: H7 and Salmonella enteritidis in liquid egg yolk. Journal of Food Engineering, 79(2), 689-694. https://doi.org/10.1016/j.jfoodeng.2006.02.029
  • Bermúdez-Aguirre, D., Corradini, M.G. (2012). Inactivation kinetics of Salmonella spp. under thermal and emerging treatments: a review. Food Research International, 45(2), 700-712. https://doi.org/10.1016/j.foodres.2011.05.040
  • Buckow, R.,Weiss, U.,Knorr, D. (2009). Inactivation kinetics of apple polyphenol oxidase in different pressure–temperature domains. Innovative Food Science & Emerging Technologies, 10(4), 441-448. https://doi.org/10.1016/j.ifset.2009.05.005
  • Buzrul, S. (2009). A predictive model for high‐pressure carbon dioxide inactivation of microorganisms. Journal of Food Safety, 29(2), 208-223. https://doi.org/10.1111/j.1745-4565.2009.00151.x
  • Campus, M. (2010). High pressure processing of meat, meat products and seafood. Food Engineering Reviews, 2(4), 256-273. https://doi.org/10.1007/s12393-010-9028-y
  • Chakraborty, S., Rao, P. S.,Mishra, H.N. (2015). Kinetic modeling of polyphenoloxidase and peroxidase inactivation in pineapple (Ananas comosus L.) puree during high-pressure and thermal treatments. Innovative Food Science & Emerging Technologies, 27, 57-68. https://doi.org/10.1016/j.ifset.2014.11.003
  • Chen, G. (2013). Estimating microbial survival parameters from dynamic survival data using Microsoft Excel. International Journal of Food Science & Technology, 48(9), 1841-1846. https://doi.org/10.1111/ijfs.12159
  • Cheng, X.-F., Zhang, M., Adhikari, B. (2013). The inactivation kinetics of polyphenol oxidase in mushroom (Agaricus bisporus) during thermal and thermosonic treatments. Ultrasonics Sonochemistry, 20(2), 674-679. https://doi.org/10.1016/j.ultsonch.2012.09.012
  • Crelier, S., Robert, M.-C.,Claude, J., Juillerat, M.A. (2001). Tomato (Lycopersicon esculentum) pectin methylesterase and polygalacturonase behaviors regarding heat-and pressure-induced inactivation. Journal of Agricultural and Food Chemistry, 49(11), 5566-5575. https://doi.org/10.1021/jf010202u
  • Del Olmo, A., Morales, P., Ávila, M.,Calzada, J., Nuñez, M. (2010). Effect of single-cycle and multiple-cycle high-pressure treatments on the colour and texture of chicken breast fillets. Innovative food science & emerging technologies, 11(3), 441-444. https://doi.org/10.1016/j.ifset.2010.01.012
  • Denys, S.,Van Loey, A.M., Hendrickx, M.E. (2000). A modeling approach for evaluating process uniformity during batch high hydrostatic pressure processing: combination of a numerical heat transfer model and enzyme inactivation kinetics. Innovative Food Science & Emerging Technologies, 1(1), 5-19. https://doi.org/10.1016/S1466-8564(99)00003-X
  • Garcia-Palazon, A., Suthanthangjai, W., Kajda, P., Zabetakis, I. (2004). The effects of high hydrostatic pressure on β-glucosidase, peroxidase and polyphenoloxidase in red raspberry (Rubus idaeus) and strawberry (Fragaria× ananassa). Food Chemistry, 88(1), 7-10. https://doi.org/10.1016/j.foodchem.2004.01.019
  • Giner, J., Ortega, M., Mesegué, M., Gimeno, V., Barbosa‐Cánovas, G. Martín, O. (2002). Inactivation of peach polyphenoloxidase by exposure to pulsed electric fields. Journal of Food Science, 67(4), 1467-1472. https://doi.org/10.1111/j.1365-2621.2002.tb10307.x
  • Golan-Goldhirsh, A.,Whitaker, J.R. Kahn, V. (1984). Relation between structure of polyphenol oxidase and prevention of browning. In Nutritional and Toxicological Aspects of Food Safety (pp. 437-456): Springer.
  • Goyeneche, R., Di Scala, K., Roura, S. (2013). Biochemical characterization and thermal inactivation of polyphenol oxidase from radish (Raphanus sativus var. sativus). LWT-Food Science and Technology, 54(1), 57-62. https://doi.org/10.1016/j.lwt.2013.04.014
  • Hendrickx, M., Ludikhuyze, L., Van den Broeck, I., Weemaes, C. (1998). Effects of high pressure on enzymes related to food quality. Trends in Food Science & Technology, 9(5), 197-203. https://doi.org/10.1016/S0924-2244(98)00039-9
  • Islam, M.N., Zhang, M., Adhikari, B. (2014). The inactivation of enzymes by ultrasound—a review of potential mechanisms. Food Reviews International, 30(1), 1-21. https://doi.org/10.1080/87559129.2013.853772
  • Kadkhodaee, R., Povey, M.J. (2008). Ultrasonic inactivation of Bacillus α-amylase. I. Effect of gas content and emitting face of probe. Ultrasonics Sonochemistry, 15(2), 133-142. https://doi.org/10.1016/j.ultsonch.2007.02.005
  • Liu, F., Niu, L., Li, D., Liu, C., Jin, B. (2013). Kinetic characterization and thermal inactivation of peroxidase in aqueous extracts from sweet corn and waxy corn. Food and Bioprocess Technology, 6(10), 2800-2807. https://doi.org/10.1007/s11947-012-0996-1
  • Mafart, P., Couvert, O., Gaillard, S., Leguérinel, I. (2002). On calculating sterility in thermal preservation methods: application of the Weibull frequency distribution model. International Journal of Food Microbiology, 72(1-2), 107-113. https://doi.org/10.1016/S0168-1605(01)00624-9
  • Marszałek, K., Szczepańska, J., Starzonek, S., Woźniak, Ł., Trych, U., Skąpska, S., Rzoska, S., Saraiva, J.A., Lorenzo, J. M. Barba, F.J. (2019). Enzyme inactivation and evaluation of physicochemical properties, sugar and phenolic profile changes in cloudy apple juices after high pressure processing, and subsequent refrigerated storage. Journal of Food Process Engineering, 42(4), e13034. https://doi.org/10.1111/jfpe.13034
  • Morales, P., Calzada, J., Rodriguez, B., De Paz, M., Nunez, M. (2009). Inactivation of Salmonella enteritidis in chicken breast fillets by single-cycle and multiple-cycle high pressure treatments. Foodborne Pathogens and Disease, 6(5), 577-581. https://doi.org/10.1089/fpd.2008.0218
  • Nienaber, U., Shellhammer, T. (2001). High‐pressure processing of orange juice: kinetics of pectinmethylesterase inactivation. Journal of Food Science, 66(2), 328-331. https://doi.org/10.1111/j.1365-2621.2001.tb11341.x
  • Periago, P.,Van Zuijlen, A., Fernandez, P., Klapwijk, P., Ter Steeg, P., Corradini, M. Peleg, M. (2004). Estimation of the non-isothermal inactivation patterns of Bacillus sporothermodurans IC4 spores in soups from their isothermal survival data. International Journal of Food Microbiology, 95(2), 205-218. https://doi.org/10.1016/j.ijfoodmicro.2004.02.015
  • Ponce, E., Pla, R., Sendra, E., Guamis, B., Mor-Mur, M. (1999). Destruction of Salmonella enteritidis inoculated in liquid whole egg by high hydrostatic pressure: comparative study in selective and non-selective media. Food Microbiology, 16(4), 357-365. https://doi.org/10.1006/fmic.1998.0248
  • Riahi, E., Ramaswamy, H.S. (2004). High pressure inactivation kinetics of amylase in apple juice. Journal of Food Engineering, 64(2), 151-160. https://doi.org/10.1016/j.jfoodeng.2003.09.025
  • Sulaiman, A., Soo, M.J., Farid, M., Silva, F.V. (2015). Thermosonication for polyphenoloxidase inactivation in fruits: Modeling the ultrasound and thermal kinetics in pear, apple and strawberry purees at different temperatures. Journal of Food Engineering, 165, 133-140. https://doi.org/10.1016/j.jfoodeng.2015.06.020
  • Terefe, N.S., Yang, Y.H., Knoerzer, K., Buckow, R.,Versteeg, C. (2010). High pressure and thermal inactivation kinetics of polyphenol oxidase and peroxidase in strawberry puree. Innovative Food Science & Emerging Technologies, 11(1), 52-60. https://doi.org/10.1016/j.ifset.2009.08.009
  • van Boekel, M.A. (2002). On the use of the Weibull model to describe thermal inactivation of microbial vegetative cells. International Journal of Food Microbiology, 74(1-2), 139-159. https://doi.org/10.1016/S0168-1605(01)00742-5

Modeling and simulation of the inactivation of polyphenol oxidase enzyme in foods

Year 2020, Volume: 6 Issue: 4, 248 - 260, 19.08.2020
https://doi.org/10.3153/FH20025

Abstract

The aim of this study was to realize more realistic models for the inhibition of browning reactions and nutritional losses and for keeping the fruit vegetables fresh, by inactivating of polyphenol oxidase (PPO) enzyme in real temperature and pressure scenarios. High pressure and heat treatment applications are dynamic methods and modeling should be done by taking into consideration the heating-cooling times and temperature changes, pressurization-expansion times and pressure changes as applied in the industry, not at constant pressure and temperature values. For this purpose, the studies on inactivation of polyphenol oxidase (PPO) enzyme in pineapple puree and apple juice samples under constant pressure and temperature conditions were modeled and the inactivation profile in non-constant temperature and pressure values were predicted. It was observed that the highest PPO inactivation was achieved with a rate of 98.8% in the scenario where three repetitive pressure cycles were applied. By adapting these simulation models to different enzymes in different fruits and vegetables, it would be possible to benefit from the methods applied for enzyme inactivation in the food industry.

References

  • Amiali, M.,Ngadi, M.,Smith, J.ve Raghavan, G. (2007). Synergistic effect of temperature and pulsed electric field on inactivation of Escherichia coli O157: H7 and Salmonella enteritidis in liquid egg yolk. Journal of Food Engineering, 79(2), 689-694. https://doi.org/10.1016/j.jfoodeng.2006.02.029
  • Bermúdez-Aguirre, D., Corradini, M.G. (2012). Inactivation kinetics of Salmonella spp. under thermal and emerging treatments: a review. Food Research International, 45(2), 700-712. https://doi.org/10.1016/j.foodres.2011.05.040
  • Buckow, R.,Weiss, U.,Knorr, D. (2009). Inactivation kinetics of apple polyphenol oxidase in different pressure–temperature domains. Innovative Food Science & Emerging Technologies, 10(4), 441-448. https://doi.org/10.1016/j.ifset.2009.05.005
  • Buzrul, S. (2009). A predictive model for high‐pressure carbon dioxide inactivation of microorganisms. Journal of Food Safety, 29(2), 208-223. https://doi.org/10.1111/j.1745-4565.2009.00151.x
  • Campus, M. (2010). High pressure processing of meat, meat products and seafood. Food Engineering Reviews, 2(4), 256-273. https://doi.org/10.1007/s12393-010-9028-y
  • Chakraborty, S., Rao, P. S.,Mishra, H.N. (2015). Kinetic modeling of polyphenoloxidase and peroxidase inactivation in pineapple (Ananas comosus L.) puree during high-pressure and thermal treatments. Innovative Food Science & Emerging Technologies, 27, 57-68. https://doi.org/10.1016/j.ifset.2014.11.003
  • Chen, G. (2013). Estimating microbial survival parameters from dynamic survival data using Microsoft Excel. International Journal of Food Science & Technology, 48(9), 1841-1846. https://doi.org/10.1111/ijfs.12159
  • Cheng, X.-F., Zhang, M., Adhikari, B. (2013). The inactivation kinetics of polyphenol oxidase in mushroom (Agaricus bisporus) during thermal and thermosonic treatments. Ultrasonics Sonochemistry, 20(2), 674-679. https://doi.org/10.1016/j.ultsonch.2012.09.012
  • Crelier, S., Robert, M.-C.,Claude, J., Juillerat, M.A. (2001). Tomato (Lycopersicon esculentum) pectin methylesterase and polygalacturonase behaviors regarding heat-and pressure-induced inactivation. Journal of Agricultural and Food Chemistry, 49(11), 5566-5575. https://doi.org/10.1021/jf010202u
  • Del Olmo, A., Morales, P., Ávila, M.,Calzada, J., Nuñez, M. (2010). Effect of single-cycle and multiple-cycle high-pressure treatments on the colour and texture of chicken breast fillets. Innovative food science & emerging technologies, 11(3), 441-444. https://doi.org/10.1016/j.ifset.2010.01.012
  • Denys, S.,Van Loey, A.M., Hendrickx, M.E. (2000). A modeling approach for evaluating process uniformity during batch high hydrostatic pressure processing: combination of a numerical heat transfer model and enzyme inactivation kinetics. Innovative Food Science & Emerging Technologies, 1(1), 5-19. https://doi.org/10.1016/S1466-8564(99)00003-X
  • Garcia-Palazon, A., Suthanthangjai, W., Kajda, P., Zabetakis, I. (2004). The effects of high hydrostatic pressure on β-glucosidase, peroxidase and polyphenoloxidase in red raspberry (Rubus idaeus) and strawberry (Fragaria× ananassa). Food Chemistry, 88(1), 7-10. https://doi.org/10.1016/j.foodchem.2004.01.019
  • Giner, J., Ortega, M., Mesegué, M., Gimeno, V., Barbosa‐Cánovas, G. Martín, O. (2002). Inactivation of peach polyphenoloxidase by exposure to pulsed electric fields. Journal of Food Science, 67(4), 1467-1472. https://doi.org/10.1111/j.1365-2621.2002.tb10307.x
  • Golan-Goldhirsh, A.,Whitaker, J.R. Kahn, V. (1984). Relation between structure of polyphenol oxidase and prevention of browning. In Nutritional and Toxicological Aspects of Food Safety (pp. 437-456): Springer.
  • Goyeneche, R., Di Scala, K., Roura, S. (2013). Biochemical characterization and thermal inactivation of polyphenol oxidase from radish (Raphanus sativus var. sativus). LWT-Food Science and Technology, 54(1), 57-62. https://doi.org/10.1016/j.lwt.2013.04.014
  • Hendrickx, M., Ludikhuyze, L., Van den Broeck, I., Weemaes, C. (1998). Effects of high pressure on enzymes related to food quality. Trends in Food Science & Technology, 9(5), 197-203. https://doi.org/10.1016/S0924-2244(98)00039-9
  • Islam, M.N., Zhang, M., Adhikari, B. (2014). The inactivation of enzymes by ultrasound—a review of potential mechanisms. Food Reviews International, 30(1), 1-21. https://doi.org/10.1080/87559129.2013.853772
  • Kadkhodaee, R., Povey, M.J. (2008). Ultrasonic inactivation of Bacillus α-amylase. I. Effect of gas content and emitting face of probe. Ultrasonics Sonochemistry, 15(2), 133-142. https://doi.org/10.1016/j.ultsonch.2007.02.005
  • Liu, F., Niu, L., Li, D., Liu, C., Jin, B. (2013). Kinetic characterization and thermal inactivation of peroxidase in aqueous extracts from sweet corn and waxy corn. Food and Bioprocess Technology, 6(10), 2800-2807. https://doi.org/10.1007/s11947-012-0996-1
  • Mafart, P., Couvert, O., Gaillard, S., Leguérinel, I. (2002). On calculating sterility in thermal preservation methods: application of the Weibull frequency distribution model. International Journal of Food Microbiology, 72(1-2), 107-113. https://doi.org/10.1016/S0168-1605(01)00624-9
  • Marszałek, K., Szczepańska, J., Starzonek, S., Woźniak, Ł., Trych, U., Skąpska, S., Rzoska, S., Saraiva, J.A., Lorenzo, J. M. Barba, F.J. (2019). Enzyme inactivation and evaluation of physicochemical properties, sugar and phenolic profile changes in cloudy apple juices after high pressure processing, and subsequent refrigerated storage. Journal of Food Process Engineering, 42(4), e13034. https://doi.org/10.1111/jfpe.13034
  • Morales, P., Calzada, J., Rodriguez, B., De Paz, M., Nunez, M. (2009). Inactivation of Salmonella enteritidis in chicken breast fillets by single-cycle and multiple-cycle high pressure treatments. Foodborne Pathogens and Disease, 6(5), 577-581. https://doi.org/10.1089/fpd.2008.0218
  • Nienaber, U., Shellhammer, T. (2001). High‐pressure processing of orange juice: kinetics of pectinmethylesterase inactivation. Journal of Food Science, 66(2), 328-331. https://doi.org/10.1111/j.1365-2621.2001.tb11341.x
  • Periago, P.,Van Zuijlen, A., Fernandez, P., Klapwijk, P., Ter Steeg, P., Corradini, M. Peleg, M. (2004). Estimation of the non-isothermal inactivation patterns of Bacillus sporothermodurans IC4 spores in soups from their isothermal survival data. International Journal of Food Microbiology, 95(2), 205-218. https://doi.org/10.1016/j.ijfoodmicro.2004.02.015
  • Ponce, E., Pla, R., Sendra, E., Guamis, B., Mor-Mur, M. (1999). Destruction of Salmonella enteritidis inoculated in liquid whole egg by high hydrostatic pressure: comparative study in selective and non-selective media. Food Microbiology, 16(4), 357-365. https://doi.org/10.1006/fmic.1998.0248
  • Riahi, E., Ramaswamy, H.S. (2004). High pressure inactivation kinetics of amylase in apple juice. Journal of Food Engineering, 64(2), 151-160. https://doi.org/10.1016/j.jfoodeng.2003.09.025
  • Sulaiman, A., Soo, M.J., Farid, M., Silva, F.V. (2015). Thermosonication for polyphenoloxidase inactivation in fruits: Modeling the ultrasound and thermal kinetics in pear, apple and strawberry purees at different temperatures. Journal of Food Engineering, 165, 133-140. https://doi.org/10.1016/j.jfoodeng.2015.06.020
  • Terefe, N.S., Yang, Y.H., Knoerzer, K., Buckow, R.,Versteeg, C. (2010). High pressure and thermal inactivation kinetics of polyphenol oxidase and peroxidase in strawberry puree. Innovative Food Science & Emerging Technologies, 11(1), 52-60. https://doi.org/10.1016/j.ifset.2009.08.009
  • van Boekel, M.A. (2002). On the use of the Weibull model to describe thermal inactivation of microbial vegetative cells. International Journal of Food Microbiology, 74(1-2), 139-159. https://doi.org/10.1016/S0168-1605(01)00742-5
There are 29 citations in total.

Details

Primary Language Turkish
Subjects Food Engineering
Journal Section Research Articles
Authors

Gonca Bilge 0000-0002-2906-3369

Publication Date August 19, 2020
Submission Date February 7, 2020
Published in Issue Year 2020Volume: 6 Issue: 4

Cite

APA Bilge, G. (2020). Gıdalarda polifenol oksidaz enzimi inaktivasyonunun modellenmesi ve simülasyonu. Food and Health, 6(4), 248-260. https://doi.org/10.3153/FH20025

16339

Journal is licensed under a

CreativeCommons Attribtion-ShareAlike 4.0 International Licence  14627 1331027042
Diamond Open Access refers to a scholarly publication model in which journals and platforms do not charge fees to either authors or readers.

Open Access Statement:

This is an open access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This is in accordance with the BOAI definition of open access.

Archiving Policy:

27222

Archiving is done according to ULAKBİM "DergiPark" publication policy (LOCKSS).