Research Article
BibTex RIS Cite

Kirlenmiş Bir Alanda Olgun ve Olgunlaşmamış Domateslerdeki Kritik Hammadde Grubundan Toksik Elementler: Birikim ve Potansiyel Sağlık Riski Değerlendirmesi

Year 2023, Volume: 9 Issue: 1, 165 - 174, 30.06.2023
https://doi.org/10.29132/ijpas.1260249

Abstract

Kentsel atıksularıyla kirlenmiş bir alanda yetişen domateslerde kobalt (Co), antimon (Sb), vanadyum (V) ve lantan (La) birikimi ve sağlık riski değerlendirmesi araştırıldı. Bu amaçla, domates numuneleri alındı ve kök, gövde ve yaprak kısımlarına ayırt edildi. Bitki organlarında Co, Sb, V ve La konsantrasyonları tespit edildi. Olgun ve olgunlaşmamış domateslerin kök, gövde ve yaprağındaki elementlerin dizilişi V>Co>La>Sb şeklindeydi. Olgun ve olgunlaşmamış domateslerde toplam element değerlerine göre; en yüksek değerler V için sırasıyla 23±1,1 mg/kg ve 35±1,7 mg/kg idi. Olgun ve olgunlaşmamış domateslerin biriktirdiği Co, Sb, V ve La değerleri kontrolle mukayese edildiğinde sırasıyla Co için 24,65 ve 25,6, Sb için 1,8 ve 2,7, V için 46 ve 70 ve La için 4,4 ve 6,15 kat olarak belirlendi. Olgun ve olgunlaşmamış domateslerde toplam Co, Sb, V ve La erkek

References

  • Ahmad, A., Siddique, J. A., Laskar, M. A., Kumar, R., Mohd-Setapar, S. H., Khatoon, A., Shiekh, R. A., 2015. New generation Amberlite XAD resin for the removal of metal ions: a review. Journal of Environmental Sciences, 31:104-123.
  • Arnot, J. A., & Gobas, F. A. 2006. A review of bioconcentration factor (BCF) and bioaccumulation factor (BAF) assessments for organic chemicals in aquatic organisms. Environmental Reviews, 14(4), 257–297.
  • Arslan Topal, E.I., 2018, Seasonal Monitoring of Cu and Zn in the Sewage Sludge of Malatya Advanced Biological Wastewater Treatment Plant, Int. J. Pure Appl. Sci. 4(1): 51-60.
  • Auerbach, R., Bokelmann, K., Stauber, R., Gutfleisch, O., Schnell, S., Ratering, S., 2019. Critical raw materials – Advanced recycling technologies and processes: Recycling of rare earth metals out of end of life magnets by bioleaching with various bacteria as an example of an intelligent recycling strategy, Minerals Engineering, 134: 104-117.
  • Bonanno, G., Vymazal, J., & Cirelli, G. L. 2018. Translocation, accumulation and bioindication of trace elements in wetland plants. Science of the Total Environment, 631–632, 252–261.
  • Cobalt Institute, Core Applications (2019), https://www.cobaltinstitute.org/core-applications.html (Accessed: 21.05.2020)
  • Cusack, P.B., Courtney, R., Healy, M.G., O’ Donoghue, L.M.T., Ujaczki, E., 2019. An evaluation of the general composition and critical raw material content of bauxite residue in a storage area over a twelve-year period, Journal of Cleaner Production, 208: 393-401.
  • Chevinli, A.S., Najafi, M., Sillanpää, M., 2019. Removal of La (III) ions from aqueous solution by Lanthanide MOF; characterization, synthesizing and process conditions study, Environmental Nanotechnology, Monitoring & Management, 12: Article 100216.
  • D'Haese, P.C., Douglas, G., Verhulst, A., Neven, E., Behets, G.J., Vervaet, B.A., Finsterie, K., Lürling, M., Spears, B., 2019. Human health risk associated with the management of phosphorus in freshwaters using lanthanum and aluminium, Chemosphere, 220: 286-299.
  • Dyshlyuk, L., Babich, O., Prosekov, A., Ivanova, S., Pavsky, V., Chaplygina, T., 2020. The effect of postharvest ultraviolet irradiation on the content of antioxidant compounds and the activity of antioxidant enzymes in tomato, Heliyon, 6 (1): Article e03288.
  • Gonzaga MIS, Santos JAG, Ma LQ. 2006. Arsenic phytoextraction and hyperaccumulation by fern species. Scientia Agricola (Piracicaba, Braz.). 63(1): 90-101.
  • Guo, X., Wu, Z., He, M., 2009. Removal of antimony(V) and antimony (III) from drinking water by coagulation–flocculation–sedimentation (CFS), Water Research, 43(17): 4327-4335.
  • Hegazy AK, Abdel-Ghani NT, El-Chaghaby GA. 2011. Phytoremediation of industrial wastewater potentiality by Typha domingensis. Int. J. Environ. Sci. Tech. 8(3):639-648.
  • Hong, G., Shen, L., Wang, M., Yang, Y., Wang, X., Zhu, M., Hsiao, B.S., 2014. Nanofibrous polydopamine complex membranes for adsorption of Lanthanum (III) ions, Chem. Eng. J., 244: 307-316.
  • Lian, M., Wang, J., Sun, L., Xu, Z., Tang, J., Yan, J., Zeng, X., 2019, Profiles and potential health risks of heavy metals in soil and crops from the watershed of Xi River in Northeast China, Ecotoxicology and Environmental Safety, 169, 442-448
  • Lu, C., Ding, J., Park, H.K., Feng, H., 2020, High intensity ultrasound as a physical elicitor affects secondary metabolites and antioxidant capacity of tomato fruits, Food Control, 113: Article 107176.
  • Ma LQ, Komar KM, Tu C, Zhang W, Cai Y, Kennelly ED. 2001. A fern that hyperaccumulates arsenic. Nature Biotech. 409: 579.
  • Markert, B., 1992. Establishing of Reference Plant for Inorganic Characterization of Different Plant Species By Chemical Fingerprinting, Water, Air and Soil Pollution, 64: 533-538.
  • Martins, F., Castro, H., 2019. Significance ranking method applied to some EU critical raw materials in a circular economy – priorities for achieving sustainability, Procedia CIRP, 84: 1059-1062.
  • Pierart, A., Shahid, M., Séjalon-Delmas, N., Dumat, C., 2015. Antimony bioavailability: Knowledge and research perspectives for sustainable agricultures, Journal of Hazardous Materials, 289: 219-234.
  • Pinto, J., Costa, M., Leite, C., Borges, C., Coppola, F., Henriques, B., Monteiro, R., Russo, T., Di Cosmo, A., Soares, A. M. V. M., Polese, G., Pereira, E., & Freitas, R. 2019. Ecotoxicological effects of lanthanum in Mytilus galloprovincialis: Biochemical and histopathological impacts. Aquatic Toxicology, 211, 181–192.
  • RWPC. 2009. Regulation on water pollution control: sampling and analysis method. Official Gazette dated 10.10.2009 and numbered 27372.
  • Simonsen, L.O., Harbak, H., Bennekouü, P., 2012. Cobalt metabolism and toxicology-A brief update, Science of The Total Environment, 432: 210-215.
  • Sitprija, V., Eiam-Ong, S., 1998. Vanadium and metabolic problems, J.O. Nriagu (Ed.), Vanadium in the Environment. Part 2: Health Effects, 31, John Wiley and Sons, New York, Chichester, Weinheim, Brisbane, Singapore, Toronto, 91-120.
  • Ścibior, A., Pietrzyk, L., Plewa, Z., Skiba, A., 2020. Vanadium: Risks and possible benefits in the light of a comprehensive overview of its pharmacotoxicological mechanisms and multi-applications with a summary of further research trends, Journal of Trace Elements in Medicine and Biology, 61: Article 126508.
  • Topal, M., Arslan Topal, E.I., 2017. Determination of Concentrations of Lead and Nickel in Keban Dam Lake (Elazığ) within Water Framework Directive, Int. J. Pure Appl. Sci. 3(1): 41-53.
  • Topal, M., Öbek, E., Arslan Topal, E.I., 2020. Performance of Cladophora fracta for Bioaccumulation of Critical Raw Materials from Mine Gallery Waters. Arab J Sci Eng. 45:4531-4539.
  • Topal, M., Arslan Topal, E.I., 2022. Preliminary assessment of health risks associated with consumption of grapevines contaminated with mining effluents in Turkey: Persistent trace elements and critical raw materials. Integ. Environ. Assess. Manage. 18:517-527.
  • van den Brink, S., Kleijn, R., Sprecher, B., Tukker, A., 2020. Identifying supply risks by mapping the cobalt supply chain, Resources, Conservation and Recycling, 156: Article 104743.
  • USEPA, 1989. Risk assessment guidance for Superfund Human health evaluation manual, (part A) [R], vol. 1, Office of emergency and remedial response, Washington, DC (1989) [EPA/540/1-89/002].
  • USEPA, 2001. Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites [R]. Office of Solid Waste and Emergency Response, Washington, DC [OSWER9355.4e24].
  • USEPA, 2011, United States Environmental Protection Agency. Exposure Factors Handbook. National Center for Environmental Assessment. Washington, DC (EPA/600/R-09/ 052F), https://cfpub.epa.gov/ncea/risk/recordisplay.cfm?deid=236252.
  • Wei, J., Cen, K., 2020, Assessment of human health risk based on characteristics of potential toxic elements (PTEs) contents in foods sold in Beijing, China, Science of The Total Environment, 70310, Article 134747.

Toxic Elements from Critical Raw Materials Group in Ripe and Unripe Tomatoes in A Contaminated Area: Accumulation and Potential Health Risk Assessment

Year 2023, Volume: 9 Issue: 1, 165 - 174, 30.06.2023
https://doi.org/10.29132/ijpas.1260249

Abstract

Accumulation and health risk assessment of cobalt (Co), antimony (Sb), vanadium (V), and lanthanum (La) in tomatoes growing in an area contaminated with municipal wastewater were investigated. For this aim, tomatoe samples were taken and sepertaed into root, stem and leaf parts. Co, Sb, V and La concentrations were detected in plant organs. The arrangement of the elements in the root, stem, and leaf of ripe and unripe tomatoes was V>Co>La>Sb. According to total element values in the ripe and unripe tomatoes; the highest values were 23±1.1 mg/kg and 35±1.7 mg/kg for V, respectively. Co, Sb, V, and La values accumulated by ripe and unripe tomatoes were determined as 24.65 and 25.6 times for Co, 1.8 and 2.7 times for Sb, 46 and 70 times for V and 4.4 and 6.15 times for La, respectively when compared with control. Total Co, Sb, V, and La were male

References

  • Ahmad, A., Siddique, J. A., Laskar, M. A., Kumar, R., Mohd-Setapar, S. H., Khatoon, A., Shiekh, R. A., 2015. New generation Amberlite XAD resin for the removal of metal ions: a review. Journal of Environmental Sciences, 31:104-123.
  • Arnot, J. A., & Gobas, F. A. 2006. A review of bioconcentration factor (BCF) and bioaccumulation factor (BAF) assessments for organic chemicals in aquatic organisms. Environmental Reviews, 14(4), 257–297.
  • Arslan Topal, E.I., 2018, Seasonal Monitoring of Cu and Zn in the Sewage Sludge of Malatya Advanced Biological Wastewater Treatment Plant, Int. J. Pure Appl. Sci. 4(1): 51-60.
  • Auerbach, R., Bokelmann, K., Stauber, R., Gutfleisch, O., Schnell, S., Ratering, S., 2019. Critical raw materials – Advanced recycling technologies and processes: Recycling of rare earth metals out of end of life magnets by bioleaching with various bacteria as an example of an intelligent recycling strategy, Minerals Engineering, 134: 104-117.
  • Bonanno, G., Vymazal, J., & Cirelli, G. L. 2018. Translocation, accumulation and bioindication of trace elements in wetland plants. Science of the Total Environment, 631–632, 252–261.
  • Cobalt Institute, Core Applications (2019), https://www.cobaltinstitute.org/core-applications.html (Accessed: 21.05.2020)
  • Cusack, P.B., Courtney, R., Healy, M.G., O’ Donoghue, L.M.T., Ujaczki, E., 2019. An evaluation of the general composition and critical raw material content of bauxite residue in a storage area over a twelve-year period, Journal of Cleaner Production, 208: 393-401.
  • Chevinli, A.S., Najafi, M., Sillanpää, M., 2019. Removal of La (III) ions from aqueous solution by Lanthanide MOF; characterization, synthesizing and process conditions study, Environmental Nanotechnology, Monitoring & Management, 12: Article 100216.
  • D'Haese, P.C., Douglas, G., Verhulst, A., Neven, E., Behets, G.J., Vervaet, B.A., Finsterie, K., Lürling, M., Spears, B., 2019. Human health risk associated with the management of phosphorus in freshwaters using lanthanum and aluminium, Chemosphere, 220: 286-299.
  • Dyshlyuk, L., Babich, O., Prosekov, A., Ivanova, S., Pavsky, V., Chaplygina, T., 2020. The effect of postharvest ultraviolet irradiation on the content of antioxidant compounds and the activity of antioxidant enzymes in tomato, Heliyon, 6 (1): Article e03288.
  • Gonzaga MIS, Santos JAG, Ma LQ. 2006. Arsenic phytoextraction and hyperaccumulation by fern species. Scientia Agricola (Piracicaba, Braz.). 63(1): 90-101.
  • Guo, X., Wu, Z., He, M., 2009. Removal of antimony(V) and antimony (III) from drinking water by coagulation–flocculation–sedimentation (CFS), Water Research, 43(17): 4327-4335.
  • Hegazy AK, Abdel-Ghani NT, El-Chaghaby GA. 2011. Phytoremediation of industrial wastewater potentiality by Typha domingensis. Int. J. Environ. Sci. Tech. 8(3):639-648.
  • Hong, G., Shen, L., Wang, M., Yang, Y., Wang, X., Zhu, M., Hsiao, B.S., 2014. Nanofibrous polydopamine complex membranes for adsorption of Lanthanum (III) ions, Chem. Eng. J., 244: 307-316.
  • Lian, M., Wang, J., Sun, L., Xu, Z., Tang, J., Yan, J., Zeng, X., 2019, Profiles and potential health risks of heavy metals in soil and crops from the watershed of Xi River in Northeast China, Ecotoxicology and Environmental Safety, 169, 442-448
  • Lu, C., Ding, J., Park, H.K., Feng, H., 2020, High intensity ultrasound as a physical elicitor affects secondary metabolites and antioxidant capacity of tomato fruits, Food Control, 113: Article 107176.
  • Ma LQ, Komar KM, Tu C, Zhang W, Cai Y, Kennelly ED. 2001. A fern that hyperaccumulates arsenic. Nature Biotech. 409: 579.
  • Markert, B., 1992. Establishing of Reference Plant for Inorganic Characterization of Different Plant Species By Chemical Fingerprinting, Water, Air and Soil Pollution, 64: 533-538.
  • Martins, F., Castro, H., 2019. Significance ranking method applied to some EU critical raw materials in a circular economy – priorities for achieving sustainability, Procedia CIRP, 84: 1059-1062.
  • Pierart, A., Shahid, M., Séjalon-Delmas, N., Dumat, C., 2015. Antimony bioavailability: Knowledge and research perspectives for sustainable agricultures, Journal of Hazardous Materials, 289: 219-234.
  • Pinto, J., Costa, M., Leite, C., Borges, C., Coppola, F., Henriques, B., Monteiro, R., Russo, T., Di Cosmo, A., Soares, A. M. V. M., Polese, G., Pereira, E., & Freitas, R. 2019. Ecotoxicological effects of lanthanum in Mytilus galloprovincialis: Biochemical and histopathological impacts. Aquatic Toxicology, 211, 181–192.
  • RWPC. 2009. Regulation on water pollution control: sampling and analysis method. Official Gazette dated 10.10.2009 and numbered 27372.
  • Simonsen, L.O., Harbak, H., Bennekouü, P., 2012. Cobalt metabolism and toxicology-A brief update, Science of The Total Environment, 432: 210-215.
  • Sitprija, V., Eiam-Ong, S., 1998. Vanadium and metabolic problems, J.O. Nriagu (Ed.), Vanadium in the Environment. Part 2: Health Effects, 31, John Wiley and Sons, New York, Chichester, Weinheim, Brisbane, Singapore, Toronto, 91-120.
  • Ścibior, A., Pietrzyk, L., Plewa, Z., Skiba, A., 2020. Vanadium: Risks and possible benefits in the light of a comprehensive overview of its pharmacotoxicological mechanisms and multi-applications with a summary of further research trends, Journal of Trace Elements in Medicine and Biology, 61: Article 126508.
  • Topal, M., Arslan Topal, E.I., 2017. Determination of Concentrations of Lead and Nickel in Keban Dam Lake (Elazığ) within Water Framework Directive, Int. J. Pure Appl. Sci. 3(1): 41-53.
  • Topal, M., Öbek, E., Arslan Topal, E.I., 2020. Performance of Cladophora fracta for Bioaccumulation of Critical Raw Materials from Mine Gallery Waters. Arab J Sci Eng. 45:4531-4539.
  • Topal, M., Arslan Topal, E.I., 2022. Preliminary assessment of health risks associated with consumption of grapevines contaminated with mining effluents in Turkey: Persistent trace elements and critical raw materials. Integ. Environ. Assess. Manage. 18:517-527.
  • van den Brink, S., Kleijn, R., Sprecher, B., Tukker, A., 2020. Identifying supply risks by mapping the cobalt supply chain, Resources, Conservation and Recycling, 156: Article 104743.
  • USEPA, 1989. Risk assessment guidance for Superfund Human health evaluation manual, (part A) [R], vol. 1, Office of emergency and remedial response, Washington, DC (1989) [EPA/540/1-89/002].
  • USEPA, 2001. Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites [R]. Office of Solid Waste and Emergency Response, Washington, DC [OSWER9355.4e24].
  • USEPA, 2011, United States Environmental Protection Agency. Exposure Factors Handbook. National Center for Environmental Assessment. Washington, DC (EPA/600/R-09/ 052F), https://cfpub.epa.gov/ncea/risk/recordisplay.cfm?deid=236252.
  • Wei, J., Cen, K., 2020, Assessment of human health risk based on characteristics of potential toxic elements (PTEs) contents in foods sold in Beijing, China, Science of The Total Environment, 70310, Article 134747.
There are 33 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Murat Topal 0000-0003-0222-5409

Emine Işıl Arslan Topal 0000-0003-0309-7787

Erdal Öbek 0000-0002-4595-572X

Early Pub Date June 23, 2023
Publication Date June 30, 2023
Submission Date March 4, 2023
Acceptance Date May 4, 2023
Published in Issue Year 2023 Volume: 9 Issue: 1

Cite

APA Topal, M., Arslan Topal, E. I., & Öbek, E. (2023). Toxic Elements from Critical Raw Materials Group in Ripe and Unripe Tomatoes in A Contaminated Area: Accumulation and Potential Health Risk Assessment. International Journal of Pure and Applied Sciences, 9(1), 165-174. https://doi.org/10.29132/ijpas.1260249
AMA Topal M, Arslan Topal EI, Öbek E. Toxic Elements from Critical Raw Materials Group in Ripe and Unripe Tomatoes in A Contaminated Area: Accumulation and Potential Health Risk Assessment. International Journal of Pure and Applied Sciences. June 2023;9(1):165-174. doi:10.29132/ijpas.1260249
Chicago Topal, Murat, Emine Işıl Arslan Topal, and Erdal Öbek. “Toxic Elements from Critical Raw Materials Group in Ripe and Unripe Tomatoes in A Contaminated Area: Accumulation and Potential Health Risk Assessment”. International Journal of Pure and Applied Sciences 9, no. 1 (June 2023): 165-74. https://doi.org/10.29132/ijpas.1260249.
EndNote Topal M, Arslan Topal EI, Öbek E (June 1, 2023) Toxic Elements from Critical Raw Materials Group in Ripe and Unripe Tomatoes in A Contaminated Area: Accumulation and Potential Health Risk Assessment. International Journal of Pure and Applied Sciences 9 1 165–174.
IEEE M. Topal, E. I. Arslan Topal, and E. Öbek, “Toxic Elements from Critical Raw Materials Group in Ripe and Unripe Tomatoes in A Contaminated Area: Accumulation and Potential Health Risk Assessment”, International Journal of Pure and Applied Sciences, vol. 9, no. 1, pp. 165–174, 2023, doi: 10.29132/ijpas.1260249.
ISNAD Topal, Murat et al. “Toxic Elements from Critical Raw Materials Group in Ripe and Unripe Tomatoes in A Contaminated Area: Accumulation and Potential Health Risk Assessment”. International Journal of Pure and Applied Sciences 9/1 (June 2023), 165-174. https://doi.org/10.29132/ijpas.1260249.
JAMA Topal M, Arslan Topal EI, Öbek E. Toxic Elements from Critical Raw Materials Group in Ripe and Unripe Tomatoes in A Contaminated Area: Accumulation and Potential Health Risk Assessment. International Journal of Pure and Applied Sciences. 2023;9:165–174.
MLA Topal, Murat et al. “Toxic Elements from Critical Raw Materials Group in Ripe and Unripe Tomatoes in A Contaminated Area: Accumulation and Potential Health Risk Assessment”. International Journal of Pure and Applied Sciences, vol. 9, no. 1, 2023, pp. 165-74, doi:10.29132/ijpas.1260249.
Vancouver Topal M, Arslan Topal EI, Öbek E. Toxic Elements from Critical Raw Materials Group in Ripe and Unripe Tomatoes in A Contaminated Area: Accumulation and Potential Health Risk Assessment. International Journal of Pure and Applied Sciences. 2023;9(1):165-74.

154501544915448154471544615445