Review
BibTex RIS Cite

AKIM SİTOMETRİ VE SU ÜRÜNLERİ UYGULAMALARI

Year 2016, Volume: 2 Issue: 4, 159 - 175, 21.06.2016
https://doi.org/10.3153/JAEFR16018

Abstract

Akım sitometri (AS), 0.2–150
µm büyüklüğündeki partiküllerin genellikle de hücrelerin tek tek, bir ışık demetinin önünden, bir sıvı
içinde geçerken, anlık olarak ölçümlerini yapan daha sonra da çoklu
fiziksel özelliklerini analiz eden bir teknolojidir. Akım sitometri, hücre biyolojisini
birçok açıdan araştırmak ve istenilen
hücreleri izole etmek için kullanılır. Akım sitometri çok sayıda tek hücrenin birçok karakteristiklerini hızlı bir şekilde
ölçtüğünden hücre tabanlı
analizde altın standart olarak
kabul edilmiştir. Diğer tekniklerle karşılaştırıldığında,
Akım sitometri’nin hızlı veri eldesini ve çok parametreli analizi kolaylaştırması popülaritesinin artmasına ve uygulama alanlarının genişlemesine yol
açmıştır. Bu derlemede, Akım sitometri’nin
su ürünleri alanındaki mevcut durumu ve uygulamaları hakkında özet bir şekilde
bilgi verilmiştir.

References

  • Alcox, K.A. & Ford, S.E. (1998). Variability in molluscan hemocytes: a flow cytometric study. Tissue Cell, 30(2), 195-204.
  • Allen, S.K. (1983). Flowcytometry: Assaying experimental polyploid fish and shellfish. Aquaculture, 33(1-4), 317-328.
  • Alsharif, R. & Godfrey, W. (2002). Bacterial detection and Live/Dead discrimination by flow cytometry. Immunocytometry systems, BD Biosciences, San Jose, USA.
  • Alver, E., Demirci, A. & Özcimder, M. (2012). Polisiklik Aromatik Hidrokarbonlar ve Sağlığa Etkileri. Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 3(1), 45-52.
  • Barreda, D.R., Neumann, N.F. & Belosevic, M. (2000). Flow cytometric analysis of PKH26-labele goldfish kidney-derived macrophages. Developmental & Comparative Immunology, 24(4), 395-406.
  • BD Biosciences (2000). Introduction to flow cytometry: A learning guide. Available at: https://tr.scribd.com/doc/184733295/Introduction-to-Flow-Cytometry-A-Learning-Guide (Accessed April 8, 2015).
  • BD Flow Cytometry (2008). Technical Bulletin. https://www.bdbiosciences.com/documents/BD_Research_FlowCyto_TechBulletin.pdf (Accessed May 18, 2015).
  • Bihari, N., Mičić, M., Batel, R. & Zahn, R.K. (2003). Flow cytometric detection of DNA cell cycle alterations in hemocytes of mussels (Mytilus galloprovincialis) off the Adriatic coast, Croatia. Aquatic Toxicology, 64(2), 121-129.
  • Bonato, S., Christaki, U., Lefebvre, A., Lizon, F., Thyssen, M. & Artigas, L.F. (2015). High spatial variability of phytoplankton assessed by flow cytometry, in a dynamic productive coastal area, in spring. The Eastern English Channel, Estuarine, Coastal and Shelf Science, 154, 214-223.
  • Chaiton, J.A. & Allen, S.K. (1985). Early detection of triploidy in the larvae of Pacific oysters, Crassostrea gigas, by flow cytometry. Aquaculture, 48(1), 35-43.
  • Chilmonczyk, S. & Monge, D. (1999). Flow cytometry as a tool for assessment of the fish cellular immune response to pathogens. Fish & Shellfish Immunology, 9(4), 319-333.
  • Chilmonczyk, S. & Monge, D. (1998). Cellular Immune Response in Rainbow Trout (Oncorhynchus mykiss): Flow Cytometric Study. Acta Veterinaria Brno, 67, 207-213.
  • Cid, A., Herrero, C., Torres, E. & Abalde, J. (1995). Copper toxicity on the marine microalga Phaeodactylum tricornutum: effects on photosynthesis and related parameters. Aquatic Toxicology, 31(2), 165-174.
  • Corina, P. & Brussaard, D. (2004). Optimization of Procedures for Counting Viruses by Flow Cytometry. Applied and Environmental Microbiology, 70(3), 1506-1513.
  • Cuesta, A., Esteban, M.A. & Meseguer, J. (1999). Natural cytotoxic activity of gilthead seabream (Sparus aurata L.) leucocytes: Assessment by flow cytometry and microscopy. Veterinary Immunology and Immunopathology, 71(3–4), 161–171.
  • Czechowska, K., Johnson, D.R. & Van der Meer, J.R. (2008): Use of flow cytometric methods for single-cell analysis in environmental microbiology. Current Opinion in Microbiology, 11, 205–212.
  • Danion, M., Le Floch, S., Kanan, R., Lamour, F. & Quentel, C. (2011). Effects of in vivo chronic hydrocarbons pollution on sanitary status and immune system in sea bass (Dicentrarchus labrax L.). Aquatic Toxicology, 105(3-4), 300-11.
  • Demers, S., Davis, K. & Cucci, T.L. (1989). A Flow Cytometric Approach to Assessing the Environmental and Physiological Status of Phytoplankton. Cytometry, 10, 644-652.
  • Demers, S., Kim, J., Legendre, P. & Legendre, L. (1992). Analyzing Multivariate Flow Cytometric Data in Aquatic Sciences. Cytometry, 13, 291-298.
  • Develi, E.E. (2009). Denizel Fitoplanktonun Ekolojik Önemi ve Küresel İklim Değişikliğindeki Rolü. Mersin Üniversitesi Eğitim Fakültesi Dergisi, 5(2), 285-293.
  • Donaghy, L., Kim, B.K., Hong, H.K., Park, H.S. & Choi, K.S. (2009). Flow cytometry studies on the populations and immune parameters of the hemocytes of the Suminoe oyster, Crassostrea ariakensis. Fish & Shellfish Immunology, 27(2), 296-301.
  • Duan, N., Wua, S.J., Yu, Y., Ma, X.Y., Xia, Y. & Chen, X.J. (2013). A dual-color flow cytometry protocol for the simultaneous detection of Vibrio parahaemolyticus and Salmonella typhimurium using aptamer conjugated quantu dots as labels. Analytica Chimica Acta, 804, 151-158.
  • Duhamel, S., Gregori, G., Wambeke, F.V., Mauriac, R. & Nedoma, J. (2008). A method for analysing phosphatase activity in aquatic bacteria at the single cell level using flow cytometry. Journal of Microbiological Methods, 75(2), 269–278.
  • Ellsaesser, C.F., Miller, N.W., Cuchens, M.A., Lobb, C.J. & Clem, L.W. (1985). Analysis of Channel Catfish Peripheral Blood Leucocytes by Bright-Field Microscopy and Flow Cytometry. Transactions of the American Fisheries Society, 114(2), 279-285.
  • Endo, H., Nakayama, J., Ushio, H., Hayashi, T. & Watanabe, E. (1998). Application of flow cytometry for rapid detection of Lactococcus garvieae. Applied Biochemistry and Biotechnology, 75(2- 3), 295-306.
  • Esteban, M.A., Mulero, V., Muñoz, J. & Meseguer, J. (1998). Methodological aspects of assessing phagocytosis of Vibrio anguillarum by leucocytes of gilthead seabream (Sparus aurata L.) by flow cytometry and electron microscopy. Cell and Tissue Research, 293(1), 133-141.
  • Esteban, M.Á., Muñoz, J. & Meseguer, J. (2000). Blood cells of sea bass (Dicentrarchus labrax L.). Flow cytometric and microscopic studies. The Anatomical Record, 258(1), 80-89.
  • Flow cytometry, Guide to flow cytometry 2006. Dako, Carpinteria California, USA. http://www.dako.com/08065_15dec05_guide_to_flow_cytometry.pdf (Accessed April 18, 2015).
  • Goedken, M., De Guise, S. (2004): Flow cytometry as a tool to quantify oyster defence mechanisms. Fish & Shellfish Immunology, 16(4), 539-52.
  • Hadjoudja, S., Vignoles, C., Deluchat, V., Lenain, J.F., Jeune, A. & Baudu, M. (2009). Short term copper toxicity on Microcystis aeruginosa and Chlorella vulgaris using flow cytometry. Aquatic Toxicology, 94(4), 255-264.
  • Harford, A.J., O'Halloran, K. & Wright, P.F.A. (2006): Flow cytometric analysis and optimisation for measuring phagocytosis in three Australian freshwater fish. Fish & Shellfish Immunology, 20(4), 562-573.
  • Haugland, G.T., Rønneseth, A. & Wergeland, H.I. (2014). Flow cytometry analyses of phagocytic and respiratory burst activities and cytochemical characterization of leucocytes isolated from wrasse (Labrus bergylta A.). Fish & Shellfish Immunology, 39(1), 51-60.
  • Hegaret, H., Wikfors, G.H. & Soudant, P. (2003). Flow cytometric analysis of haemocytes from eastern oysters, Crassostrea virginica, subjected to a sudden temperature elevation II. Haemocyte functions: aggregation, viability, phagocytosis, and respiratory burst. Journal of Experimental Marine Biology and Ecology, 293(2003), 249-265.
  • Hibi, K., Ushio, H., Fukuda, H., Mitsubayashi, K., Hayashi, T., Ren, H. & Endo, H. (2008). Immunomagnetic separation using carbonyl iron powder and flow cytometryfor rapid detection of Flavobacterium psychrophilum. Analytical and Bioanalytical Chemistry, 391(4), 1147-1152.
  • Inoue, T., Moritomo, T., Tamura, Y., Mamiya, S., Fujino, H. & Nakanishi, T. (2002). A new method for fish leucocyte counting and partial differentiation by flow cytometry. Fish & Shellfish Immunology, 13(5), 379-390.
  • Ito, K., Ghattas, S., Yanagisawa, M., Uchida, S., Sakail, H. & Yanail, T. (2014). Assessment of Flow Cytometry in Counting Blood of Whale Sharks as a Rapid and Reliable Method.International Journal of Scientific Research, 3(12), 389-397.
  • Joachimsthal, E.L., Ivanov, V., Tay, J.H. & L. Tay, S.T. (2003). Flow cytometry and conventional enumeration of microorganisms in ships ballast water and marine samples. Marine Pollution Bulletin, 46(3), 308-313.
  • Kemenade, B., Groeneveld, A., Rens, B. & Rombout, J. (1994). Characterization of macrophages and neutrophilic granulocytes from the pronephros of carp (Cyprinus carpio). Journal of Experimental Biology, 187, 143-158.
  • Korytar, T., Dang Thi, H., Takizawa, F. & Köllner, B. (2013). A multicolour flow cytometry identifying defined leukocyte subsets of rainbow trout (Oncorhynchus mykiss). Fish & Shellfish Immunology, 35(6), 2017-2019.
  • Koumans-van Diepen, J.C.E., Taverne-Thiele, J.J., van Rens, B.T.T.M. & Rombout, J.H.W.M. (1994). Immunocytochemical and flow cytometric analysis of B cells and plasma cells in carp (Cyprinus carpio L.); an ontogenetic study. Fish & Shellfish Immunology, 4(1), 19-28.
  • Köllner, B., Fischer, U., Rombout, J.H.W.M., Taverne-Thiele, J.J. & Hansen, J.D. (2004). Potential involvement of rainbow trout thrombocytes in immune functions: a study using a panel of monoclonal antibodies and RT-PCR. Developmental & Comparative Immunology, 28(10), 1049–1062.
  • Köllner, B. & Kotterba, G. (2002). Temperature dependent activation of leucocyte populations of rainbow trout, Oncorhynchus mykiss, after intraperitoneal immunisation with Aeromonas salmonicida. Fish & Shellfish Immunology, 12(1), 35-48.
  • Lecommandeur, D., Haffray, P. & Philippe, L. (1994). Rapid flow cytometry method for ploidy determination in salmonid eggs. Aquaculture and Fissheries Management, 25, 345-350.
  • Lehmann, A.K., Sørnes, S. & Halstensen, A. (2000). Phagocytosis: measurement by flow cytometry. Journal of Immunological Methods., 243(1–2), 229-242.
  • Lezcano, M., Granja, C. & Salazar, M. (2004). The use of flow cytometry in the evaluation of cell viability of cryopreserved sperm of the marine shrimp (Litopenaeus vannamei). Cryobiology, 48(3), 349-56.
  • Lucasa, R., Courties, C., Herbland, A., Goulletquer, P., Marteau, A.L. & Lemonnier, H. (2010). Eutrophication in a tropical pond: Understanding the bacterioplankton and phytoplankton dynamics during a vibriosis outbreak using flow cytometric analyses. Aquaculture, 310(1-2), 112-121.
  • MacDonald, G.Z., Hogan, N.S., Köllner, B., Thorpe, K.L., Phalen, L.J., Wagner, B.D. & Heuvel, M.R. (2012). Immunotoxic effects of oil sands-derived naphthenic acids to rainbow trout. Aquatic Toxicology, 126, 95-103.
  • Manti, A., Papa, S. & Boi, P., (2015). What Flow Cytometry Can Tell Us About Marine Micro- Organisms– Current Status and Future Applications Department of Earth, Life and Environmental Sciences, University of Urbino “Carlo Bo”, Italy, http://cdn.intechopen.com/pdfs-wm/37421.pdf (Accessed April 10, 2015).
  • Marie, D., Partensky, F., Jacquet, S. & Vaulot, D. (1997). Enumeration and Cell Cycle Analysis of Natural Populations of Marine Picoplankton by Flow Cytometry Using the Nucleic Acid Stain SYBR Green I. Applied and Environmental Microbiology, 63, 1186-193.
  • Melamed, M.R. (2001). A Brief History of flow cytometry and sorting. Methods in Cell Biology Volume 63, Part A.
  • Meyers, S.P. (2000): Developments in Aquatic Microbiology, International Microbiology, 3, 203-211.
  • Milston, R.H., Vella, A.T., Crippen, T.L., Fitzpatrick, M.S., Leong, J.C. & Schreck, C.B. (2003). In vitro detection of functional humoral immunocompetence in juvenile Chinook salmon (Oncorhynchus tshawytscha) using flow cytometry. Fish & Shellfish Immunology, 15(2), 145-158.
  • Mohammed, J.S. (2015). Micro and nanotechnologies in plankton research. Progress in Oceanography, 134, 451-473.
  • Morgan, J.A.W., Pottinger, T. G. & Rippon, P. (1993). Evaluation of flow cytometry as a method for quantification of circulating blood cell populations in salmonid fish. Journal of Fish Biology, 42(1), 131-141.
  • Moritomo, T., Serata, K., Teshirogi, K., Aikawa, H., Inoue, Y., Itou, T. & Nakanishi, T. (2003). Flow cytometric analysis of the neutrophil respiratory burst of ayu, Plecoglossus altivelis: comparison with other fresh water fish. Fish & Shellfish Immunology, 15(1), 29-38.
  • Muñoz-Atienza, E., Araújo, C. Lluch, N., Hernández, P.E., Herranz, C. Cintas, L.M. & Magadán, S. (2015): Different impact of heat-inactivated and viable lactic acid bacteria of aquatic origin on turbot (Scophthalmus maximus L.) head-kidney leucocytes. Fish & Shellfish Immunology, 44(1), 214-223.
  • Newaj-Fyzul, A., Adesiyun, A., Mutani, A., Ramsubhag, A., Brunt, J. & Austin, B. (2007). Bacillus subtilis AB1 controls Aeromonas infection in rainbow trout (Oncorhynchus mykiss, Walbaum). Journal of Applied Microbiology, 103(5), 1699-1706.
  • Nogueira, P., Lourenço, J., Rodriguez, E., Pacheco, M., Santos, C., Rotchell, J.M. & Mendo, S., (2009). Transcript profiling and DNA damage in the European eel (Anguilla anguilla L.) exposed to 7,12-dimethylbenz[a]anthracene. Aquatic Toxicology, 94(2), 123-130.
  • Nuding, S. & Zabel, L.T. (2013). Detection, Identification, and Susceptibility Testing of Bacteria by Flow Cytometry. Journal of Bacteriology & Parasitology, S5:005.
  • Ormerod, M.G. (2008). Flow Cytometry–A Basic Introduction. http://flowbook.denovosoftware.com/
  • Ortuno, J., Esteban, M.A. & Meseguer, J. (2000). Kinetics of hydrogen peroxide production during in vitro respiratory burst of seabream (Sparus aurata L.) head-kidney leucocytes, as measured by a flow cytometric method. Fish & Shellfish Immunology, 10(8), 725-729.
  • Özdemir, H. & Artaç, H. (2013). Akım sitometri ve temel özellikleri. Selçuk Pediatri, 1(1), 12-15.
  • Pettersen, E.F., Bjerknes, R. & Wergeland, H.I. (2000). Studies of Atlantic salmon (Salmo salar L.) blood, spleen and head kidney leucocytes using specific monoclonal antibodies, immunohistochemistry and flow cytometry. Fish & Shellfish Immunology, 10(8), 695-792.
  • Phalen, L.J., Köllner, B., Leclair, L.A., Hogan, N.S. & Heuvel, M.R. (2013). The effects of benzo[a]pyrene on leucocyte distribution and antibody response in rainbow trout (Oncorhynchus mykiss). Aquatic Toxicology, 147, 121-128.
  • Rahman, M. (2006). Introduction to flow cytometry. Serotec Ltd. Oxford (UK). Published by Serotec Ltd.
  • Rombout, J.H.W.M., Taverne, N., Van de Kamp, M. & Taverne-Thiele, A.J. (1993): Differences in mucus and serum immunoglobulin of carp (Cyprinus carpio L.), Developmental & Comparative Immunology, 17(4), 309-317.
  • Rombout, J.H.W.M., Van diepen, J.C.E.K., Emmer, P.M., Tavernethiele, J.J. & Taverne, N., 1996. Characterization of carp thrombocytes with specific monoclonal antibodies. Journal of Fish Biology, 49, 521–531.
  • Rønneseth, A., Haugland, G.T. & Wergeland, H.I. (2013). Flow cytometry detection of infectious pancreatic necrosis virus (IPNV) within subpopulations of Atlantic salmon (Salmo salar L.) leucocytes after vaccination and during the time course of experimental infection. Fish & Shellfish Immunology, 34(5), 1294-305.
  • Rose, J.M., Caron, D.A., Sieracki, M.E., Poulton, N. (2004). Counting heterotrophic nanoplanktonic protists in cultures and aquatic communities by flow cytometry. Aquatic Microbial Ecology, 34, 263-277.
  • Saint-Jean, S.R., Borrego, J.J. & Perez-Prieto, S.I., (2001). Comparative evaluation of five serological methods and RT-PCR assay for the detection of IPNV in fish. Journal of Virological Methods, 97, 23-31.
  • Sauve, S., Brousseau, P., Pellerin, J., Morin, Y., Senécal, L., Goudreau, P. & Fournier, M. (2002). Phagocytic activity of marine and freshwater bivalves: in vitro exposure of hemocytes to metals (Ag, Cd, Hg and Zn). Aquatic Toxicology, 58(3-4), 189-200.
  • Seoane, M., Rioboo, C., Herrero, C. & Cid, Á. (2014). Toxicity of three antibiotics used in aquaculture on the marine microalgae Tetraselmis suecica (Kylin) Butch. Marine Environmental Research, 101, 1-7.
  • Shao, J.L., Dabrowski, M.J., White, C.C., Kavanagh, T.J. & Gallagher, E.P. (2010). Flow cytometric analysis of BDE 47 mediated injury to rainbow trout gill epithelial cells. Aquatic Toxicology, 97(1), 42-50.
  • Shapiro, H.M. (2003). Practical Flow Cytometry. 4th Edition, Wiley-Liss, New York.
  • Shelley, L.K., Balfry, S.K., Ross, P.S. & Kennedy, C.J. (2009). Immunotoxicological effects of a sub-chronic exposure to selected current-use pesticides in rainbow trout (Oncorhynchus mykiss). Aquatic Toxicology, 92(2), 95-103.
  • Stosik, M., Deptula, W., Wiktorowicz, K., Travnicek, M. & Baldy- Chudzik, K. (2002). Respiratory burst in neutrophilic granulocytes of carps (Cyprinus carpio): cytometric studies. Veterinary Medicine - Czech, 47(1), 17-20.
  • Taylor, S., Landman, M.J. & Ling, N. (2009). Flow Cytometric Characterization of Freshwater Crayfish Hemocytes for the Examination of Physiological Status in Wild and Captive Animals. Journal of Aquatic Animal Health, 21(3), 195-203,
  • Thorgaard, G.H., Rabınovıtch, P.S., Shen, M.W., Galla, G.A.E., Propp, J. & Utters, F.M. (1982). Triploid Rainbow Trout Identified By Flow Cytometry. Aquaculture, 29, 305-309.
  • Thuvander, A., Norrgren, L. & Fossum, C. (1987). Phagocytic cells in blood from rainbow trout, Salmo gairdneri (Richardson), characterized by flow cytometry and electron microscopy. Journal of Fish Biology, 31(2), 197-208.
  • Troussellier, M., Courties, C. & Vaquer, A. (1993). Recent applications of flow cytometry in aquatic microbial ecology. Biology of the Cell, 78(1–2), 111-121.
  • Tung, J.W., Heydari, K., Tirouvanziam, R., Sahaf, B., Parks, D.R. & Herzenberg, L.A. (2007). Modern Flow Cytometry: A Practical Approach. Clinics in Laboratory Medicine, 27(3), 453–468.
  • Valet, G. (1984). A new method for fast blood cell counting and partial differentiation by flow cytometry. Blut, 49(2), 83-90.
  • Veldhuis, M.J.W. & Kraay, G.W. (2000). Application of flow cytometry in marine phytoplankton research: current applications and future perspectives. Scientia Marina., 64(2), 121-134.
  • Vives-Rego, J., Lebaron, P., & Nebe-von Caron, G. (2000). Current and future applications of flow cytometry in aquatic microbiology. FEMS Microbiology Reviews, 24(4), 429-48.
  • Wang, Y., Hammes, F., Roy, K.D., Verstraete, W., & Boon, N. (2010). Past, present and future applications of flow cytometry in aquatic microbiology. Trends in Biotechnology, 10, 28(8), 416-24.
  • Wu, Y., Zeng, Y., Qu, J.Y., & Wang W. (2012). Mercury effects on Thalassiosira weissflogii: Applications of two-photon excitation chlorophyll fluorescence lifetime imaging and flow cytometry. Aquatic Toxicology, 110-111, 133-140.
  • Xian, J.A., Wang, A.L., Hao, X.M., Miao, Y.T., Li, B., Ye, C.X., & Liao, S.A. (2012). In vitro toxicity of nitrite on haemocytes of the tiger shrimp, Penaeus monodon, using flow cytometric analysis. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 156(2), 75-9.
  • Xian, J.A., Wang, A.L., Miao, Y.T. & Li, B. (2013): Flow cytometric analysis of in vitro cytotoxicity of cadmium in haemocytes from the tiger shrimp, Penaeus monodon. Bulletin of Environmental Contamination and Toxicology, 90(1), 46-50.
  • Yentsch, C.M., Horan, P.K., Muirhead, K., Dortch, Q., Haugen, E., Legendre, L., Murphy, L.S., Perry, M.J., Phinney, D.A., Pomponi, S.A., Spinrad, R.W., Wood, M., Yentsch, C.S., & Zahuranec, B.J. (1983). Flow cytometry and cell sorting: A technique for anaysis and sorting of aquatic particles. Limnology and Oceanography, 28(6), 1275-1280.

.FLOW CYTOMETRY AND ITS APPLICATIONS IN AQUTIC SCIENCES

Year 2016, Volume: 2 Issue: 4, 159 - 175, 21.06.2016
https://doi.org/10.3153/JAEFR16018

Abstract

Flow
cytometry (FCM) is a technology that simultaneously measures and then analyzes
multiple physical characteristics of 0.2–150 µm sized particles, usually cells,
as they flow one by one in a fluid stream through a beam of light. Flow cytometry
is used for investigating many aspects of cell biology and for isolating the
cells desired. Since Flow cytometry measures the multiple characteristics of
large numbers of individual cells rapidly, it has been accepted as the gold
Standard in cell based analysis. Since Flow cytometry facilitates rapid data
acquisition and eases multiparameter analysis, leading to increased popularity
and widespread applications as compared to other analyzing techniques. In this
review, the current status and utilization of Flow cytometry in aquatic sciences
are briefly presented.

References

  • Alcox, K.A. & Ford, S.E. (1998). Variability in molluscan hemocytes: a flow cytometric study. Tissue Cell, 30(2), 195-204.
  • Allen, S.K. (1983). Flowcytometry: Assaying experimental polyploid fish and shellfish. Aquaculture, 33(1-4), 317-328.
  • Alsharif, R. & Godfrey, W. (2002). Bacterial detection and Live/Dead discrimination by flow cytometry. Immunocytometry systems, BD Biosciences, San Jose, USA.
  • Alver, E., Demirci, A. & Özcimder, M. (2012). Polisiklik Aromatik Hidrokarbonlar ve Sağlığa Etkileri. Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 3(1), 45-52.
  • Barreda, D.R., Neumann, N.F. & Belosevic, M. (2000). Flow cytometric analysis of PKH26-labele goldfish kidney-derived macrophages. Developmental & Comparative Immunology, 24(4), 395-406.
  • BD Biosciences (2000). Introduction to flow cytometry: A learning guide. Available at: https://tr.scribd.com/doc/184733295/Introduction-to-Flow-Cytometry-A-Learning-Guide (Accessed April 8, 2015).
  • BD Flow Cytometry (2008). Technical Bulletin. https://www.bdbiosciences.com/documents/BD_Research_FlowCyto_TechBulletin.pdf (Accessed May 18, 2015).
  • Bihari, N., Mičić, M., Batel, R. & Zahn, R.K. (2003). Flow cytometric detection of DNA cell cycle alterations in hemocytes of mussels (Mytilus galloprovincialis) off the Adriatic coast, Croatia. Aquatic Toxicology, 64(2), 121-129.
  • Bonato, S., Christaki, U., Lefebvre, A., Lizon, F., Thyssen, M. & Artigas, L.F. (2015). High spatial variability of phytoplankton assessed by flow cytometry, in a dynamic productive coastal area, in spring. The Eastern English Channel, Estuarine, Coastal and Shelf Science, 154, 214-223.
  • Chaiton, J.A. & Allen, S.K. (1985). Early detection of triploidy in the larvae of Pacific oysters, Crassostrea gigas, by flow cytometry. Aquaculture, 48(1), 35-43.
  • Chilmonczyk, S. & Monge, D. (1999). Flow cytometry as a tool for assessment of the fish cellular immune response to pathogens. Fish & Shellfish Immunology, 9(4), 319-333.
  • Chilmonczyk, S. & Monge, D. (1998). Cellular Immune Response in Rainbow Trout (Oncorhynchus mykiss): Flow Cytometric Study. Acta Veterinaria Brno, 67, 207-213.
  • Cid, A., Herrero, C., Torres, E. & Abalde, J. (1995). Copper toxicity on the marine microalga Phaeodactylum tricornutum: effects on photosynthesis and related parameters. Aquatic Toxicology, 31(2), 165-174.
  • Corina, P. & Brussaard, D. (2004). Optimization of Procedures for Counting Viruses by Flow Cytometry. Applied and Environmental Microbiology, 70(3), 1506-1513.
  • Cuesta, A., Esteban, M.A. & Meseguer, J. (1999). Natural cytotoxic activity of gilthead seabream (Sparus aurata L.) leucocytes: Assessment by flow cytometry and microscopy. Veterinary Immunology and Immunopathology, 71(3–4), 161–171.
  • Czechowska, K., Johnson, D.R. & Van der Meer, J.R. (2008): Use of flow cytometric methods for single-cell analysis in environmental microbiology. Current Opinion in Microbiology, 11, 205–212.
  • Danion, M., Le Floch, S., Kanan, R., Lamour, F. & Quentel, C. (2011). Effects of in vivo chronic hydrocarbons pollution on sanitary status and immune system in sea bass (Dicentrarchus labrax L.). Aquatic Toxicology, 105(3-4), 300-11.
  • Demers, S., Davis, K. & Cucci, T.L. (1989). A Flow Cytometric Approach to Assessing the Environmental and Physiological Status of Phytoplankton. Cytometry, 10, 644-652.
  • Demers, S., Kim, J., Legendre, P. & Legendre, L. (1992). Analyzing Multivariate Flow Cytometric Data in Aquatic Sciences. Cytometry, 13, 291-298.
  • Develi, E.E. (2009). Denizel Fitoplanktonun Ekolojik Önemi ve Küresel İklim Değişikliğindeki Rolü. Mersin Üniversitesi Eğitim Fakültesi Dergisi, 5(2), 285-293.
  • Donaghy, L., Kim, B.K., Hong, H.K., Park, H.S. & Choi, K.S. (2009). Flow cytometry studies on the populations and immune parameters of the hemocytes of the Suminoe oyster, Crassostrea ariakensis. Fish & Shellfish Immunology, 27(2), 296-301.
  • Duan, N., Wua, S.J., Yu, Y., Ma, X.Y., Xia, Y. & Chen, X.J. (2013). A dual-color flow cytometry protocol for the simultaneous detection of Vibrio parahaemolyticus and Salmonella typhimurium using aptamer conjugated quantu dots as labels. Analytica Chimica Acta, 804, 151-158.
  • Duhamel, S., Gregori, G., Wambeke, F.V., Mauriac, R. & Nedoma, J. (2008). A method for analysing phosphatase activity in aquatic bacteria at the single cell level using flow cytometry. Journal of Microbiological Methods, 75(2), 269–278.
  • Ellsaesser, C.F., Miller, N.W., Cuchens, M.A., Lobb, C.J. & Clem, L.W. (1985). Analysis of Channel Catfish Peripheral Blood Leucocytes by Bright-Field Microscopy and Flow Cytometry. Transactions of the American Fisheries Society, 114(2), 279-285.
  • Endo, H., Nakayama, J., Ushio, H., Hayashi, T. & Watanabe, E. (1998). Application of flow cytometry for rapid detection of Lactococcus garvieae. Applied Biochemistry and Biotechnology, 75(2- 3), 295-306.
  • Esteban, M.A., Mulero, V., Muñoz, J. & Meseguer, J. (1998). Methodological aspects of assessing phagocytosis of Vibrio anguillarum by leucocytes of gilthead seabream (Sparus aurata L.) by flow cytometry and electron microscopy. Cell and Tissue Research, 293(1), 133-141.
  • Esteban, M.Á., Muñoz, J. & Meseguer, J. (2000). Blood cells of sea bass (Dicentrarchus labrax L.). Flow cytometric and microscopic studies. The Anatomical Record, 258(1), 80-89.
  • Flow cytometry, Guide to flow cytometry 2006. Dako, Carpinteria California, USA. http://www.dako.com/08065_15dec05_guide_to_flow_cytometry.pdf (Accessed April 18, 2015).
  • Goedken, M., De Guise, S. (2004): Flow cytometry as a tool to quantify oyster defence mechanisms. Fish & Shellfish Immunology, 16(4), 539-52.
  • Hadjoudja, S., Vignoles, C., Deluchat, V., Lenain, J.F., Jeune, A. & Baudu, M. (2009). Short term copper toxicity on Microcystis aeruginosa and Chlorella vulgaris using flow cytometry. Aquatic Toxicology, 94(4), 255-264.
  • Harford, A.J., O'Halloran, K. & Wright, P.F.A. (2006): Flow cytometric analysis and optimisation for measuring phagocytosis in three Australian freshwater fish. Fish & Shellfish Immunology, 20(4), 562-573.
  • Haugland, G.T., Rønneseth, A. & Wergeland, H.I. (2014). Flow cytometry analyses of phagocytic and respiratory burst activities and cytochemical characterization of leucocytes isolated from wrasse (Labrus bergylta A.). Fish & Shellfish Immunology, 39(1), 51-60.
  • Hegaret, H., Wikfors, G.H. & Soudant, P. (2003). Flow cytometric analysis of haemocytes from eastern oysters, Crassostrea virginica, subjected to a sudden temperature elevation II. Haemocyte functions: aggregation, viability, phagocytosis, and respiratory burst. Journal of Experimental Marine Biology and Ecology, 293(2003), 249-265.
  • Hibi, K., Ushio, H., Fukuda, H., Mitsubayashi, K., Hayashi, T., Ren, H. & Endo, H. (2008). Immunomagnetic separation using carbonyl iron powder and flow cytometryfor rapid detection of Flavobacterium psychrophilum. Analytical and Bioanalytical Chemistry, 391(4), 1147-1152.
  • Inoue, T., Moritomo, T., Tamura, Y., Mamiya, S., Fujino, H. & Nakanishi, T. (2002). A new method for fish leucocyte counting and partial differentiation by flow cytometry. Fish & Shellfish Immunology, 13(5), 379-390.
  • Ito, K., Ghattas, S., Yanagisawa, M., Uchida, S., Sakail, H. & Yanail, T. (2014). Assessment of Flow Cytometry in Counting Blood of Whale Sharks as a Rapid and Reliable Method.International Journal of Scientific Research, 3(12), 389-397.
  • Joachimsthal, E.L., Ivanov, V., Tay, J.H. & L. Tay, S.T. (2003). Flow cytometry and conventional enumeration of microorganisms in ships ballast water and marine samples. Marine Pollution Bulletin, 46(3), 308-313.
  • Kemenade, B., Groeneveld, A., Rens, B. & Rombout, J. (1994). Characterization of macrophages and neutrophilic granulocytes from the pronephros of carp (Cyprinus carpio). Journal of Experimental Biology, 187, 143-158.
  • Korytar, T., Dang Thi, H., Takizawa, F. & Köllner, B. (2013). A multicolour flow cytometry identifying defined leukocyte subsets of rainbow trout (Oncorhynchus mykiss). Fish & Shellfish Immunology, 35(6), 2017-2019.
  • Koumans-van Diepen, J.C.E., Taverne-Thiele, J.J., van Rens, B.T.T.M. & Rombout, J.H.W.M. (1994). Immunocytochemical and flow cytometric analysis of B cells and plasma cells in carp (Cyprinus carpio L.); an ontogenetic study. Fish & Shellfish Immunology, 4(1), 19-28.
  • Köllner, B., Fischer, U., Rombout, J.H.W.M., Taverne-Thiele, J.J. & Hansen, J.D. (2004). Potential involvement of rainbow trout thrombocytes in immune functions: a study using a panel of monoclonal antibodies and RT-PCR. Developmental & Comparative Immunology, 28(10), 1049–1062.
  • Köllner, B. & Kotterba, G. (2002). Temperature dependent activation of leucocyte populations of rainbow trout, Oncorhynchus mykiss, after intraperitoneal immunisation with Aeromonas salmonicida. Fish & Shellfish Immunology, 12(1), 35-48.
  • Lecommandeur, D., Haffray, P. & Philippe, L. (1994). Rapid flow cytometry method for ploidy determination in salmonid eggs. Aquaculture and Fissheries Management, 25, 345-350.
  • Lehmann, A.K., Sørnes, S. & Halstensen, A. (2000). Phagocytosis: measurement by flow cytometry. Journal of Immunological Methods., 243(1–2), 229-242.
  • Lezcano, M., Granja, C. & Salazar, M. (2004). The use of flow cytometry in the evaluation of cell viability of cryopreserved sperm of the marine shrimp (Litopenaeus vannamei). Cryobiology, 48(3), 349-56.
  • Lucasa, R., Courties, C., Herbland, A., Goulletquer, P., Marteau, A.L. & Lemonnier, H. (2010). Eutrophication in a tropical pond: Understanding the bacterioplankton and phytoplankton dynamics during a vibriosis outbreak using flow cytometric analyses. Aquaculture, 310(1-2), 112-121.
  • MacDonald, G.Z., Hogan, N.S., Köllner, B., Thorpe, K.L., Phalen, L.J., Wagner, B.D. & Heuvel, M.R. (2012). Immunotoxic effects of oil sands-derived naphthenic acids to rainbow trout. Aquatic Toxicology, 126, 95-103.
  • Manti, A., Papa, S. & Boi, P., (2015). What Flow Cytometry Can Tell Us About Marine Micro- Organisms– Current Status and Future Applications Department of Earth, Life and Environmental Sciences, University of Urbino “Carlo Bo”, Italy, http://cdn.intechopen.com/pdfs-wm/37421.pdf (Accessed April 10, 2015).
  • Marie, D., Partensky, F., Jacquet, S. & Vaulot, D. (1997). Enumeration and Cell Cycle Analysis of Natural Populations of Marine Picoplankton by Flow Cytometry Using the Nucleic Acid Stain SYBR Green I. Applied and Environmental Microbiology, 63, 1186-193.
  • Melamed, M.R. (2001). A Brief History of flow cytometry and sorting. Methods in Cell Biology Volume 63, Part A.
  • Meyers, S.P. (2000): Developments in Aquatic Microbiology, International Microbiology, 3, 203-211.
  • Milston, R.H., Vella, A.T., Crippen, T.L., Fitzpatrick, M.S., Leong, J.C. & Schreck, C.B. (2003). In vitro detection of functional humoral immunocompetence in juvenile Chinook salmon (Oncorhynchus tshawytscha) using flow cytometry. Fish & Shellfish Immunology, 15(2), 145-158.
  • Mohammed, J.S. (2015). Micro and nanotechnologies in plankton research. Progress in Oceanography, 134, 451-473.
  • Morgan, J.A.W., Pottinger, T. G. & Rippon, P. (1993). Evaluation of flow cytometry as a method for quantification of circulating blood cell populations in salmonid fish. Journal of Fish Biology, 42(1), 131-141.
  • Moritomo, T., Serata, K., Teshirogi, K., Aikawa, H., Inoue, Y., Itou, T. & Nakanishi, T. (2003). Flow cytometric analysis of the neutrophil respiratory burst of ayu, Plecoglossus altivelis: comparison with other fresh water fish. Fish & Shellfish Immunology, 15(1), 29-38.
  • Muñoz-Atienza, E., Araújo, C. Lluch, N., Hernández, P.E., Herranz, C. Cintas, L.M. & Magadán, S. (2015): Different impact of heat-inactivated and viable lactic acid bacteria of aquatic origin on turbot (Scophthalmus maximus L.) head-kidney leucocytes. Fish & Shellfish Immunology, 44(1), 214-223.
  • Newaj-Fyzul, A., Adesiyun, A., Mutani, A., Ramsubhag, A., Brunt, J. & Austin, B. (2007). Bacillus subtilis AB1 controls Aeromonas infection in rainbow trout (Oncorhynchus mykiss, Walbaum). Journal of Applied Microbiology, 103(5), 1699-1706.
  • Nogueira, P., Lourenço, J., Rodriguez, E., Pacheco, M., Santos, C., Rotchell, J.M. & Mendo, S., (2009). Transcript profiling and DNA damage in the European eel (Anguilla anguilla L.) exposed to 7,12-dimethylbenz[a]anthracene. Aquatic Toxicology, 94(2), 123-130.
  • Nuding, S. & Zabel, L.T. (2013). Detection, Identification, and Susceptibility Testing of Bacteria by Flow Cytometry. Journal of Bacteriology & Parasitology, S5:005.
  • Ormerod, M.G. (2008). Flow Cytometry–A Basic Introduction. http://flowbook.denovosoftware.com/
  • Ortuno, J., Esteban, M.A. & Meseguer, J. (2000). Kinetics of hydrogen peroxide production during in vitro respiratory burst of seabream (Sparus aurata L.) head-kidney leucocytes, as measured by a flow cytometric method. Fish & Shellfish Immunology, 10(8), 725-729.
  • Özdemir, H. & Artaç, H. (2013). Akım sitometri ve temel özellikleri. Selçuk Pediatri, 1(1), 12-15.
  • Pettersen, E.F., Bjerknes, R. & Wergeland, H.I. (2000). Studies of Atlantic salmon (Salmo salar L.) blood, spleen and head kidney leucocytes using specific monoclonal antibodies, immunohistochemistry and flow cytometry. Fish & Shellfish Immunology, 10(8), 695-792.
  • Phalen, L.J., Köllner, B., Leclair, L.A., Hogan, N.S. & Heuvel, M.R. (2013). The effects of benzo[a]pyrene on leucocyte distribution and antibody response in rainbow trout (Oncorhynchus mykiss). Aquatic Toxicology, 147, 121-128.
  • Rahman, M. (2006). Introduction to flow cytometry. Serotec Ltd. Oxford (UK). Published by Serotec Ltd.
  • Rombout, J.H.W.M., Taverne, N., Van de Kamp, M. & Taverne-Thiele, A.J. (1993): Differences in mucus and serum immunoglobulin of carp (Cyprinus carpio L.), Developmental & Comparative Immunology, 17(4), 309-317.
  • Rombout, J.H.W.M., Van diepen, J.C.E.K., Emmer, P.M., Tavernethiele, J.J. & Taverne, N., 1996. Characterization of carp thrombocytes with specific monoclonal antibodies. Journal of Fish Biology, 49, 521–531.
  • Rønneseth, A., Haugland, G.T. & Wergeland, H.I. (2013). Flow cytometry detection of infectious pancreatic necrosis virus (IPNV) within subpopulations of Atlantic salmon (Salmo salar L.) leucocytes after vaccination and during the time course of experimental infection. Fish & Shellfish Immunology, 34(5), 1294-305.
  • Rose, J.M., Caron, D.A., Sieracki, M.E., Poulton, N. (2004). Counting heterotrophic nanoplanktonic protists in cultures and aquatic communities by flow cytometry. Aquatic Microbial Ecology, 34, 263-277.
  • Saint-Jean, S.R., Borrego, J.J. & Perez-Prieto, S.I., (2001). Comparative evaluation of five serological methods and RT-PCR assay for the detection of IPNV in fish. Journal of Virological Methods, 97, 23-31.
  • Sauve, S., Brousseau, P., Pellerin, J., Morin, Y., Senécal, L., Goudreau, P. & Fournier, M. (2002). Phagocytic activity of marine and freshwater bivalves: in vitro exposure of hemocytes to metals (Ag, Cd, Hg and Zn). Aquatic Toxicology, 58(3-4), 189-200.
  • Seoane, M., Rioboo, C., Herrero, C. & Cid, Á. (2014). Toxicity of three antibiotics used in aquaculture on the marine microalgae Tetraselmis suecica (Kylin) Butch. Marine Environmental Research, 101, 1-7.
  • Shao, J.L., Dabrowski, M.J., White, C.C., Kavanagh, T.J. & Gallagher, E.P. (2010). Flow cytometric analysis of BDE 47 mediated injury to rainbow trout gill epithelial cells. Aquatic Toxicology, 97(1), 42-50.
  • Shapiro, H.M. (2003). Practical Flow Cytometry. 4th Edition, Wiley-Liss, New York.
  • Shelley, L.K., Balfry, S.K., Ross, P.S. & Kennedy, C.J. (2009). Immunotoxicological effects of a sub-chronic exposure to selected current-use pesticides in rainbow trout (Oncorhynchus mykiss). Aquatic Toxicology, 92(2), 95-103.
  • Stosik, M., Deptula, W., Wiktorowicz, K., Travnicek, M. & Baldy- Chudzik, K. (2002). Respiratory burst in neutrophilic granulocytes of carps (Cyprinus carpio): cytometric studies. Veterinary Medicine - Czech, 47(1), 17-20.
  • Taylor, S., Landman, M.J. & Ling, N. (2009). Flow Cytometric Characterization of Freshwater Crayfish Hemocytes for the Examination of Physiological Status in Wild and Captive Animals. Journal of Aquatic Animal Health, 21(3), 195-203,
  • Thorgaard, G.H., Rabınovıtch, P.S., Shen, M.W., Galla, G.A.E., Propp, J. & Utters, F.M. (1982). Triploid Rainbow Trout Identified By Flow Cytometry. Aquaculture, 29, 305-309.
  • Thuvander, A., Norrgren, L. & Fossum, C. (1987). Phagocytic cells in blood from rainbow trout, Salmo gairdneri (Richardson), characterized by flow cytometry and electron microscopy. Journal of Fish Biology, 31(2), 197-208.
  • Troussellier, M., Courties, C. & Vaquer, A. (1993). Recent applications of flow cytometry in aquatic microbial ecology. Biology of the Cell, 78(1–2), 111-121.
  • Tung, J.W., Heydari, K., Tirouvanziam, R., Sahaf, B., Parks, D.R. & Herzenberg, L.A. (2007). Modern Flow Cytometry: A Practical Approach. Clinics in Laboratory Medicine, 27(3), 453–468.
  • Valet, G. (1984). A new method for fast blood cell counting and partial differentiation by flow cytometry. Blut, 49(2), 83-90.
  • Veldhuis, M.J.W. & Kraay, G.W. (2000). Application of flow cytometry in marine phytoplankton research: current applications and future perspectives. Scientia Marina., 64(2), 121-134.
  • Vives-Rego, J., Lebaron, P., & Nebe-von Caron, G. (2000). Current and future applications of flow cytometry in aquatic microbiology. FEMS Microbiology Reviews, 24(4), 429-48.
  • Wang, Y., Hammes, F., Roy, K.D., Verstraete, W., & Boon, N. (2010). Past, present and future applications of flow cytometry in aquatic microbiology. Trends in Biotechnology, 10, 28(8), 416-24.
  • Wu, Y., Zeng, Y., Qu, J.Y., & Wang W. (2012). Mercury effects on Thalassiosira weissflogii: Applications of two-photon excitation chlorophyll fluorescence lifetime imaging and flow cytometry. Aquatic Toxicology, 110-111, 133-140.
  • Xian, J.A., Wang, A.L., Hao, X.M., Miao, Y.T., Li, B., Ye, C.X., & Liao, S.A. (2012). In vitro toxicity of nitrite on haemocytes of the tiger shrimp, Penaeus monodon, using flow cytometric analysis. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 156(2), 75-9.
  • Xian, J.A., Wang, A.L., Miao, Y.T. & Li, B. (2013): Flow cytometric analysis of in vitro cytotoxicity of cadmium in haemocytes from the tiger shrimp, Penaeus monodon. Bulletin of Environmental Contamination and Toxicology, 90(1), 46-50.
  • Yentsch, C.M., Horan, P.K., Muirhead, K., Dortch, Q., Haugen, E., Legendre, L., Murphy, L.S., Perry, M.J., Phinney, D.A., Pomponi, S.A., Spinrad, R.W., Wood, M., Yentsch, C.S., & Zahuranec, B.J. (1983). Flow cytometry and cell sorting: A technique for anaysis and sorting of aquatic particles. Limnology and Oceanography, 28(6), 1275-1280.
There are 89 citations in total.

Details

Subjects Hydrobiology
Journal Section Articles
Authors

Metin Yazıcı

Remziye Eda Yardımcı

Publication Date June 21, 2016
Published in Issue Year 2016 Volume: 2 Issue: 4

Cite

APA Yazıcı, M., & Yardımcı, R. E. (2016). .FLOW CYTOMETRY AND ITS APPLICATIONS IN AQUTIC SCIENCES. Journal of Aquaculture Engineering and Fisheries Research, 2(4), 159-175. https://doi.org/10.3153/JAEFR16018
AMA Yazıcı M, Yardımcı RE. .FLOW CYTOMETRY AND ITS APPLICATIONS IN AQUTIC SCIENCES. J Aquacult Eng Fish Res. October 2016;2(4):159-175. doi:10.3153/JAEFR16018
Chicago Yazıcı, Metin, and Remziye Eda Yardımcı. “.FLOW CYTOMETRY AND ITS APPLICATIONS IN AQUTIC SCIENCES”. Journal of Aquaculture Engineering and Fisheries Research 2, no. 4 (October 2016): 159-75. https://doi.org/10.3153/JAEFR16018.
EndNote Yazıcı M, Yardımcı RE (October 1, 2016) .FLOW CYTOMETRY AND ITS APPLICATIONS IN AQUTIC SCIENCES. Journal of Aquaculture Engineering and Fisheries Research 2 4 159–175.
IEEE M. Yazıcı and R. E. Yardımcı, “.FLOW CYTOMETRY AND ITS APPLICATIONS IN AQUTIC SCIENCES”, J Aquacult Eng Fish Res, vol. 2, no. 4, pp. 159–175, 2016, doi: 10.3153/JAEFR16018.
ISNAD Yazıcı, Metin - Yardımcı, Remziye Eda. “.FLOW CYTOMETRY AND ITS APPLICATIONS IN AQUTIC SCIENCES”. Journal of Aquaculture Engineering and Fisheries Research 2/4 (October 2016), 159-175. https://doi.org/10.3153/JAEFR16018.
JAMA Yazıcı M, Yardımcı RE. .FLOW CYTOMETRY AND ITS APPLICATIONS IN AQUTIC SCIENCES. J Aquacult Eng Fish Res. 2016;2:159–175.
MLA Yazıcı, Metin and Remziye Eda Yardımcı. “.FLOW CYTOMETRY AND ITS APPLICATIONS IN AQUTIC SCIENCES”. Journal of Aquaculture Engineering and Fisheries Research, vol. 2, no. 4, 2016, pp. 159-75, doi:10.3153/JAEFR16018.
Vancouver Yazıcı M, Yardımcı RE. .FLOW CYTOMETRY AND ITS APPLICATIONS IN AQUTIC SCIENCES. J Aquacult Eng Fish Res. 2016;2(4):159-75.