Review
BibTex RIS Cite
Year 2019, Volume: 3 Issue: 2, 1 - 9, 15.12.2019

Abstract

References

  • Drexler M. What You Need to Know about Infectious Disease. Institute of Medicine (US): National Academies Press (US) (2010).
  • Epstein PR. Commentary: Pestilence and Poverty—Historical Transitions and the Great Pandemics. American Journal of Preventive Medicine (1992) 8(4):263–265.
  • Töreci K. Antibiyotik kullanimi ve direnç iliskisi [The relationship between antibiotic use and resistance]. Flora (2003) 8(2):89–110.
  • Çiftçi A, Aksoy A. Acquired Resistance Mechanisms Against Antibiotics. Turkiye Klinikleri Journal of Veterinary Sciences- Pharmacology and Toxicology-Special Topics (2015) 1(2):1–10.
  • Gökçe T. Birinci basamak saglik kurulusuna basvuran hastalarin antibiyotik kullanimi konusundaki davranis ve bilgi düzeylerinin arastirilmasi [Research on habits and awareness levels on the antibiotic use of the patients who consult primary care health services]. Pamukkale University.
  • Infectious Diseases Society of America. Bad Drugs, No Drugs: Infectious Diseases Society of America (2010).
  • Conly JM, Johnston BL. Where are all the new antibiotics? The new antibiotic paradox. Canadian Journal of Infectious Diseases and Medical Microbiology (2005) 16(3):159–160.
  • Jacoby G. History of Drug-Resistant Microbes. In: Mayers D, Sobel J, Ouellette M, Marchaim D, editors. Antimicrobial Drug Resistance: Humana Press (2009).
  • Knobler SL, Lemon SM, Najafi M, Burroughs T. The Resistance Phenomenon in Microbes and Infectious Disease Vectors: Implications for Human Health and Strategies for Containment: Workshop Summary: The National Academies Press (2003).
  • Pankey G, Sabath L. Clinical Relevance of Bacteriostatic versus Bactericidal Activity in the Treatment of Gram-Positive Bacterial Infections. Clinical Infectious Diseases (2004) 38(6):864–870.
  • Kohanski M, Dwyer D, Collins J. How antibiotics kill bacteria: from targets to networks. Nature Reviews Microbiology (2010) 8(6):423–
  • Kapoor G, Saigal S, Elongavan A. Action and resistance mechanisms of antibiotics: A guide for clinicians. Journal of Anaesthesiology Clinical Pharmacology (2017) 33(3):300–305.
  • Walsh C. Antibiotics: Actions, Origins, Resistance: ASM Press (2003).
  • Silhavy T, Kahne D, Walker S. The Bacterial Cell Envelope. Cold Spring Harbor Perspectives in Biology (2010) 2(5):a000414- a000414.
  • Vollmer W, Blanot D, Pedro M de. Peptidoglycan structure and architecture. FEMS Microbiology Reviews (2008) 32(2):149–167.
  • Gan L, Chen S, Jensen G. Molecular organization of Gram-negative peptidoglycan. Proceedings of the National Academy of Sciences (2008) 105(48):18953–18957.
  • Kahne D, Leimkuhler C, Lu W, Walsh C. Glycopeptide and Lipoglycopeptide Antibiotics. Chemical Reviews (2005) 105(2):425–448.
  • Reynolds P. Structure, biochemistry and mechanism of action of glycopeptide antibiotics. European Journal of Clinical Microbiology & Infectious Diseases (1989) 8(11):943–950.
  • Dzidic S, Šuškovic J, Kos B. Antibiotic Resistance Mechanisms in Bacteria: Biochemical and Genetic Aspects. Food Technology & Biotechnology (2008) 46(1):11–21.
  • Grundmann H, Aires-de-Sousa M, Boyce J, Tiemersma E. Emergence and resurgence of meticillin-resistant Staphylococcus aureus as a public-health threat. The Lancet (2006) 368(9538):874– 885.
  • Trimble M, Mlynárcik P, Kolár, Mand Hancock, RE. Polymyxin: Alternative Mechanisms of Action and Resistance. Cold Spring Harbor Perspectives in Medicine (2016) 6(10):a025288.
  • YONEYAMA H, KATSUMATA R. Antibiotic Resistance in Bacteria and Its Future for Novel Antibiotic Development. Bioscience, Biotechnology, and Biochemistry (2006) 70(5):1060– 1075.
  • Wise R. A Review of the Mechanisms of Action and Resistance of Antimicrobial Agents. Canadian Respiratory Journal (1999) 6(SupplA):20A-2A.
  • Higgins P, Fluit A, Schmitz FJ. Fluoroquinolones: Structure and Target Sites. Current Drug Targets (2003) 4(2):181–190.
  • Clancy C, Yu Y, Lewin A, Nguyen MH. Inhibition of RNA Synthesis as a Therapeutic Strategy against Aspergillus and Fusarium: Demonstration of In Vitro Synergy between Rifabutin and Amphotericin B. Antimicrobial Agents and Chemotherapy (1998) 42(3):509–513.
  • Vannuffel P, Cocito C. Mechanism of Action of Streptogramins and Macrolides. Drugs (1996) 51(Supplement 1):20–30.
  • Johnston N, Mukhtar T, Wright G. Streptogramin Antibiotics: Mode of Action and Resistance. Current Drug Targets (2002) 3(4):335– 344.
  • Prestinaci F, Pezzotti P, Pantosti A. Antimicrobial resistance: a global multifaceted phenomenon. Pathogens and Global Health (2015) 109(7):309–318.
  • Li B, Webster TJ. Bacteria antibiotic resistance: New challenges and opportunities for implant-associated orthopedic infections. Journal of Orthopaedic Research (2017) 36(1):22–32.
  • Bhattacharjee MK. Development of Resistance to Antibiotics. In: Bhattacharjee MK, editor. Chemistry of Antibiotics and Related Drugs: Springer (2016).
  • Ali J, Rafiq Q, Ratcliffe E. Antimicrobial resistance mechanisms and potential synthetic treatments. Future Science OA (2018) 4(4):FSO290.
  • Dever L, Dermody T. Mechanisms of bacterial resistance to antibiotics. Archives of Internal Medicine (1991) 151(5):886–895.
  • Heesemann J. Mechanisms of Resistance to Beta-Lactam Antibiotics. Infection (1993) 21(Suppement 1):S4-S9.
  • Carlson-Banning KM, Zechiedrich L. Antibiotic Classes and Mechanisms of Resistance. In: Highlander SK, Rodriguez-Valera F, White BA, editors. Encyclopedia of Metagenomics, Environmental Metagenomics: Springer (2015).
  • Boucher H, Talbot G, Bradley J, Edwards J, Gilbert D, Rice L, et al. Bad Bugs, No Drugs: No ESKAPE An Update from the Infectious Diseases Society of America. Clinical Infectious Diseases (2009) 48(1):1–12.
  • Wilke MS, Lovering AL, Strynadka NC. ß-Lactam antibiotic resistance: a current structural perspective. Current Opinion in Microbiology (2005) 8(5):525–533.
  • Nikaido H. Multidrug Resistance in Bacteria. Annual Review of Biochemistry (2009) 78(1):119–146.
  • Pootoolal J, Neu J, Wright GD. Glycopeptide Antibiotic Resistance. Annual Review of Pharmacology and Toxicology (2002) 42(1):381– 408.
  • Méndez-Álvarez S, Pérez-Hernández X, Claverie-Martín F. Glycopeptide Resistance in Enterococci. International Microbiology (2000) 3(2):71–80.
  • Beiras-Fernandez A, Vogt F, Sodian R, Weis F. Daptomycin: a novel lipopeptide antibiotic against Gram-positive pathogens. Infection and Drug Resistance (2010) 3:95–101.
  • D’Costa V, Mukhtar T, Patel T, Koteva K, Waglechner N, Hughes D, et al. Inactivation of the Lipopeptide Antibiotic Daptomycin by Hydrolytic Mechanisms. Antimicrobial Agents and Chemotherapy (2012) 56(2):757–764.
  • Aldred K, Kerns R, Osheroff N. Mechanism of Quinolone Action and Resistance. Biochemistry (2014) 53(10):1565–1574.
  • Jacoby G. Mechanisms of Resistance to Quinolones. Clinical Infectious Diseases (2005) 41(Supplement_2):S120-S126.
  • Nelson M, Levy S. The history of the tetracyclines. Annals of the New York Academy of Sciences (2011) 1241(1):17–32.
  • Das B, Patra S. Nanostructures for Antimicrobial Therapy. In: Anton F, Grumezescu A, editors. Antimicrobials: Meeting the Challenges of Antibiotic Resistance through Nanotechnology: Elsevier (2017).
  • Gaynor M, Mankin A. Macrolide Antibiotics: Binding Site, Mechanism of Action, Resistance. Frontiers in Medicinal Chemistry - Online (2005) 2(1):21–35.
  • Schlünzen F, Zarivach R, Harms J, Bashan A, Tocilj A, Albrecht R, et al. Structural basis for the interaction of antibiotics with the peptidyl transferase centre in eubacteria. Nature (2001) 413(6858):814–821.
  • Sköld O. Resistance to trimethoprim and sulfonamides. Veterinary Research (2001) 32(3/4):261–273.
  • Webber MA, Piddock LJV. The importance of efflux pumps in bacterial antibiotic resistance. Journal of Antimicrobial Chemotherapy (2003) 51(1):9–11.
  • Sun, Jand Deng, Zand Yan, A. Bacterial multidrug efflux pumps: Mechanisms, physiology and pharmacological exploitations. Biochemical and Biophysical Research Communications (2014) 453(2):254–267.
  • Fraqueza MJ. Antibiotic resistance of lactic acid bacteria isolated from dry-fermented sausages. International Journal of Food Microbiology (2015) 212:76–88.
  • Denyer S, Maillard J. Cellular impermeability and uptake of biocides and antibiotics in Gram-negative bacteria. Journal of Applied Microbiology (2002) 92(s1):35S-45S.
  • McMurry L, Petrucci RE, Levy SB. Active efflux of tetracycline encoded by four genetically different tetracycline resistance determinants in Escherichia coli. Proceedings of the National Academy of Sciences (1980) 77(7):3974–3977.
  • McMurry L, Levy S. Two Transport Systems for Tetracycline in Sensitive Escherichia coli: Critical Role for an Initial Rapid Uptake System Insensitive to Energy Inhibitors. Antimicrobial Agents and Chemotherapy (1978) 14(2):201–209.
  • Kumar S, Varela MF. Molecular mechanisms of bacterial resistance to antimicrobial agents. In: Méndez-Vilas A, editor. Microbial Pathogens and Strategies for Combating Them: Science, Technology and Education: Formatex Research Center (2013). p. 522–534.
  • McMurry LM, Cullinane JC, Petrucci RE, Levy SB. Active uptake of tetracycline by membrane vesicles from susceptible Escherichia coli. Antimicrobial Agents and Chemotherapy (1981) 20(3):307– 313.
  • Balassiano IT, Bastos M, Madureira DJ, Silva I, Freitas-Almeida Â, Oliveira S. The involvement of tetA and tetE tetracycline resistance genes in plasmid and chromosomal resistance of Aeromonas in Brazilian strains. Memórias do Instituto Oswaldo Cruz (2007) 102(7):861–866.
  • Sikri N, Dalal S, Taneja R. Efflux Pumps: An Overview. International Journal of Pharmaceutical Sciences and Research (2018) 9(3):854–861.
  • Deng X, Sun F, Ji Q, Liang H, Missiakas D, Lan L, et al. Expression of Multidrug Resistance Efflux Pump Gene norA Is Iron Responsive in Staphylococcus aureus. Journal of Bacteriology (2012) 194(7):1753–1762.
  • Costa SS, Viveiros M, Amaral L, Couto I. Multidrug Efflux Pumps in Staphylococcus aureus: an Update. The Open Microbiology Journal (2013) 7(1):59–71.
  • Ubukata K, Itoh-Yamashita N, Konno M. Cloning and expression of the norA gene for fluoroquinolone resistance in Staphylococcus aureus. Antimicrobial Agents and Chemotherapy (1989) 33(9):1535–
  • Hsieh P, Siegel S, Rogers B, Davis D, Lewis K. Bacteria lacking a multidrug pump: A sensitive tool for drug discovery. Proceedings of the National Academy of Sciences (1998) 95(12):6602–6606.
  • Kaatz G, Seo S. Inducible NorA-mediated multidrug resistance in Staphylococcus aureus. Antimicrobial Agents and Chemotherapy (1995) 39(12):2650–2655.
  • Neyfakh AA, Borsch CM, Kaatz GW. Fluoroquinolone resistance protein NorA of Staphylococcus aureus is a multidrug efflux transporter. Antimicrobial Agents and Chemotherapy (1993) 37(1):128–129.
  • Ng EY, Trucksis M, Hooper DC. Quinolone resistance mediated by norA: physiologic characterization and relationship to flqB, a quinolone resistance locus on the Staphylococcus aureus chromosome. Antimicrobial Agents and Chemotherapy (1994) 38(6):1345–1355.
  • Yu J, Grinius L, Hooper D. NorA Functions as a Multidrug Efflux Protein in both Cytoplasmic Membrane Vesicles and Reconstituted Proteoliposomes. Journal of Bacteriology (2002) 184(5):1370–1377.
  • Bryan A, Shapir N, Sadowsky M. Frequency and Distribution of Tetracycline Resistance Genes in Genetically Diverse, Nonselected, and Nonclinical Escherichia coli Strains Isolated from Diverse Human and Animal Sources. Applied and Environmental Microbiology (2004) 70(4):2503–2507.
  • Roberts MC. Tetracycline resistance determinants: mechanisms of action, regulation of expression, genetic mobility, and distribution. FEMS Microbiology Reviews (1996) 19(1):1–24.
  • Cohen S, Yan W, Levy S. A Multidrug Resistance Regulatory Chromosomal Locus Is Widespread among Enteric Bacteria. Journal of Infectious Diseases (1993) 168(2):484–488.
  • Nikaido H. Outer membrane barrier as a mechanism of antimicrobial resistance. Antimicrobial Agents and Chemotherapy (1989) 33(11):1831–1836.
  • Ma D, Cook D, Hearst J, Nikaido H. Efflux pumps and drug resistance in Gram-negative bacteria. Trends in Microbiology (1994) 2(12):489–493.
  • Poole K, Krebes K, McNally C, Neshat S. Multiple antibiotic resistance in Pseudomonas aeruginosa: evidence for involvement of an efflux operon. Journal of Bacteriology (1993) 175(22):7363– 7372.
  • Zhao Q, Li X-Z, Srikumar R, Poole K. Contribution of Outer Membrane Efflux Protein OprM to Antibiotic Resistance in Pseudomonas aeruginosa Independent of MexAB. Antimicrobial Agents and Chemotherapy (1998) 42(7):1682–1688.
  • Anes J, McCusker M, Fanning S, Martins M. The ins and outs of RND efflux pumps in Escherichia coli. Frontiers in Microbiology (2015) 6:587.
  • Zarakolu P. Mikroorganizmalarda direnç mekanizmasi olarak aktif pompa sistemleri [Active Pump Systems as Resistance Mechanism in Microorganisms]. Hastane Enfeksiyonlari Dergisi [Turkish Journal of Hospital Infections] (2003) 7(3):131–136.
  • Blanco P, Hernando-Amado S, Reales-Calderon J, Corona F, Lira F, Alcalde-Rico M, et al. Bacterial Multidrug Efflux Pumps: Much More Than Antibiotic Resistance Determinants. Microorganisms (2016) 4(1):14.
  • BORGES-WALMSLEY MI, McKEEGAN K, WALMSLEY A. Structure and function of efflux pumps that confer resistance to drugs. Biochemical Journal (2003) 376(2):313–338.
  • Sandegren L. Selection of antibiotic resistance at very low antibiotic concentrations. Upsala Journal of Medical Sciences (2014) 119(2):103–107.
  • Fernández L, Hancock R. Adaptive and Mutational Resistance: Role of Porins and Efflux Pumps in Drug Resistance. Clinical Microbiology Reviews (2012) 25(4):661–681.
  • Girardin F. Membrane Transporter Proteins: A Challenge for CNS Drug Development. Dialogues in Clinical Neuroscience (2006) 8(3):311–321.
  • Piddock L. Clinically Relevant Chromosomally Encoded Multidrug Resistance Efflux Pumps in Bacteria. Clinical Microbiology Reviews (2006) 19(2):382–402.
  • Lomovskaya O, Warren M, Lee A, Galazzo J, Fronko R, Lee M, et al. Identification and Characterization of Inhibitors of Multidrug Resistance Efflux Pumps in Pseudomonas aeruginosa: Novel Agents for Combination Therapy. Antimicrobial Agents and Chemotherapy (2001) 45(1):105–116.
  • Saier, Jr, Milton H, Paulsen IT. Phylogeny of multidrug transporters. Seminars in Cell & Developmental Biology (2001) 12(3):205–213.
  • Fernando D, Kumar A. Resistance-Nodulation-Division Multidrug Efflux Pumps in Gram-Negative Bacteria: Role in Virulence. Antibiotics (2013) 2(1):163–181.
  • Pao SS, Paulsen IT, Saier MH. Major Facilitator Superfamily. Microbiology and Molecular Biology Reviews (1998) 62(1):1–34.
  • Dean M, Allikmets R. Evolution of ATP-binding cassette transporter genes. Current Opinion in Genetics & Development (1995) 5(6):779–785.
  • Fath MJ, Kolter R. ABC Transporters: Bacterial Exporters. Microbiology and Molecular Biology Reviews (1993) 8(1):67–113.
  • Higgins CF. ABC Transporters: From Microorganisms to Man. Annual Review of Cell Biology (1992) 8(1):67–113.
  • Kuan G, Dassa E, Saurin W, Hofnung M, Saier MH. Phylogenetic analyses of the ATP-binding constituents of bacterial extracytoplasmic receptor-dependent ABC-type nutrient uptake permeases. Research in Microbiology (1995) 146(4):271–278.
  • Saier Jr MH, Beatty JT, Goffeau A, Harley KT, Heijne WH, Huang SC, et al. The Major Facilitator Superfamily. Journal of Molecular Microbiology and Biotechnology (1999) 1(2):257–279.
  • Baldwin SA. Mammalian passive glucose transporters: members of an ubiquitous family of active and passive transport proteins. Biochimica et Biophysica Acta (BBA) - Reviews on Biomembranes (1993) 1154(1):17–49.
  • Goswitz VC, Brooker RJ. Structural Features of the Uniporter/Symporter/Antiporter Superfamily. Protein Science (1995) 4(3):534–537.
  • Griffith J, Baker M, Rouch D, Page M, Skurray R, Paulsen I, et al. Membrane transport proteins: implications of sequence comparisons. Current Opinion in Cell Biology (1992) 4(4):684–695.
  • Henderson P. Sugar transport proteins. Current Opinion in Structural Biology (1991) 1(4):590–601.
  • Marger MD, Saier MH. A major superfamily of transmembrane facilitators that catalyse uniport, symport and antiport. Trends in Biochemical Sciences (1993) 18(1):13–20.
  • Henderson P, Maiden M. Homologous Sugar Transport Proteins in Escherichia coli and Their Relatives in Both Prokaryotes and Eukaryotes. Philosophical Transactions of the Royal Society B: Biological Sciences (1990) 326(1236):391–410.
  • Maiden MC, Davis E, Baldwin S, Moore D, Henderson P. Mammalian and bacterial sugar transport proteins are homologous. Nature (1987) 325(6105):641–643.
  • Paulsen I, Skurray R. The POT family of transport proteins. Trends in Biochemical Sciences (1994) 19(10):404.
  • Aygül A. Antibiyotik Direncinde Disa Atim Sistemlerinin ve Dirençle Mücadelede Disa Atim Pompa Inhibitörlerinin Önemi [The Importance of Efflux Systems in Antibiotic Resistance and Efflux Pump Inhibitors in the Management of Resistance]. Mikrobiyoloji Bülteni [Bulletin of Microbiology] (2015) 49(2):278–291.
  • Moriyama Y, Hiasa M, Matsumoto T, Omote H. Multidrug and toxic compound extrusion (MATE)-type proteins as anchor transporters for the excretion of metabolic waste products and xenobiotics. Xenobiotica (2008) 38(7-8):1107–1118.
  • Lu M. Structures of multidrug and toxic compound extrusion transporters and their mechanistic implications. Channels (2016) 10(2):88–100.
  • Bay D, Rommens K, Turner R. Small multidrug resistance proteins: A multidrug transporter family that continues to grow. Biochimica et Biophysica Acta (BBA) - Biomembranes (2008) 1778(9):1814–1838.
  • Renau T, Léger R, Flamme E, Sangalang J, She M, Yen R, et al. Inhibitors of Efflux Pumps inPseudomonasaeruginosaPotentiate the Activity of the Fluoroquinolone Antibacterial Levofloxacin. Journal of Medicinal Chemistry (1999) 42(24):4928–4931.
  • Opperman T, St. Nguyen. Recent advances toward a molecular mechanism of efflux pump inhibition. Frontiers in Microbiology (2015) 6:421.
  • Kettenmann H, Ransom BR. The Concept of Neuroglia: A Historical Perspective. In: Kettenmann H, Ransom BR, editors. Neuroglia: Oxford University Press (2005). p. 1–16.
  • Venter H, Shilling RA, Velamakanni S, Balakrishnan L, van Veen HW. An ABC transporter with a secondary-active multidrug translocator domain. Nature (2003) 426(6968):866–870.
  • Xie W. Drug Metabolism in Diseases: Academic Press (2016).
  • Kara ZP, Öztürk N, Öztürk D, Okyar A. ABC Tasiyici Proteinleri: Sirkadiyan Ritimler vee Cinsiyete Bagli Farkliliklar [ABC Carrier Proteins: Circadian Rhythms and Gender Differences]. MÜSBED (2013) 3(1):1–13.
  • Begicevic RR, Falasca M. ABC Transporters in Cancer Stem Cells: Beyond Chemoresistance. International Journal of Molecular Sciences (2017) 18(11):2362.
  • van Bambeke F, Balzi E, Tulkens PM. Antibiotic efflux pumps. Biochemical Pharmacology (2000) 60(4):457–470.
  • Paulsen IT, Sliwinski MK, Nelissen B, Goffeau A, Saier MH. Unified inventory of established and putative transporters encoded within the complete genome of Saccharomyces cerevisiae. FEBS Letters (1998) 430(1-2):116–125.
  • Paulsen IT, Sliwinski MK, Saier MH. Microbial genome analyses: global comparisons of transport capabilities based on phylogenies, bioenergetics and substrate specificities 1 1Edited by G. Von Heijne. Journal of Molecular Biology (1998) 277(3):573–592.
  • Lubelski J, Konings WN, Driessen AJM. Distribution and Physiology of ABC-Type Transporters Contributing to Multidrug Resistance in Bacteria. Microbiology and Molecular Biology Reviews (2007) 71(3):463–476.
  • Levy SB. Active efflux, a common mechanism for biocide and antibiotic resistance. Journal of Applied Microbiology (2002) 92(s1):65S-71S.
  • Hasdemir U. Çoklu Ilaç Direncinde Bakteri Hücre Duvari Organizasyonu ve Aktif Pompa Sistemlerinin Rolü [The Role of Cell Wall Organization and Active Efflux Pump Systems in Multidrug Re-sistance of Bacteria]. Mikrobiyoloji Bülteni [Bulletin of Microbiology] (2007) 41:309–327.
  • Li XZ, Nikaido H. Efflux-Mediated Drug Resistance in Bacteria. Drugs (2009) 69(12):1555–1623.
  • Wada A, Kono M, Kawauchi S, Takagi Y, Morikawa T, Funakoshi K. Rapid Discrimination of Gram-Positive and Gram-Negative Bacteria in Liquid Samples by Using NaOH-Sodium Dodecyl Sulfate Solution and Flow Cytometry. PLoS ONE (2012) 7(10):e47093.
  • Mahamoud A, Chevalier J, Alibert-Franco S, Kern W, Pagès JM. Antibiotic efflux pumps in Gram-negative bacteria: the inhibitor response strategy. Journal of Antimicrobial Chemotherapy (2007) 59(6):1223–1229.
  • Lomovskaya O, Bostian K. Practical applications and feasibility of efflux pump inhibitors in the clinic—A vision for applied use. Biochemical Pharmacology (2006) 71(7):910–918.
  • Pagès JM, Masi M, Barbe J. Inhibitors of efflux pumps in Gram- negative bacteria. Trends in Molecular Medicine (2005) 11(8):382– 389.
  • Mallea M, Chevalier J, Bornet C, Eyraud A, Davin-Regli A, Bollet C, et al. Porin alteration and active efflux: two in vivo drug resistance strategies used by Enterobacter aerogenes. Microbiology (1998) 144(11):3003–3009.
  • Thanassi DG, Cheng LW, Nikaido H. Active efflux of bile salts by Escherichia coli. Journal of Bacteriology (1997) 179(8):2512–2518.
  • Kern W, Steinke P, Schumacher A, Schuster S, Baum H, Bohnert J. Effect of 1-(1-naphthylmethyl)-piperazine, a novel putative efflux pump inhibitor, on antimicrobial drug susceptibility in clinical isolates of Escherichia coli. Journal of Antimicrobial Chemotherapy (2005) 57(2):339–343.
  • Amaral L, Martins A, Spengler G, Molnar J. Efflux pumps of Gram- negative bacteria: what they do, how they do it, with what and how to deal with them. Frontiers in Pharmacology (2014) 4:168.
  • Eilam Y. Membrane effects of phenothiazines in yeasts. I. Stimulation of calcium and potassium fluxes. Biochimica et Biophysica Acta (BBA) - Biomembranes (1983) 733(2):242–248.
  • Kristiansen J, Mortensen I, Nissen B. Membrane stabilizers inhibit potassium efflux from Staphylococcus aureus strain No. U2275. Biochimica et Biophysica Acta (BBA) - Biomembranes (1982) 685(3):379–382.
  • Kaatz G, Moudgal V, Seo S, Kristiansen J. Phenothiazines and Thioxanthenes Inhibit Multidrug Efflux Pump Activity in Staphylococcus aureus. Antimicrobial Agents and Chemotherapy (2003) 47(2):719–726.
  • Handzlik J, Matys A, Kiec-Kononowicz K. Recent Advances in Multi-Drug Resistance (MDR) Efflux Pump Inhibitors of Gram- Positive Bacteria S. aureus. Antibiotics (2013) 2(1):28–45.
  • Omar MS, Damanhuri NS, Kumolosasi E. Influences of proton pump inhibitor on Helicobacter pylori adherence to the gastrointestinal cell lines. The Turkish Journal of Gastroenterology (2017) 28(1):53–59.

Antibiotic resistance and efflux pumps

Year 2019, Volume: 3 Issue: 2, 1 - 9, 15.12.2019

Abstract

The main purpose of this manuscript is to review the resistance against antibiotics and efflux pumps, one of the mechanisms important in resistance against antibiotics. As a definition, the resistance against antibiotics is accepted as the capability of a microorganism to resist the activity of antimicrobials, which were successfully used to kill the microorganism once. Antibiotic resistance is characterized by several antibiotic susceptibility tests. The wide consumption of antibiotics; the over prescription of antimicrobial drugs by medical doctors; unnecessary, incorrect and inadequate self-medication by the patient and use of several antimicrobial agents either to support a healthy growth or therapeutic purposes in animals consumed as food triggered severe antibiotic resistance. Therefore, the resistance against antimicrobials became a considerable, wide-spread issue in all around the world and the studies have been initiated to overcome the resistance against antibiotics. There are several different mechanisms, which could lead bacteria to be resistant overtime. One of the mechanism of action, which leads to antibiotic resistance, is efflux pumps. Several efflux pump inhibitors were discovered until now, but since some of them are highly cytotoxic, they have very limited use. Understanding efflux pumps and discovering new inhibitors against these pumps could probably save the future of human beings.

References

  • Drexler M. What You Need to Know about Infectious Disease. Institute of Medicine (US): National Academies Press (US) (2010).
  • Epstein PR. Commentary: Pestilence and Poverty—Historical Transitions and the Great Pandemics. American Journal of Preventive Medicine (1992) 8(4):263–265.
  • Töreci K. Antibiyotik kullanimi ve direnç iliskisi [The relationship between antibiotic use and resistance]. Flora (2003) 8(2):89–110.
  • Çiftçi A, Aksoy A. Acquired Resistance Mechanisms Against Antibiotics. Turkiye Klinikleri Journal of Veterinary Sciences- Pharmacology and Toxicology-Special Topics (2015) 1(2):1–10.
  • Gökçe T. Birinci basamak saglik kurulusuna basvuran hastalarin antibiyotik kullanimi konusundaki davranis ve bilgi düzeylerinin arastirilmasi [Research on habits and awareness levels on the antibiotic use of the patients who consult primary care health services]. Pamukkale University.
  • Infectious Diseases Society of America. Bad Drugs, No Drugs: Infectious Diseases Society of America (2010).
  • Conly JM, Johnston BL. Where are all the new antibiotics? The new antibiotic paradox. Canadian Journal of Infectious Diseases and Medical Microbiology (2005) 16(3):159–160.
  • Jacoby G. History of Drug-Resistant Microbes. In: Mayers D, Sobel J, Ouellette M, Marchaim D, editors. Antimicrobial Drug Resistance: Humana Press (2009).
  • Knobler SL, Lemon SM, Najafi M, Burroughs T. The Resistance Phenomenon in Microbes and Infectious Disease Vectors: Implications for Human Health and Strategies for Containment: Workshop Summary: The National Academies Press (2003).
  • Pankey G, Sabath L. Clinical Relevance of Bacteriostatic versus Bactericidal Activity in the Treatment of Gram-Positive Bacterial Infections. Clinical Infectious Diseases (2004) 38(6):864–870.
  • Kohanski M, Dwyer D, Collins J. How antibiotics kill bacteria: from targets to networks. Nature Reviews Microbiology (2010) 8(6):423–
  • Kapoor G, Saigal S, Elongavan A. Action and resistance mechanisms of antibiotics: A guide for clinicians. Journal of Anaesthesiology Clinical Pharmacology (2017) 33(3):300–305.
  • Walsh C. Antibiotics: Actions, Origins, Resistance: ASM Press (2003).
  • Silhavy T, Kahne D, Walker S. The Bacterial Cell Envelope. Cold Spring Harbor Perspectives in Biology (2010) 2(5):a000414- a000414.
  • Vollmer W, Blanot D, Pedro M de. Peptidoglycan structure and architecture. FEMS Microbiology Reviews (2008) 32(2):149–167.
  • Gan L, Chen S, Jensen G. Molecular organization of Gram-negative peptidoglycan. Proceedings of the National Academy of Sciences (2008) 105(48):18953–18957.
  • Kahne D, Leimkuhler C, Lu W, Walsh C. Glycopeptide and Lipoglycopeptide Antibiotics. Chemical Reviews (2005) 105(2):425–448.
  • Reynolds P. Structure, biochemistry and mechanism of action of glycopeptide antibiotics. European Journal of Clinical Microbiology & Infectious Diseases (1989) 8(11):943–950.
  • Dzidic S, Šuškovic J, Kos B. Antibiotic Resistance Mechanisms in Bacteria: Biochemical and Genetic Aspects. Food Technology & Biotechnology (2008) 46(1):11–21.
  • Grundmann H, Aires-de-Sousa M, Boyce J, Tiemersma E. Emergence and resurgence of meticillin-resistant Staphylococcus aureus as a public-health threat. The Lancet (2006) 368(9538):874– 885.
  • Trimble M, Mlynárcik P, Kolár, Mand Hancock, RE. Polymyxin: Alternative Mechanisms of Action and Resistance. Cold Spring Harbor Perspectives in Medicine (2016) 6(10):a025288.
  • YONEYAMA H, KATSUMATA R. Antibiotic Resistance in Bacteria and Its Future for Novel Antibiotic Development. Bioscience, Biotechnology, and Biochemistry (2006) 70(5):1060– 1075.
  • Wise R. A Review of the Mechanisms of Action and Resistance of Antimicrobial Agents. Canadian Respiratory Journal (1999) 6(SupplA):20A-2A.
  • Higgins P, Fluit A, Schmitz FJ. Fluoroquinolones: Structure and Target Sites. Current Drug Targets (2003) 4(2):181–190.
  • Clancy C, Yu Y, Lewin A, Nguyen MH. Inhibition of RNA Synthesis as a Therapeutic Strategy against Aspergillus and Fusarium: Demonstration of In Vitro Synergy between Rifabutin and Amphotericin B. Antimicrobial Agents and Chemotherapy (1998) 42(3):509–513.
  • Vannuffel P, Cocito C. Mechanism of Action of Streptogramins and Macrolides. Drugs (1996) 51(Supplement 1):20–30.
  • Johnston N, Mukhtar T, Wright G. Streptogramin Antibiotics: Mode of Action and Resistance. Current Drug Targets (2002) 3(4):335– 344.
  • Prestinaci F, Pezzotti P, Pantosti A. Antimicrobial resistance: a global multifaceted phenomenon. Pathogens and Global Health (2015) 109(7):309–318.
  • Li B, Webster TJ. Bacteria antibiotic resistance: New challenges and opportunities for implant-associated orthopedic infections. Journal of Orthopaedic Research (2017) 36(1):22–32.
  • Bhattacharjee MK. Development of Resistance to Antibiotics. In: Bhattacharjee MK, editor. Chemistry of Antibiotics and Related Drugs: Springer (2016).
  • Ali J, Rafiq Q, Ratcliffe E. Antimicrobial resistance mechanisms and potential synthetic treatments. Future Science OA (2018) 4(4):FSO290.
  • Dever L, Dermody T. Mechanisms of bacterial resistance to antibiotics. Archives of Internal Medicine (1991) 151(5):886–895.
  • Heesemann J. Mechanisms of Resistance to Beta-Lactam Antibiotics. Infection (1993) 21(Suppement 1):S4-S9.
  • Carlson-Banning KM, Zechiedrich L. Antibiotic Classes and Mechanisms of Resistance. In: Highlander SK, Rodriguez-Valera F, White BA, editors. Encyclopedia of Metagenomics, Environmental Metagenomics: Springer (2015).
  • Boucher H, Talbot G, Bradley J, Edwards J, Gilbert D, Rice L, et al. Bad Bugs, No Drugs: No ESKAPE An Update from the Infectious Diseases Society of America. Clinical Infectious Diseases (2009) 48(1):1–12.
  • Wilke MS, Lovering AL, Strynadka NC. ß-Lactam antibiotic resistance: a current structural perspective. Current Opinion in Microbiology (2005) 8(5):525–533.
  • Nikaido H. Multidrug Resistance in Bacteria. Annual Review of Biochemistry (2009) 78(1):119–146.
  • Pootoolal J, Neu J, Wright GD. Glycopeptide Antibiotic Resistance. Annual Review of Pharmacology and Toxicology (2002) 42(1):381– 408.
  • Méndez-Álvarez S, Pérez-Hernández X, Claverie-Martín F. Glycopeptide Resistance in Enterococci. International Microbiology (2000) 3(2):71–80.
  • Beiras-Fernandez A, Vogt F, Sodian R, Weis F. Daptomycin: a novel lipopeptide antibiotic against Gram-positive pathogens. Infection and Drug Resistance (2010) 3:95–101.
  • D’Costa V, Mukhtar T, Patel T, Koteva K, Waglechner N, Hughes D, et al. Inactivation of the Lipopeptide Antibiotic Daptomycin by Hydrolytic Mechanisms. Antimicrobial Agents and Chemotherapy (2012) 56(2):757–764.
  • Aldred K, Kerns R, Osheroff N. Mechanism of Quinolone Action and Resistance. Biochemistry (2014) 53(10):1565–1574.
  • Jacoby G. Mechanisms of Resistance to Quinolones. Clinical Infectious Diseases (2005) 41(Supplement_2):S120-S126.
  • Nelson M, Levy S. The history of the tetracyclines. Annals of the New York Academy of Sciences (2011) 1241(1):17–32.
  • Das B, Patra S. Nanostructures for Antimicrobial Therapy. In: Anton F, Grumezescu A, editors. Antimicrobials: Meeting the Challenges of Antibiotic Resistance through Nanotechnology: Elsevier (2017).
  • Gaynor M, Mankin A. Macrolide Antibiotics: Binding Site, Mechanism of Action, Resistance. Frontiers in Medicinal Chemistry - Online (2005) 2(1):21–35.
  • Schlünzen F, Zarivach R, Harms J, Bashan A, Tocilj A, Albrecht R, et al. Structural basis for the interaction of antibiotics with the peptidyl transferase centre in eubacteria. Nature (2001) 413(6858):814–821.
  • Sköld O. Resistance to trimethoprim and sulfonamides. Veterinary Research (2001) 32(3/4):261–273.
  • Webber MA, Piddock LJV. The importance of efflux pumps in bacterial antibiotic resistance. Journal of Antimicrobial Chemotherapy (2003) 51(1):9–11.
  • Sun, Jand Deng, Zand Yan, A. Bacterial multidrug efflux pumps: Mechanisms, physiology and pharmacological exploitations. Biochemical and Biophysical Research Communications (2014) 453(2):254–267.
  • Fraqueza MJ. Antibiotic resistance of lactic acid bacteria isolated from dry-fermented sausages. International Journal of Food Microbiology (2015) 212:76–88.
  • Denyer S, Maillard J. Cellular impermeability and uptake of biocides and antibiotics in Gram-negative bacteria. Journal of Applied Microbiology (2002) 92(s1):35S-45S.
  • McMurry L, Petrucci RE, Levy SB. Active efflux of tetracycline encoded by four genetically different tetracycline resistance determinants in Escherichia coli. Proceedings of the National Academy of Sciences (1980) 77(7):3974–3977.
  • McMurry L, Levy S. Two Transport Systems for Tetracycline in Sensitive Escherichia coli: Critical Role for an Initial Rapid Uptake System Insensitive to Energy Inhibitors. Antimicrobial Agents and Chemotherapy (1978) 14(2):201–209.
  • Kumar S, Varela MF. Molecular mechanisms of bacterial resistance to antimicrobial agents. In: Méndez-Vilas A, editor. Microbial Pathogens and Strategies for Combating Them: Science, Technology and Education: Formatex Research Center (2013). p. 522–534.
  • McMurry LM, Cullinane JC, Petrucci RE, Levy SB. Active uptake of tetracycline by membrane vesicles from susceptible Escherichia coli. Antimicrobial Agents and Chemotherapy (1981) 20(3):307– 313.
  • Balassiano IT, Bastos M, Madureira DJ, Silva I, Freitas-Almeida Â, Oliveira S. The involvement of tetA and tetE tetracycline resistance genes in plasmid and chromosomal resistance of Aeromonas in Brazilian strains. Memórias do Instituto Oswaldo Cruz (2007) 102(7):861–866.
  • Sikri N, Dalal S, Taneja R. Efflux Pumps: An Overview. International Journal of Pharmaceutical Sciences and Research (2018) 9(3):854–861.
  • Deng X, Sun F, Ji Q, Liang H, Missiakas D, Lan L, et al. Expression of Multidrug Resistance Efflux Pump Gene norA Is Iron Responsive in Staphylococcus aureus. Journal of Bacteriology (2012) 194(7):1753–1762.
  • Costa SS, Viveiros M, Amaral L, Couto I. Multidrug Efflux Pumps in Staphylococcus aureus: an Update. The Open Microbiology Journal (2013) 7(1):59–71.
  • Ubukata K, Itoh-Yamashita N, Konno M. Cloning and expression of the norA gene for fluoroquinolone resistance in Staphylococcus aureus. Antimicrobial Agents and Chemotherapy (1989) 33(9):1535–
  • Hsieh P, Siegel S, Rogers B, Davis D, Lewis K. Bacteria lacking a multidrug pump: A sensitive tool for drug discovery. Proceedings of the National Academy of Sciences (1998) 95(12):6602–6606.
  • Kaatz G, Seo S. Inducible NorA-mediated multidrug resistance in Staphylococcus aureus. Antimicrobial Agents and Chemotherapy (1995) 39(12):2650–2655.
  • Neyfakh AA, Borsch CM, Kaatz GW. Fluoroquinolone resistance protein NorA of Staphylococcus aureus is a multidrug efflux transporter. Antimicrobial Agents and Chemotherapy (1993) 37(1):128–129.
  • Ng EY, Trucksis M, Hooper DC. Quinolone resistance mediated by norA: physiologic characterization and relationship to flqB, a quinolone resistance locus on the Staphylococcus aureus chromosome. Antimicrobial Agents and Chemotherapy (1994) 38(6):1345–1355.
  • Yu J, Grinius L, Hooper D. NorA Functions as a Multidrug Efflux Protein in both Cytoplasmic Membrane Vesicles and Reconstituted Proteoliposomes. Journal of Bacteriology (2002) 184(5):1370–1377.
  • Bryan A, Shapir N, Sadowsky M. Frequency and Distribution of Tetracycline Resistance Genes in Genetically Diverse, Nonselected, and Nonclinical Escherichia coli Strains Isolated from Diverse Human and Animal Sources. Applied and Environmental Microbiology (2004) 70(4):2503–2507.
  • Roberts MC. Tetracycline resistance determinants: mechanisms of action, regulation of expression, genetic mobility, and distribution. FEMS Microbiology Reviews (1996) 19(1):1–24.
  • Cohen S, Yan W, Levy S. A Multidrug Resistance Regulatory Chromosomal Locus Is Widespread among Enteric Bacteria. Journal of Infectious Diseases (1993) 168(2):484–488.
  • Nikaido H. Outer membrane barrier as a mechanism of antimicrobial resistance. Antimicrobial Agents and Chemotherapy (1989) 33(11):1831–1836.
  • Ma D, Cook D, Hearst J, Nikaido H. Efflux pumps and drug resistance in Gram-negative bacteria. Trends in Microbiology (1994) 2(12):489–493.
  • Poole K, Krebes K, McNally C, Neshat S. Multiple antibiotic resistance in Pseudomonas aeruginosa: evidence for involvement of an efflux operon. Journal of Bacteriology (1993) 175(22):7363– 7372.
  • Zhao Q, Li X-Z, Srikumar R, Poole K. Contribution of Outer Membrane Efflux Protein OprM to Antibiotic Resistance in Pseudomonas aeruginosa Independent of MexAB. Antimicrobial Agents and Chemotherapy (1998) 42(7):1682–1688.
  • Anes J, McCusker M, Fanning S, Martins M. The ins and outs of RND efflux pumps in Escherichia coli. Frontiers in Microbiology (2015) 6:587.
  • Zarakolu P. Mikroorganizmalarda direnç mekanizmasi olarak aktif pompa sistemleri [Active Pump Systems as Resistance Mechanism in Microorganisms]. Hastane Enfeksiyonlari Dergisi [Turkish Journal of Hospital Infections] (2003) 7(3):131–136.
  • Blanco P, Hernando-Amado S, Reales-Calderon J, Corona F, Lira F, Alcalde-Rico M, et al. Bacterial Multidrug Efflux Pumps: Much More Than Antibiotic Resistance Determinants. Microorganisms (2016) 4(1):14.
  • BORGES-WALMSLEY MI, McKEEGAN K, WALMSLEY A. Structure and function of efflux pumps that confer resistance to drugs. Biochemical Journal (2003) 376(2):313–338.
  • Sandegren L. Selection of antibiotic resistance at very low antibiotic concentrations. Upsala Journal of Medical Sciences (2014) 119(2):103–107.
  • Fernández L, Hancock R. Adaptive and Mutational Resistance: Role of Porins and Efflux Pumps in Drug Resistance. Clinical Microbiology Reviews (2012) 25(4):661–681.
  • Girardin F. Membrane Transporter Proteins: A Challenge for CNS Drug Development. Dialogues in Clinical Neuroscience (2006) 8(3):311–321.
  • Piddock L. Clinically Relevant Chromosomally Encoded Multidrug Resistance Efflux Pumps in Bacteria. Clinical Microbiology Reviews (2006) 19(2):382–402.
  • Lomovskaya O, Warren M, Lee A, Galazzo J, Fronko R, Lee M, et al. Identification and Characterization of Inhibitors of Multidrug Resistance Efflux Pumps in Pseudomonas aeruginosa: Novel Agents for Combination Therapy. Antimicrobial Agents and Chemotherapy (2001) 45(1):105–116.
  • Saier, Jr, Milton H, Paulsen IT. Phylogeny of multidrug transporters. Seminars in Cell & Developmental Biology (2001) 12(3):205–213.
  • Fernando D, Kumar A. Resistance-Nodulation-Division Multidrug Efflux Pumps in Gram-Negative Bacteria: Role in Virulence. Antibiotics (2013) 2(1):163–181.
  • Pao SS, Paulsen IT, Saier MH. Major Facilitator Superfamily. Microbiology and Molecular Biology Reviews (1998) 62(1):1–34.
  • Dean M, Allikmets R. Evolution of ATP-binding cassette transporter genes. Current Opinion in Genetics & Development (1995) 5(6):779–785.
  • Fath MJ, Kolter R. ABC Transporters: Bacterial Exporters. Microbiology and Molecular Biology Reviews (1993) 8(1):67–113.
  • Higgins CF. ABC Transporters: From Microorganisms to Man. Annual Review of Cell Biology (1992) 8(1):67–113.
  • Kuan G, Dassa E, Saurin W, Hofnung M, Saier MH. Phylogenetic analyses of the ATP-binding constituents of bacterial extracytoplasmic receptor-dependent ABC-type nutrient uptake permeases. Research in Microbiology (1995) 146(4):271–278.
  • Saier Jr MH, Beatty JT, Goffeau A, Harley KT, Heijne WH, Huang SC, et al. The Major Facilitator Superfamily. Journal of Molecular Microbiology and Biotechnology (1999) 1(2):257–279.
  • Baldwin SA. Mammalian passive glucose transporters: members of an ubiquitous family of active and passive transport proteins. Biochimica et Biophysica Acta (BBA) - Reviews on Biomembranes (1993) 1154(1):17–49.
  • Goswitz VC, Brooker RJ. Structural Features of the Uniporter/Symporter/Antiporter Superfamily. Protein Science (1995) 4(3):534–537.
  • Griffith J, Baker M, Rouch D, Page M, Skurray R, Paulsen I, et al. Membrane transport proteins: implications of sequence comparisons. Current Opinion in Cell Biology (1992) 4(4):684–695.
  • Henderson P. Sugar transport proteins. Current Opinion in Structural Biology (1991) 1(4):590–601.
  • Marger MD, Saier MH. A major superfamily of transmembrane facilitators that catalyse uniport, symport and antiport. Trends in Biochemical Sciences (1993) 18(1):13–20.
  • Henderson P, Maiden M. Homologous Sugar Transport Proteins in Escherichia coli and Their Relatives in Both Prokaryotes and Eukaryotes. Philosophical Transactions of the Royal Society B: Biological Sciences (1990) 326(1236):391–410.
  • Maiden MC, Davis E, Baldwin S, Moore D, Henderson P. Mammalian and bacterial sugar transport proteins are homologous. Nature (1987) 325(6105):641–643.
  • Paulsen I, Skurray R. The POT family of transport proteins. Trends in Biochemical Sciences (1994) 19(10):404.
  • Aygül A. Antibiyotik Direncinde Disa Atim Sistemlerinin ve Dirençle Mücadelede Disa Atim Pompa Inhibitörlerinin Önemi [The Importance of Efflux Systems in Antibiotic Resistance and Efflux Pump Inhibitors in the Management of Resistance]. Mikrobiyoloji Bülteni [Bulletin of Microbiology] (2015) 49(2):278–291.
  • Moriyama Y, Hiasa M, Matsumoto T, Omote H. Multidrug and toxic compound extrusion (MATE)-type proteins as anchor transporters for the excretion of metabolic waste products and xenobiotics. Xenobiotica (2008) 38(7-8):1107–1118.
  • Lu M. Structures of multidrug and toxic compound extrusion transporters and their mechanistic implications. Channels (2016) 10(2):88–100.
  • Bay D, Rommens K, Turner R. Small multidrug resistance proteins: A multidrug transporter family that continues to grow. Biochimica et Biophysica Acta (BBA) - Biomembranes (2008) 1778(9):1814–1838.
  • Renau T, Léger R, Flamme E, Sangalang J, She M, Yen R, et al. Inhibitors of Efflux Pumps inPseudomonasaeruginosaPotentiate the Activity of the Fluoroquinolone Antibacterial Levofloxacin. Journal of Medicinal Chemistry (1999) 42(24):4928–4931.
  • Opperman T, St. Nguyen. Recent advances toward a molecular mechanism of efflux pump inhibition. Frontiers in Microbiology (2015) 6:421.
  • Kettenmann H, Ransom BR. The Concept of Neuroglia: A Historical Perspective. In: Kettenmann H, Ransom BR, editors. Neuroglia: Oxford University Press (2005). p. 1–16.
  • Venter H, Shilling RA, Velamakanni S, Balakrishnan L, van Veen HW. An ABC transporter with a secondary-active multidrug translocator domain. Nature (2003) 426(6968):866–870.
  • Xie W. Drug Metabolism in Diseases: Academic Press (2016).
  • Kara ZP, Öztürk N, Öztürk D, Okyar A. ABC Tasiyici Proteinleri: Sirkadiyan Ritimler vee Cinsiyete Bagli Farkliliklar [ABC Carrier Proteins: Circadian Rhythms and Gender Differences]. MÜSBED (2013) 3(1):1–13.
  • Begicevic RR, Falasca M. ABC Transporters in Cancer Stem Cells: Beyond Chemoresistance. International Journal of Molecular Sciences (2017) 18(11):2362.
  • van Bambeke F, Balzi E, Tulkens PM. Antibiotic efflux pumps. Biochemical Pharmacology (2000) 60(4):457–470.
  • Paulsen IT, Sliwinski MK, Nelissen B, Goffeau A, Saier MH. Unified inventory of established and putative transporters encoded within the complete genome of Saccharomyces cerevisiae. FEBS Letters (1998) 430(1-2):116–125.
  • Paulsen IT, Sliwinski MK, Saier MH. Microbial genome analyses: global comparisons of transport capabilities based on phylogenies, bioenergetics and substrate specificities 1 1Edited by G. Von Heijne. Journal of Molecular Biology (1998) 277(3):573–592.
  • Lubelski J, Konings WN, Driessen AJM. Distribution and Physiology of ABC-Type Transporters Contributing to Multidrug Resistance in Bacteria. Microbiology and Molecular Biology Reviews (2007) 71(3):463–476.
  • Levy SB. Active efflux, a common mechanism for biocide and antibiotic resistance. Journal of Applied Microbiology (2002) 92(s1):65S-71S.
  • Hasdemir U. Çoklu Ilaç Direncinde Bakteri Hücre Duvari Organizasyonu ve Aktif Pompa Sistemlerinin Rolü [The Role of Cell Wall Organization and Active Efflux Pump Systems in Multidrug Re-sistance of Bacteria]. Mikrobiyoloji Bülteni [Bulletin of Microbiology] (2007) 41:309–327.
  • Li XZ, Nikaido H. Efflux-Mediated Drug Resistance in Bacteria. Drugs (2009) 69(12):1555–1623.
  • Wada A, Kono M, Kawauchi S, Takagi Y, Morikawa T, Funakoshi K. Rapid Discrimination of Gram-Positive and Gram-Negative Bacteria in Liquid Samples by Using NaOH-Sodium Dodecyl Sulfate Solution and Flow Cytometry. PLoS ONE (2012) 7(10):e47093.
  • Mahamoud A, Chevalier J, Alibert-Franco S, Kern W, Pagès JM. Antibiotic efflux pumps in Gram-negative bacteria: the inhibitor response strategy. Journal of Antimicrobial Chemotherapy (2007) 59(6):1223–1229.
  • Lomovskaya O, Bostian K. Practical applications and feasibility of efflux pump inhibitors in the clinic—A vision for applied use. Biochemical Pharmacology (2006) 71(7):910–918.
  • Pagès JM, Masi M, Barbe J. Inhibitors of efflux pumps in Gram- negative bacteria. Trends in Molecular Medicine (2005) 11(8):382– 389.
  • Mallea M, Chevalier J, Bornet C, Eyraud A, Davin-Regli A, Bollet C, et al. Porin alteration and active efflux: two in vivo drug resistance strategies used by Enterobacter aerogenes. Microbiology (1998) 144(11):3003–3009.
  • Thanassi DG, Cheng LW, Nikaido H. Active efflux of bile salts by Escherichia coli. Journal of Bacteriology (1997) 179(8):2512–2518.
  • Kern W, Steinke P, Schumacher A, Schuster S, Baum H, Bohnert J. Effect of 1-(1-naphthylmethyl)-piperazine, a novel putative efflux pump inhibitor, on antimicrobial drug susceptibility in clinical isolates of Escherichia coli. Journal of Antimicrobial Chemotherapy (2005) 57(2):339–343.
  • Amaral L, Martins A, Spengler G, Molnar J. Efflux pumps of Gram- negative bacteria: what they do, how they do it, with what and how to deal with them. Frontiers in Pharmacology (2014) 4:168.
  • Eilam Y. Membrane effects of phenothiazines in yeasts. I. Stimulation of calcium and potassium fluxes. Biochimica et Biophysica Acta (BBA) - Biomembranes (1983) 733(2):242–248.
  • Kristiansen J, Mortensen I, Nissen B. Membrane stabilizers inhibit potassium efflux from Staphylococcus aureus strain No. U2275. Biochimica et Biophysica Acta (BBA) - Biomembranes (1982) 685(3):379–382.
  • Kaatz G, Moudgal V, Seo S, Kristiansen J. Phenothiazines and Thioxanthenes Inhibit Multidrug Efflux Pump Activity in Staphylococcus aureus. Antimicrobial Agents and Chemotherapy (2003) 47(2):719–726.
  • Handzlik J, Matys A, Kiec-Kononowicz K. Recent Advances in Multi-Drug Resistance (MDR) Efflux Pump Inhibitors of Gram- Positive Bacteria S. aureus. Antibiotics (2013) 2(1):28–45.
  • Omar MS, Damanhuri NS, Kumolosasi E. Influences of proton pump inhibitor on Helicobacter pylori adherence to the gastrointestinal cell lines. The Turkish Journal of Gastroenterology (2017) 28(1):53–59.
There are 129 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Reviews
Authors

Eda Altınöz

Ergin Murat Altuner This is me

Publication Date December 15, 2019
Submission Date July 29, 2019
Published in Issue Year 2019 Volume: 3 Issue: 2

Cite

APA Altınöz, E., & Altuner, E. M. (2019). Antibiotic resistance and efflux pumps. International Journal of Innovative Research and Reviews, 3(2), 1-9.