Research Article
BibTex RIS Cite

Evaluation of LC-MS/MS Analysis and In Vitro Biological Activities of Rosa pimpinellifolia Root, Pseudo-fruit, and Seed extracts

Year 2022, Volume: 5 Issue: 3, 480 - 503, 15.12.2022
https://doi.org/10.38001/ijlsb.1108547

Abstract

In this study, we investigated antioxidant, anticholinesterase, antityrosinase properties, and polyphenolic and flavonoid content by spectrophotometric; antimicrobial by disc diffusion and microdilution method; antigenotoxic activities by comet assay, and the phytochemical composition of the Rosa pimpinellifolia extracts by LC-MS/MS. The EtOAc extract of the root (RPKE) had higher antioxidant activities at 10 μg/mL with inhibition of 39.7, 91.2, and 39.5% respectively in the DPPH·, ABTS•+, and superoxide anion radical scavenging activity assay than standard antioxidant molecules. The polyphenolic contents of the RPKE and the EtOAc extract of the seed (RPÇE) were found to be 378.2 ± 0.477 and 305.39 ± 0.568 μg GAE/mg respectively. The extracts of RPKE showed butyrylcholinesterase activity with 19±0.12% inhibition at 100 μg/mL concentration. RPKE showed higher activity at 500 μg/mL with inhibition of 50% in the tyrosinase inhibitory assay than the other R. pimpinellifolia extracts. The extracts of R. pimpinellifolia exhibited antimicrobial activity against Staphylococcus aureus and Candida albicans. The extracts of R. pimpinellifolia did not show any antigenotoxic effect up to the concentration of 1000 μg/mL. In LC/MS/MS analysis, Cyanidin-3-O-Glucoside and isoquercetin in the pseudo-fruit; procyanidin B2 and catechin in the root were the major phenolic compounds.

References

  • 1. Tetik, F., S. Civelek, and U. Cakilcioglu, Traditional uses of some medicinal plants in Malatya (Turkey). Journal of Ethnopharmacology, 2013. 146(1): p. 331-346.
  • 2. Gürhan, G. and N. Ezer, Halk arasında hemoroit tedavisinde kullanılan bitkiler-I. Hacettepe Üniversitesi Eczacılık Fakültesi Dergisi, 2004. 24(1): p. 37-55.
  • 3. Altundag, E. and M. Ozturk, Ethnomedicinal studies on the plant resources of east Anatolia, Turkey. Procedia-Social and Behavioral Sciences, 2011. 19: p. 756-777. 4. Kumar, N., et al., Reversed phase-HPLC for rapid determination of polyphenols in flowers of rose species. Journal of Separation Science, 2008. 31(2): p. 262-267.
  • 5. Gao, X., et al., Aurone constituents from the flowers of Rosa rugosa and their biological activities. Heterocycles, 2012. 85(8): p. 1925-1931.
  • 6. Gao, X.M., et al., Phenylethanoids from the flowers of Rosa rugosa and their biological activities. Bulletin of the Korean Chemical Society, 2013. 34(1): p. 246-248.
  • 7. Liu, D.L., et al., Triterpenoids from the roots of Rose odorata var. gigantean. Chinese Journal of Natural Medicines, 2010. 8(1): p. 12-15.
  • 8. Stoyanova-Ivanova, B., et al., Content and composition of neutral components in wax from Rosa canina flowers. Doklady Bolgarskoi Akademii Nauk, 1979. 32(11): p. 1503-1506.
  • 9. Hashidoko, Y., The phytochemistry of Rosa rugosa. Phytochemistry, 1996. 43(3): p. 535-549.
  • 10. Novruzov, E.N., Pigments of species in the genus Rosa and their chemotaxonomic value. Acta Horticulturae, 2005. 690(Proceedings of the 1st International Rose Hip Conference, 2004): p. 225-230.
  • 11. Ghazghazi, H., et al., Phenols, essential oils and carotenoids of Rosa canina from Tunisia and their antioxidant activities. The African Journal of Biotechnology, 2010. 9(18): p. 2709-2716.
  • 12. Al-Rehaily, A.J., T.A. Al-Howiriny, and H.R. Bizzo, Essential oil of Rosa abyssinica R. Br. from Saudi Arabia. Journal of Essential Oil Research, 2003. 15(5): p. 344-345.
  • 13. Elmastaş, M., et al., Changes in flavonoid and phenolic acid contents in some Rosa species during ripening. Food chemistry, 2017. 235: p. 154-159.
  • 14. Odabaş, H.İ. and I. Koca, Simultaneous separation and preliminary purification of anthocyanins from Rosa pimpinellifolia L. fruits by microwave assisted aqueous two-phase extraction. Food and Bioproducts Processing. 125: p. 170-180.
  • 15. Murathan, Z.T., et al., Characterization of bioactive compounds in rosehip species from East Anatolia region of Turkey. Italian Journal of Food Science, 2016. 28(2): p. 314.
  • 16. Murathan, Z.T., M. Zarıfıkhosroshahı, and N.E. Kafkas, Determination of fatty acids and volatile compounds in fruits of rosehip (Rosa L.) species by HS-SPME/GC-MS and Im-SPME/GC-MS techniques. Turkish Journal of Agriculture and Forestry, 2016. 40(2): p. 269-279.
  • 17. Nagaki, M., et al., Composition and antimicrobial activity of the essential oil and water extract from Japanese wild Rosa rugosa. Transactions of the Materials Research Society of Japan, 2011. 36(3): p. 517-521.
  • 18. Lee, H.J., et al., Anti-inflammatory effects of hexane fraction from white rose flower extracts via inhibition of inflammatory repertoires. Biomolecules & Therapeutics, 2011. 19(3): p. 331-335.
  • 19. Park, K.H., et al., Three new stereoisomers of condensed tannins from the roots of Rosa multiflora. Chemical and Pharmaceutical Bulletin, 2010. 58(9): p. 1227-1231.
  • 20. Hsieh, T.C., et al., Effects of herbal preparation Equiguard on hormone-responsive and hormone-refractory prostate carcinoma cells: mechanistic studies. International Journal of Oncology, 2002. 20(4): p. 681-689.
  • 21. Nagai, T., et al., Tea beverages made from Romanas rose (Rosa rugosa Thunb.) leaves possess strongly antioxidative activity by high contents of total phenols and vitamin C. Journal of Food, Agriculture and Environment, 2007. 5(3 & 4): p. 137-141.
  • 22. Liu, Y.T., B.N. Lu, and J.Y. Peng, Hepatoprotective activity of the total flavonoids from Rosa laevigata Michx fruit in mice treated by paracetamol. Food Chemistry, 2010. 125(2): p. 719-725.
  • 23. Setzer, W.N., Essential oils and anxiolytic aromatherapy. Natural Product Communications, 2009. 4(9): p. 1305-1316.
  • 24. Ninomiya, K., et al., Potent anti-obese principle from Rosa canina: Structural requirements and mode of action of trans-tiliroside. Bioorganic & Medicinal Chemistry Letters, 2007. 17(11): p. 3059-3064.
  • 25. Umezu, T., et al., Anticonflict effects of rose oil and identification of its active constituents. Life Science, 2002. 72(1): p. 91-102.
  • 26. Seto, T., I. Yasuda, and K. Akiyama, Purgative activity and principals of the fruits of Rosa multiflora and R. wichuraiana. Chemical and Pharmaceutical Bulletin, 1992. 40(8): p. 2080-2082.
  • 27. Tayefi-Nasrabadi, H., S. Sadigh-Eteghad, and Z. Aghdam, The effects of the hydroalcohol extract of Rosa canina L. Fruit on experimentally nephrolithiasic wistar rats. Phytotherapy Research, 2012. 26(1): p. 78-85.
  • 28. Mandade, R.J., et al., Role of the Rosa canina L. leaf extract as an antidiarrheal drug in rodents. Indian Journal of Pharmacology, 2011. 43(3): p. 316-319.
  • 29. Jeon, J.H., et al., Anti-allergic effects of white rose petal extract and anti-atopic properties of its hexane fraction. Archives of Pharmacal Research, 2009. 32(6): p. 823-830.
  • 30. Tumbas, V.T., et al., Effect of rosehip (Rosa canina L.) phytochemicals on stable free radicals and human cancer cells. Journal of the Science of Food and Agriculture, 2012. 92(6): p. 1273-1281.
  • 31. Jung, H.J., et al., 19α-hydroxyursane-type triterpenoids: antinociceptive anti-inflammatory principles of the roots of Rosa rugosa. Biological and Pharmaceutical Bulletin, 2005. 28(1): p. 101-104.
  • 32. Gürbüz, İ., et al., Anti-ulcerogenic activity of some plants used as folk remedy in Turkey. Journal of Ethnopharmacology, 2003. 88(1): p. 93-97.
  • 33. Yoshizawa Y, Kawaii S, Sato T, Murofushi N, Nishimura H. Anticancer and anti-hypertensive effects of small fruit juices, American Chemical Society, 2001,2: 8-23.
  • 34. Trovato, A., et al., In vitro anti-mycotic activity of some medicinal plants containing flavonoids. Bollettino Chimico Farmaceutico, 2000. 139(5): p. 225-227.
  • 35. Boskabady, M.H., et al., Pharmacological effects of Rosa damascena. Iranian Journal of Basic Medical Sciences, 2011. 14(4): p. 295-307.
  • 36. Vlachojannis JE, Duke RK, Tran VH, Duke CC, Chrubasik S. Medicinal properties of Rosa canina, Studium Press, 2010, 27: 441-463.
  • 37. Vertuani, S., et al., Antioxidant herbal supplements for hemorrhoids developing a new formula. Nutrafoods, 2004. 3(3): p. 19-26.
  • 38. Ghasemzadeh, A. and N. Ghasemzadeh, Flavonoids and phenolic acids: Role and biochemical activity in plants and human. Journal of medicinal plants research, 2011. 5(31): p. 6697-6703.
  • 39. Park, H.-R., et al., Antioxidant activity of extracts from Acanthopanax senticosus. African Journal of Biotechnology, 2006. 5(23).
  • 40. Aliyazicioglu, R., et al., Antioxidant, antigenotoxic, antimicrobial activities and phytochemical analysis of Dianthus carmelitarum. Rec. Nat. Prod., 2017. 11(3): p. 270-284.
  • 41. Gyawali, R. and S.A. Ibrahim, Natural products as antimicrobial agents. Food Control, 2014. 46: p. 412-429.
  • 42. Bao, K., et al., Design and synthesis of biphenyl derivatives as mushroom tyrosinase inhibitors. Bioorg. Med. Chem., 2010. 18(18): p. 6708-6714.
  • 43. Masuda, T., et al., Screening for tyrosinase inhibitors among extracts of seashore plants and identification of potent inhibitors from Garcinia subelliptica. Biosci., Biotechnol., Biochem., 2005. 69(1): p. 197-201.
  • 44. Sezer Senol, F., et al., Memory-vitalizing effect of twenty-five medicinal and edible plants and their isolated compounds. S. Afr. J. Bot., 2016. 102: p. 102-109.
  • 45. Tsong-Min, C., Tyrosinase and tyrosinase inhibitors. Journal of Biocatalysis & Biotransformation, 2012.
  • 46. Gholamhoseinian, A. and Z. Razmi, Screening the methanolic extracts of some plants for tyrosinase inhibitory activity. Toxicological & Environmental Chemistry, 2012. 94(2): p. 310-318.
  • 47. Shimizu, K., R. Kondo, and K. Sakai, Inhibition of tyrosinase by flavonoids, stilbenes, and related 4-substituted resorcinols. Structure-activity investigations. Planta Med., 2000. 66(1): p. 11-15.
  • 48. Martinez, M.V. and J.R. Whitaker, The biochemistry and control of enzymic browning. Trends Food Sci. Technol., 1995. 6(6): p. 195-200.
  • 49. Xu, Y., et al., Tyrosinase mRNA is expressed in human substantia nigra. Mol. Brain Res., 1997. 45(1): p. 159-162.
  • 50. Asanuma, M., I. Miyazaki, and N. Ogawa, Dopamine- or L-DOPA-induced neurotoxicity: the role of dopamine quinone formation and tyrosinase in a model of Parkinson's disease. Neurotox Res, 2003. 5(3): p. 165-76.
  • 51. Adewusi, E.A., N. Moodley, and V. Steenkamp, Medicinal plants with cholinesterase inhibitory activity: a review. African Journal of Biotechnology, 2010. 9(49): p. 8257-8276.
  • 52. Singleton, V. and J.A. Rossi, Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 1965. 16(3): p. 144-158.
  • 53. Folin, O. and W. Denis, Phosphotungstic-phosphomolybdic Compounds as Color Reagents. The Journal of Biological Chemistry, 1912. 12: p. 239-243.
  • 54. Slinkard, K. and V.L. Singleton, Total phenol analysis: automation and comparison with manual methods. American Journal of Enology and Viticulture, 1977. 28(1): p. 49-55.
  • 55. Lar'kina, M.S., et al., Quantitative determination of flavonoids from the aerial part of greater knapweed (Centaurea scabiosa L.). Pharmaceutical Chemistry Journal, 2009. 43(6): p. 320-323.
  • 56. Blois, M.S., Antioxidant determinations by the use of a stable free radical. 1958.
  • 57. Re, R., et al., Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology & Medicine, 1999. 26(9-10): p. 1231-1237.
  • 58. Zhishen, J., T. Mengcheng, and W. Jianming, The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry, 1999. 64(4): p. 555-559.
  • 59. Ellman, G.L., et al., A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology, 1961. 7(2): p. 88-95.
  • 60. Likhitwitayawuid, K. and B. Sritularak, A new dimeric stilbene with tyrosinase inhibitiory activity from Artocarpus gomezianus. Journal of Natural products, 2001. 64(11): p. 1457-1459.
  • 61. Aliyazicioglu, Y., et al., Preventive and protective effects of Turkish propolis on H2O2-induced DNA damage in foreskin fibroblast cell lines. Acta Biologica Hungarica, 2011. 62(4): p. 388-396.
  • 62. Tice, R.R., et al., Single cell gel/Comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environmental and Molecular Mutagenesis 2000. 35(3): p. 206-221.
  • 63. Ceylan, R., et al., GC-MS analysis and in vitro antioxidant and enzyme inhibitory activities of essential oil from aerial parts of endemic Thymus spathulifolius Hausskn. et Velen. Journal of enzyme inhibition and medicinal chemistry, 2016. 31(6): p. 983-990.
  • 64. Gören, A.C., et al., HPLC and LC–MS/MS methods for determination of sodium benzoate and potassium sorbate in food and beverages: Performances of local accredited laboratories via proficiency tests in Turkey. Food chemistry, 2015. 175: p. 273-279.
  • 65. Binici, B., et al., An efficient GC–IDMS method for determination of PBDEs and PBB in plastic materials. Talanta, 2013. 116: p. 417-426.
  • 66. Feng-Zheng, C., et al., Chemical Constituents from Fruits of Rosa davidii. Acta Botanica Sinica, 2001. 1: p. 19.
  • 67. Larsen, E., et al., An antiinflammatory galactolipid from rose hip (Rosa canina) that Inhibits chemotaxis of human peripheral blood neutrophils in vitro. Journal of Natural Products, 2003. 66(7): p. 994-995.
  • 68. Çoruh, N. and N. Özdoğan, Identification and quantification of phenolic components of Rosa heckeliana Tratt roots. Journal of Liquid Chromatography & Related Technologies, 2015. 38(5): p. 569-578.
  • 69. Yeşilada, E., et al., Inhibitory effects of Turkish folk remedies on inflammatory cytokines: interleukin-1α, interleukin-1β and tumor necrosis factor α. Journal of Ethnopharmacology, 1997. 58(1): p. 59-73.
  • 70. Koczka, N., É. Stefanovits-Bányai, and A. Ombódi, Total polyphenol content and antioxidant capacity of rosehips of some Rosa species. Medicines, 2018. 5(3): p. 84.
  • 71. Guven, L., et al., Phytochemical studies on the seeds, pseudofruits, and roots of Rosa pimpinellifolia. Journal of Research in Pharmacy, 2021. 25(2): p. 153-163.
  • 72. Senol, F.S., et al., Memory-vitalizing effect of twenty-five medicinal and edible plants and their isolated compounds. South African Journal of Botany, 2016. 102: p. 102-109.
  • 73. Hu, W., et al., Biological activity and inhibition of non-enzymatic glycation by methanolic extract of Rosa davurica Pall. roots. Journal of Food Sciences and Nutrition, 2011. 16(3): p. 242-247.
  • 74. Kilicgun, H. and D. Altiner, Correlation between antioxidant effect mechanisms and polyphenol content of Rosa canina. Pharmacognosy Magazine, 2010. 6(23): p. 238-241.
  • 75. Boğa, M., I. Hacıbekiroğlu, and U. Kolak, Antioxidant and anticholinesterase activities of eleven edible plants. Pharm Biol, 2011. 49(3): p. 290-5.
  • 76. Leyla GÜVEN, U.Ö., Esen SEZEN KARAOĞLAN Thyrozinase enzyme inhibitor activity of Rosa pimpinelifolia petals, in 5th International Medical and Health Sciences Research Congress (UTSAK). 12-13 December 2020: Ankara.
  • 77. Olech, M., et al., Evaluation of rose roots, a post-harvest plantation residue as a source of phytochemicals with radical scavenging, cytotoxic, and antimicrobial activity. Industrial Crops and Products, 2015. 69: p. 129-136.
  • 78. Halawani, E.M., Antimicrobial activity of Rosa damascena petals extracts and chemical composition by gas chromatography-mass spectrometry (GC/MS) analysis. African Journal of Microbiology Research, 2014. 8(24): p. 2359-2367.
  • 79. He, R.R., et al., Protective effects of radix Rosa laevigata against Propionibacterium acnes and lipopolysaccharide-induced liver injury. Bioscience, Biotechnology, and Biochemistry, 2009. 73(5): p. 1129-1136.
  • 80. Odabaş, H.İ. and I. Koca, Simultaneous separation and preliminary purification of anthocyanins from Rosa pimpinellifolia L. fruits by microwave assisted aqueous two-phase extraction. Food and Bioproducts Processing, 2021. 125: p. 170-180.
  • 81. Dabić Zagorac, D.Č., et al., Establishing the chromatographic fingerprints of flavan‐3‐ols and proanthocyanidins from rose hip (Rosa sp.) species. Journal of separation science, 2020. 43(8): p. 1431-1439.
Year 2022, Volume: 5 Issue: 3, 480 - 503, 15.12.2022
https://doi.org/10.38001/ijlsb.1108547

Abstract

References

  • 1. Tetik, F., S. Civelek, and U. Cakilcioglu, Traditional uses of some medicinal plants in Malatya (Turkey). Journal of Ethnopharmacology, 2013. 146(1): p. 331-346.
  • 2. Gürhan, G. and N. Ezer, Halk arasında hemoroit tedavisinde kullanılan bitkiler-I. Hacettepe Üniversitesi Eczacılık Fakültesi Dergisi, 2004. 24(1): p. 37-55.
  • 3. Altundag, E. and M. Ozturk, Ethnomedicinal studies on the plant resources of east Anatolia, Turkey. Procedia-Social and Behavioral Sciences, 2011. 19: p. 756-777. 4. Kumar, N., et al., Reversed phase-HPLC for rapid determination of polyphenols in flowers of rose species. Journal of Separation Science, 2008. 31(2): p. 262-267.
  • 5. Gao, X., et al., Aurone constituents from the flowers of Rosa rugosa and their biological activities. Heterocycles, 2012. 85(8): p. 1925-1931.
  • 6. Gao, X.M., et al., Phenylethanoids from the flowers of Rosa rugosa and their biological activities. Bulletin of the Korean Chemical Society, 2013. 34(1): p. 246-248.
  • 7. Liu, D.L., et al., Triterpenoids from the roots of Rose odorata var. gigantean. Chinese Journal of Natural Medicines, 2010. 8(1): p. 12-15.
  • 8. Stoyanova-Ivanova, B., et al., Content and composition of neutral components in wax from Rosa canina flowers. Doklady Bolgarskoi Akademii Nauk, 1979. 32(11): p. 1503-1506.
  • 9. Hashidoko, Y., The phytochemistry of Rosa rugosa. Phytochemistry, 1996. 43(3): p. 535-549.
  • 10. Novruzov, E.N., Pigments of species in the genus Rosa and their chemotaxonomic value. Acta Horticulturae, 2005. 690(Proceedings of the 1st International Rose Hip Conference, 2004): p. 225-230.
  • 11. Ghazghazi, H., et al., Phenols, essential oils and carotenoids of Rosa canina from Tunisia and their antioxidant activities. The African Journal of Biotechnology, 2010. 9(18): p. 2709-2716.
  • 12. Al-Rehaily, A.J., T.A. Al-Howiriny, and H.R. Bizzo, Essential oil of Rosa abyssinica R. Br. from Saudi Arabia. Journal of Essential Oil Research, 2003. 15(5): p. 344-345.
  • 13. Elmastaş, M., et al., Changes in flavonoid and phenolic acid contents in some Rosa species during ripening. Food chemistry, 2017. 235: p. 154-159.
  • 14. Odabaş, H.İ. and I. Koca, Simultaneous separation and preliminary purification of anthocyanins from Rosa pimpinellifolia L. fruits by microwave assisted aqueous two-phase extraction. Food and Bioproducts Processing. 125: p. 170-180.
  • 15. Murathan, Z.T., et al., Characterization of bioactive compounds in rosehip species from East Anatolia region of Turkey. Italian Journal of Food Science, 2016. 28(2): p. 314.
  • 16. Murathan, Z.T., M. Zarıfıkhosroshahı, and N.E. Kafkas, Determination of fatty acids and volatile compounds in fruits of rosehip (Rosa L.) species by HS-SPME/GC-MS and Im-SPME/GC-MS techniques. Turkish Journal of Agriculture and Forestry, 2016. 40(2): p. 269-279.
  • 17. Nagaki, M., et al., Composition and antimicrobial activity of the essential oil and water extract from Japanese wild Rosa rugosa. Transactions of the Materials Research Society of Japan, 2011. 36(3): p. 517-521.
  • 18. Lee, H.J., et al., Anti-inflammatory effects of hexane fraction from white rose flower extracts via inhibition of inflammatory repertoires. Biomolecules & Therapeutics, 2011. 19(3): p. 331-335.
  • 19. Park, K.H., et al., Three new stereoisomers of condensed tannins from the roots of Rosa multiflora. Chemical and Pharmaceutical Bulletin, 2010. 58(9): p. 1227-1231.
  • 20. Hsieh, T.C., et al., Effects of herbal preparation Equiguard on hormone-responsive and hormone-refractory prostate carcinoma cells: mechanistic studies. International Journal of Oncology, 2002. 20(4): p. 681-689.
  • 21. Nagai, T., et al., Tea beverages made from Romanas rose (Rosa rugosa Thunb.) leaves possess strongly antioxidative activity by high contents of total phenols and vitamin C. Journal of Food, Agriculture and Environment, 2007. 5(3 & 4): p. 137-141.
  • 22. Liu, Y.T., B.N. Lu, and J.Y. Peng, Hepatoprotective activity of the total flavonoids from Rosa laevigata Michx fruit in mice treated by paracetamol. Food Chemistry, 2010. 125(2): p. 719-725.
  • 23. Setzer, W.N., Essential oils and anxiolytic aromatherapy. Natural Product Communications, 2009. 4(9): p. 1305-1316.
  • 24. Ninomiya, K., et al., Potent anti-obese principle from Rosa canina: Structural requirements and mode of action of trans-tiliroside. Bioorganic & Medicinal Chemistry Letters, 2007. 17(11): p. 3059-3064.
  • 25. Umezu, T., et al., Anticonflict effects of rose oil and identification of its active constituents. Life Science, 2002. 72(1): p. 91-102.
  • 26. Seto, T., I. Yasuda, and K. Akiyama, Purgative activity and principals of the fruits of Rosa multiflora and R. wichuraiana. Chemical and Pharmaceutical Bulletin, 1992. 40(8): p. 2080-2082.
  • 27. Tayefi-Nasrabadi, H., S. Sadigh-Eteghad, and Z. Aghdam, The effects of the hydroalcohol extract of Rosa canina L. Fruit on experimentally nephrolithiasic wistar rats. Phytotherapy Research, 2012. 26(1): p. 78-85.
  • 28. Mandade, R.J., et al., Role of the Rosa canina L. leaf extract as an antidiarrheal drug in rodents. Indian Journal of Pharmacology, 2011. 43(3): p. 316-319.
  • 29. Jeon, J.H., et al., Anti-allergic effects of white rose petal extract and anti-atopic properties of its hexane fraction. Archives of Pharmacal Research, 2009. 32(6): p. 823-830.
  • 30. Tumbas, V.T., et al., Effect of rosehip (Rosa canina L.) phytochemicals on stable free radicals and human cancer cells. Journal of the Science of Food and Agriculture, 2012. 92(6): p. 1273-1281.
  • 31. Jung, H.J., et al., 19α-hydroxyursane-type triterpenoids: antinociceptive anti-inflammatory principles of the roots of Rosa rugosa. Biological and Pharmaceutical Bulletin, 2005. 28(1): p. 101-104.
  • 32. Gürbüz, İ., et al., Anti-ulcerogenic activity of some plants used as folk remedy in Turkey. Journal of Ethnopharmacology, 2003. 88(1): p. 93-97.
  • 33. Yoshizawa Y, Kawaii S, Sato T, Murofushi N, Nishimura H. Anticancer and anti-hypertensive effects of small fruit juices, American Chemical Society, 2001,2: 8-23.
  • 34. Trovato, A., et al., In vitro anti-mycotic activity of some medicinal plants containing flavonoids. Bollettino Chimico Farmaceutico, 2000. 139(5): p. 225-227.
  • 35. Boskabady, M.H., et al., Pharmacological effects of Rosa damascena. Iranian Journal of Basic Medical Sciences, 2011. 14(4): p. 295-307.
  • 36. Vlachojannis JE, Duke RK, Tran VH, Duke CC, Chrubasik S. Medicinal properties of Rosa canina, Studium Press, 2010, 27: 441-463.
  • 37. Vertuani, S., et al., Antioxidant herbal supplements for hemorrhoids developing a new formula. Nutrafoods, 2004. 3(3): p. 19-26.
  • 38. Ghasemzadeh, A. and N. Ghasemzadeh, Flavonoids and phenolic acids: Role and biochemical activity in plants and human. Journal of medicinal plants research, 2011. 5(31): p. 6697-6703.
  • 39. Park, H.-R., et al., Antioxidant activity of extracts from Acanthopanax senticosus. African Journal of Biotechnology, 2006. 5(23).
  • 40. Aliyazicioglu, R., et al., Antioxidant, antigenotoxic, antimicrobial activities and phytochemical analysis of Dianthus carmelitarum. Rec. Nat. Prod., 2017. 11(3): p. 270-284.
  • 41. Gyawali, R. and S.A. Ibrahim, Natural products as antimicrobial agents. Food Control, 2014. 46: p. 412-429.
  • 42. Bao, K., et al., Design and synthesis of biphenyl derivatives as mushroom tyrosinase inhibitors. Bioorg. Med. Chem., 2010. 18(18): p. 6708-6714.
  • 43. Masuda, T., et al., Screening for tyrosinase inhibitors among extracts of seashore plants and identification of potent inhibitors from Garcinia subelliptica. Biosci., Biotechnol., Biochem., 2005. 69(1): p. 197-201.
  • 44. Sezer Senol, F., et al., Memory-vitalizing effect of twenty-five medicinal and edible plants and their isolated compounds. S. Afr. J. Bot., 2016. 102: p. 102-109.
  • 45. Tsong-Min, C., Tyrosinase and tyrosinase inhibitors. Journal of Biocatalysis & Biotransformation, 2012.
  • 46. Gholamhoseinian, A. and Z. Razmi, Screening the methanolic extracts of some plants for tyrosinase inhibitory activity. Toxicological & Environmental Chemistry, 2012. 94(2): p. 310-318.
  • 47. Shimizu, K., R. Kondo, and K. Sakai, Inhibition of tyrosinase by flavonoids, stilbenes, and related 4-substituted resorcinols. Structure-activity investigations. Planta Med., 2000. 66(1): p. 11-15.
  • 48. Martinez, M.V. and J.R. Whitaker, The biochemistry and control of enzymic browning. Trends Food Sci. Technol., 1995. 6(6): p. 195-200.
  • 49. Xu, Y., et al., Tyrosinase mRNA is expressed in human substantia nigra. Mol. Brain Res., 1997. 45(1): p. 159-162.
  • 50. Asanuma, M., I. Miyazaki, and N. Ogawa, Dopamine- or L-DOPA-induced neurotoxicity: the role of dopamine quinone formation and tyrosinase in a model of Parkinson's disease. Neurotox Res, 2003. 5(3): p. 165-76.
  • 51. Adewusi, E.A., N. Moodley, and V. Steenkamp, Medicinal plants with cholinesterase inhibitory activity: a review. African Journal of Biotechnology, 2010. 9(49): p. 8257-8276.
  • 52. Singleton, V. and J.A. Rossi, Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 1965. 16(3): p. 144-158.
  • 53. Folin, O. and W. Denis, Phosphotungstic-phosphomolybdic Compounds as Color Reagents. The Journal of Biological Chemistry, 1912. 12: p. 239-243.
  • 54. Slinkard, K. and V.L. Singleton, Total phenol analysis: automation and comparison with manual methods. American Journal of Enology and Viticulture, 1977. 28(1): p. 49-55.
  • 55. Lar'kina, M.S., et al., Quantitative determination of flavonoids from the aerial part of greater knapweed (Centaurea scabiosa L.). Pharmaceutical Chemistry Journal, 2009. 43(6): p. 320-323.
  • 56. Blois, M.S., Antioxidant determinations by the use of a stable free radical. 1958.
  • 57. Re, R., et al., Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology & Medicine, 1999. 26(9-10): p. 1231-1237.
  • 58. Zhishen, J., T. Mengcheng, and W. Jianming, The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry, 1999. 64(4): p. 555-559.
  • 59. Ellman, G.L., et al., A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology, 1961. 7(2): p. 88-95.
  • 60. Likhitwitayawuid, K. and B. Sritularak, A new dimeric stilbene with tyrosinase inhibitiory activity from Artocarpus gomezianus. Journal of Natural products, 2001. 64(11): p. 1457-1459.
  • 61. Aliyazicioglu, Y., et al., Preventive and protective effects of Turkish propolis on H2O2-induced DNA damage in foreskin fibroblast cell lines. Acta Biologica Hungarica, 2011. 62(4): p. 388-396.
  • 62. Tice, R.R., et al., Single cell gel/Comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environmental and Molecular Mutagenesis 2000. 35(3): p. 206-221.
  • 63. Ceylan, R., et al., GC-MS analysis and in vitro antioxidant and enzyme inhibitory activities of essential oil from aerial parts of endemic Thymus spathulifolius Hausskn. et Velen. Journal of enzyme inhibition and medicinal chemistry, 2016. 31(6): p. 983-990.
  • 64. Gören, A.C., et al., HPLC and LC–MS/MS methods for determination of sodium benzoate and potassium sorbate in food and beverages: Performances of local accredited laboratories via proficiency tests in Turkey. Food chemistry, 2015. 175: p. 273-279.
  • 65. Binici, B., et al., An efficient GC–IDMS method for determination of PBDEs and PBB in plastic materials. Talanta, 2013. 116: p. 417-426.
  • 66. Feng-Zheng, C., et al., Chemical Constituents from Fruits of Rosa davidii. Acta Botanica Sinica, 2001. 1: p. 19.
  • 67. Larsen, E., et al., An antiinflammatory galactolipid from rose hip (Rosa canina) that Inhibits chemotaxis of human peripheral blood neutrophils in vitro. Journal of Natural Products, 2003. 66(7): p. 994-995.
  • 68. Çoruh, N. and N. Özdoğan, Identification and quantification of phenolic components of Rosa heckeliana Tratt roots. Journal of Liquid Chromatography & Related Technologies, 2015. 38(5): p. 569-578.
  • 69. Yeşilada, E., et al., Inhibitory effects of Turkish folk remedies on inflammatory cytokines: interleukin-1α, interleukin-1β and tumor necrosis factor α. Journal of Ethnopharmacology, 1997. 58(1): p. 59-73.
  • 70. Koczka, N., É. Stefanovits-Bányai, and A. Ombódi, Total polyphenol content and antioxidant capacity of rosehips of some Rosa species. Medicines, 2018. 5(3): p. 84.
  • 71. Guven, L., et al., Phytochemical studies on the seeds, pseudofruits, and roots of Rosa pimpinellifolia. Journal of Research in Pharmacy, 2021. 25(2): p. 153-163.
  • 72. Senol, F.S., et al., Memory-vitalizing effect of twenty-five medicinal and edible plants and their isolated compounds. South African Journal of Botany, 2016. 102: p. 102-109.
  • 73. Hu, W., et al., Biological activity and inhibition of non-enzymatic glycation by methanolic extract of Rosa davurica Pall. roots. Journal of Food Sciences and Nutrition, 2011. 16(3): p. 242-247.
  • 74. Kilicgun, H. and D. Altiner, Correlation between antioxidant effect mechanisms and polyphenol content of Rosa canina. Pharmacognosy Magazine, 2010. 6(23): p. 238-241.
  • 75. Boğa, M., I. Hacıbekiroğlu, and U. Kolak, Antioxidant and anticholinesterase activities of eleven edible plants. Pharm Biol, 2011. 49(3): p. 290-5.
  • 76. Leyla GÜVEN, U.Ö., Esen SEZEN KARAOĞLAN Thyrozinase enzyme inhibitor activity of Rosa pimpinelifolia petals, in 5th International Medical and Health Sciences Research Congress (UTSAK). 12-13 December 2020: Ankara.
  • 77. Olech, M., et al., Evaluation of rose roots, a post-harvest plantation residue as a source of phytochemicals with radical scavenging, cytotoxic, and antimicrobial activity. Industrial Crops and Products, 2015. 69: p. 129-136.
  • 78. Halawani, E.M., Antimicrobial activity of Rosa damascena petals extracts and chemical composition by gas chromatography-mass spectrometry (GC/MS) analysis. African Journal of Microbiology Research, 2014. 8(24): p. 2359-2367.
  • 79. He, R.R., et al., Protective effects of radix Rosa laevigata against Propionibacterium acnes and lipopolysaccharide-induced liver injury. Bioscience, Biotechnology, and Biochemistry, 2009. 73(5): p. 1129-1136.
  • 80. Odabaş, H.İ. and I. Koca, Simultaneous separation and preliminary purification of anthocyanins from Rosa pimpinellifolia L. fruits by microwave assisted aqueous two-phase extraction. Food and Bioproducts Processing, 2021. 125: p. 170-180.
  • 81. Dabić Zagorac, D.Č., et al., Establishing the chromatographic fingerprints of flavan‐3‐ols and proanthocyanidins from rose hip (Rosa sp.) species. Journal of separation science, 2020. 43(8): p. 1431-1439.
There are 80 citations in total.

Details

Primary Language English
Subjects Biochemistry and Cell Biology (Other)
Journal Section Research Articles
Authors

Leyla Güven 0000-0002-3189-6415

Ufuk Özgen 0000-0001-9839-6717

Handan Sevindik 0000-0003-2738-6874

İclal Ağan

Mehmet Koca 0000-0002-1517-5925

İbrahim Turan 0000-0003-3400-5494

Selim Demir 0000-0002-1863-6280

Yüksel Aliyazıcıoğlu 0000-0001-9474-4307

Early Pub Date May 14, 2022
Publication Date December 15, 2022
Published in Issue Year 2022 Volume: 5 Issue: 3

Cite

EndNote Güven L, Özgen U, Sevindik H, Ağan İ, Koca M, Turan İ, Demir S, Aliyazıcıoğlu Y (December 1, 2022) Evaluation of LC-MS/MS Analysis and In Vitro Biological Activities of Rosa pimpinellifolia Root, Pseudo-fruit, and Seed extracts. International Journal of Life Sciences and Biotechnology 5 3 480–503.



Follow us on social networks  19277 19276 20153  22366