Research Article
BibTex RIS Cite

Optimization of Microwave-assisted Extraction of Phenolics from Organic Strawberry Using Response Surface Methodology

Year 2017, Volume: 21 Issue: 2, 143 - 154, 19.06.2017
https://doi.org/10.29050/harranziraat.321124

Abstract

The effects of
microwave- assisted extraction (MAE) were investigated on extraction of
phenolic compounds from strawberry fruit. Response surface methodology (RSM)
was used to optimize the extraction conditions. A face-centered central
composite design (FCCCD) was employed to determine the effects of independent
variables such as microwave power (100-300 W), extraction time (2-16 min) and
solvent to sample ratio (5:1-25:1 mL g-1) on the extraction yield
and total phenolic content (TPC). Optimized conditions were determined as 265 W
of microwave power, 2 min of extraction time and 24:1 mL g-1 of
solvent to sample ratio. The maximum predicted extraction yield and TPC under
the optimum conditions were 8.23 % and 19.65
mg GAE g-1
dry strawberry, respectively
. Total
anthocyanin content (TAC),
DPPH·EC50
and FRAP values of extracts produced at optimum conditions were determined as
2.3
mg Cyn-3-glu g-1 dry strawberry, 1.67 mg dry strawberry mL-1 and 197.83 μmoles TE g-1
dry strawberry, respectively.

References

  • Ayala-Zavala, J. F., Wang, S. Y., Wang, C. Y., González-Aguilar, G. A., 2007. High oxygen treatment increases antioxidant capacity and postharvest life of strawberry fruit. Food Technology and Biotechnology, 45 (2): 166-173.
  • Azmir, J., Zaidul, I. S. M., Rahman, M. M., Sharif, K. M., Mohamed, A., Sahena, F., Jahurul, M. H. A., Ghafoor, K., Norulaini, N. A. N., Omar, A. K. M., 2013. Techniques for extraction of bioactive compounds from plant materials: A review. Journal of Food Engineering, 117 (4): 426-436.
  • Bai, X., Qiu, A., Guan, J., 2007. Optimization of microwave-assisted extraction of antihepatotoxic triterpenoid from Actinidia deliciosa root and its comparison with conventional extraction methods. Food Technology & Biotechnology, 45 (2): 174-180.
  • Ballard, T. S., Mallikarjunan, P., Zhou, K. Q., O'Keefe, S., 2010. Microwave-assisted extraction of phenolic antioxidant compounds from peanut skins. Food Chemistry, 120 (4): 1185-1192.
  • Benzie, I. F. F., Strain, J. J., 1996. The ferric reducing ability of plasma (FRAP) as a measure of ''antioxidant power'': The FRAP assay. Analytical Biochemistry, 239 (1): 70-76.
  • Brandwilliams, W., Cuvelier, M. E., Berset, C., 1995. Use of a free-radical method to evaluate antioxidant activity. Food Science and Technology (LWT), 28 (1): 25-30.
  • Carniel, N., Dallago, R. M., Dariva, C., Bender, J. P., Nunes, A. L., Zanella, O., Bilibio, D., Luiz Priamo, W., 2016. Microwave‐assisted extraction of phenolic acids and flavonoids from Physalis angulata. Journal of Food Process Engineering, 40(3): 1-11.
  • Chan, C. H., Yusoff, R., Ngoh, G. C., Kung, F. W. L., 2011. Microwave-assisted extractions of active ingredients from plants. Journal of Chromatography A, 1218 (37): 6213-6225.
  • Chen, L., Jin, H., Ding, L., Zhang, H., Li, J., Qu, C., Zhang, H., 2008. Dynamic microwave-assisted extraction of flavonoids from Herba epimedii. Separation and Purification Technology, 59 (1): 50-57.
  • Del Rio, D., Borges, G., Crozier, A., 2010. Berry flavonoids and phenolics: bioavailability and evidence of protective effects. British Journaol of Nutrition, 104 Suppl 3: S67-90.
  • Food and Agriculture Organization (FAOSTAT). Statistical Database; 2014. Available from http://faostat.fao.org.
  • Fortalezas, S., Tavares, L., Pimpão, R., Tyagi, M., Pontes, V., Alves, P. M., McDougall, G., Stewart, D., Ferreira, R. B., Santos, C. N., 2010. Antioxidant properties and neuroprotective capacity of strawberry tree fruit (Arbutus unedo). Nutrients, 2 (2): 214-229.
  • Gao, M., Song, B. Z., Liu, C. Z., 2006. Dynamic microwave-assisted extraction of flavonoids from Saussurea medusa Maxim cultured cells. Biochemical Engineering Journal, 32 (2): 79-83.
  • Garcia-Salas, P., Morales-Soto, A., Segura-Carretero, A., Fernandez-Gutierrez, A., 2010. Phenolic compound extraction systems for fruit and vegetable samples. Molecules, 15 (12): 8813-8826.
  • Garofulic, I. E., Dragovic-Uzelac, V., Jambrak, A. R., Jukic, M., 2013. The effect of microwave assisted extraction on the isolation of anthocyanins and phenolic acids from sour cherry Marasca (Prunus cerasus var. Marasca). Journal of Food Engineering, 117 (4): 437-442.
  • Hornedo-Ortega, R., Krisa, S., Garcia-Parrilla, M. C., Richard, T., 2016. Effects of gluconic and alcoholic fermentation on anthocyanin composition and antioxidant activity of beverages made from strawberry. Food Science and Technology (LWT), 69: 382-389.
  • Huang, W. Y., Cai, Y. Z., Zhang, Y., 2009. Natural phenolic compounds from medicinal herbs and dietary plants: Potential use for cancer prevention. Nutrition and cancer, 62 (1): 1-20.
  • Kafkas, E., Koşar, M., Paydaş, S., Kafkas, S., Başer, K. H. C., 2007. Quality characterictics of strawberry genotypes at different maturation stages. Food Chemistry, 100 (3): 1229-1236.
  • Kaufmann, B., Christen, P., 2002. Recent extraction techniques for natural products: Microwave-assisted extraction and pressurised solvent extraction. Phytochemical Analysis, 13 (2): 105-113.
  • Lee, J., Durst, R. W., Wrolstad, R. E., 2005. Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: Collaborative study. Journal of AOAC International, 88 (5): 1269-1278.
  • Ljevar, A., Ćurko, N., Tomašević, M., Radošević, K., Srček, V. G., Ganić, K. K., 2016. Phenolic composition, antioxidant capacity and in vitro cytotoxicity assessment of fruit wines. Food Technology and Biotechnology, 54(2): 145-155.
  • Mandal, V., Mohan, Y., Hemalatha, S., 2007. Microwave assisted extraction—an innovative and promising extraction tool for medicinal plant research. Pharmacognosy Reviews, 1 (1): 7-18.
  • Mendes, M., Carvalho, A. P., Magalhaes, J. M. C. S., Moreira, M., Guido, L., Gomes, A. M., Delerue-Matos, C., 2016. Response surface evaluation of microwave-assisted extraction conditions for Lycium barbarum bioactive compounds. Innovative Food Science & Emerging Technologies, 33: 319-326.
  • Nile, S. H., Park, S. W., 2014. Edible berries: Bioactive components and their effect on human health. Nutrition, 30 (2): 134-144.
  • Nohynek, L. J., Alakomi, H.-L., Kähkönen, M. P., Heinonen, M., Helander, I. M., Oksman-Caldentey, K.-M., Puupponen-Pimiä, R. H., 2006. Berry phenolics: antimicrobial properties and mechanisms of action against severe human pathogens. Nutrition and cancer, 54 (1): 18-32.
  • Paredes-Lopez, O., Cervantes-Ceja, M. L., Vigna-Perez, M., Hernandez-Perez, T., 2010. Berries: improving human health and healthy aging, and promoting quality life--a review. Plant Foods Human Nutrition, 65 (3): 299-308.
  • Pinelo, M., Rubilar, M., Jerez, M., Sineiro, J., Nunez, M. J., 2005. Effect of solvent, temperature, and solvent-to-solid ratio on the total phenolic content and antiradical activity of extracts from different components of grape pomace. Journal of Agricultural and Food Chemistry, 53 (6): 2111-2117.
  • Sargent, D. J., Rys, A., Nier, S., Simpson, D. W., Tobutt, K. R., 2007. The development and mapping of functional markers in Fragaria and their transferability and potential for mapping in other genera. Theoretical and Applied Genetics, 114 (2): 373-384.
  • Singleton, V. L., Orthofer, R., Lamuela-Raventos, R. M., 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods in Enzymology, 299: 152-178.
  • Sinha, K., Das Saha, P., Datta, S., 2012. Response surface optimization and artificial neural network modeling of microwave assisted natural dye extraction from pomegranate rind. Industrial Crops and Products, 37 (1): 408-414.
  • Wang, S. J., Chen, F., Wu, J. H., Wang, Z. F., Liao, X. J., Hu, X. S., 2007. Optimization of pectin extraction assisted by microwave from apple pomace using response surface methodology. Journal of Food Engineering, 78 (2): 693-700.
  • Wu, T., Yan, J., Liu, R. H., Marcone, M. F., Aisa, H. A., Tsao, R., 2012. Optimization of microwave-assisted extraction of phenolics from potato and its downstream waste using orthogonal array design. Food Chemistry, 133 (4): 1292-1298.
  • Yang, J., Liu, R. H., 2009. Induction of phase II enzyme, quinone reductase, in murine hepatoma cells in vitro by grape extracts and selected phytochemicals. Food Chemistry, 114 (3): 898-904.
  • Zhang, H., Tsao, R., 2016. Dietary polyphenols, oxidative stress and antioxidant and anti-inflammatory effects. Current Opinion in Food Science, 8: 33-42.
  • Zheng, X., Xu, X., Liu, C., Sun, Y., Lin, Z., Liu, H., 2013. Extraction characteristics and optimal parameters of anthocyanin from blueberry powder under microwave-assisted extraction conditions. Separation and Purification Technology, 104: 17-25.

Optimization of Microwave-assisted Extraction of Phenolics from Organic Strawberry Using Response Surface Methodology

Year 2017, Volume: 21 Issue: 2, 143 - 154, 19.06.2017
https://doi.org/10.29050/harranziraat.321124

Abstract

The effects of
microwave- assisted extraction (MAE) were investigated on extraction of
phenolic compounds from strawberry fruit. Response surface methodology (RSM)
was used to optimize the extraction conditions. A face-centered central
composite design (FCCCD) was employed to determine the effects of independent
variables such as microwave power (100-300 W), extraction time (2-16 min) and
solvent to sample ratio (5:1-25:1 mL g-1) on the extraction yield
and total phenolic content (TPC). Optimized conditions were determined as 265 W
of microwave power, 2 min of extraction time and 24:1 mL g-1 of
solvent to sample ratio. The maximum predicted extraction yield and TPC under
the optimum conditions were 8.23 % and 19.65
mg GAE g-1
dry strawberry, respectively
. Total
anthocyanin content (TAC),
DPPH·EC50
and FRAP values of extracts produced at optimum conditions were determined as
2.3
mg Cyn-3-glu g-1 dry strawberry, 1.67 mg dry strawberry mL-1 and 197.83 μmoles TE g-1
dry strawberry, respectively.

References

  • Ayala-Zavala, J. F., Wang, S. Y., Wang, C. Y., González-Aguilar, G. A., 2007. High oxygen treatment increases antioxidant capacity and postharvest life of strawberry fruit. Food Technology and Biotechnology, 45 (2): 166-173.
  • Azmir, J., Zaidul, I. S. M., Rahman, M. M., Sharif, K. M., Mohamed, A., Sahena, F., Jahurul, M. H. A., Ghafoor, K., Norulaini, N. A. N., Omar, A. K. M., 2013. Techniques for extraction of bioactive compounds from plant materials: A review. Journal of Food Engineering, 117 (4): 426-436.
  • Bai, X., Qiu, A., Guan, J., 2007. Optimization of microwave-assisted extraction of antihepatotoxic triterpenoid from Actinidia deliciosa root and its comparison with conventional extraction methods. Food Technology & Biotechnology, 45 (2): 174-180.
  • Ballard, T. S., Mallikarjunan, P., Zhou, K. Q., O'Keefe, S., 2010. Microwave-assisted extraction of phenolic antioxidant compounds from peanut skins. Food Chemistry, 120 (4): 1185-1192.
  • Benzie, I. F. F., Strain, J. J., 1996. The ferric reducing ability of plasma (FRAP) as a measure of ''antioxidant power'': The FRAP assay. Analytical Biochemistry, 239 (1): 70-76.
  • Brandwilliams, W., Cuvelier, M. E., Berset, C., 1995. Use of a free-radical method to evaluate antioxidant activity. Food Science and Technology (LWT), 28 (1): 25-30.
  • Carniel, N., Dallago, R. M., Dariva, C., Bender, J. P., Nunes, A. L., Zanella, O., Bilibio, D., Luiz Priamo, W., 2016. Microwave‐assisted extraction of phenolic acids and flavonoids from Physalis angulata. Journal of Food Process Engineering, 40(3): 1-11.
  • Chan, C. H., Yusoff, R., Ngoh, G. C., Kung, F. W. L., 2011. Microwave-assisted extractions of active ingredients from plants. Journal of Chromatography A, 1218 (37): 6213-6225.
  • Chen, L., Jin, H., Ding, L., Zhang, H., Li, J., Qu, C., Zhang, H., 2008. Dynamic microwave-assisted extraction of flavonoids from Herba epimedii. Separation and Purification Technology, 59 (1): 50-57.
  • Del Rio, D., Borges, G., Crozier, A., 2010. Berry flavonoids and phenolics: bioavailability and evidence of protective effects. British Journaol of Nutrition, 104 Suppl 3: S67-90.
  • Food and Agriculture Organization (FAOSTAT). Statistical Database; 2014. Available from http://faostat.fao.org.
  • Fortalezas, S., Tavares, L., Pimpão, R., Tyagi, M., Pontes, V., Alves, P. M., McDougall, G., Stewart, D., Ferreira, R. B., Santos, C. N., 2010. Antioxidant properties and neuroprotective capacity of strawberry tree fruit (Arbutus unedo). Nutrients, 2 (2): 214-229.
  • Gao, M., Song, B. Z., Liu, C. Z., 2006. Dynamic microwave-assisted extraction of flavonoids from Saussurea medusa Maxim cultured cells. Biochemical Engineering Journal, 32 (2): 79-83.
  • Garcia-Salas, P., Morales-Soto, A., Segura-Carretero, A., Fernandez-Gutierrez, A., 2010. Phenolic compound extraction systems for fruit and vegetable samples. Molecules, 15 (12): 8813-8826.
  • Garofulic, I. E., Dragovic-Uzelac, V., Jambrak, A. R., Jukic, M., 2013. The effect of microwave assisted extraction on the isolation of anthocyanins and phenolic acids from sour cherry Marasca (Prunus cerasus var. Marasca). Journal of Food Engineering, 117 (4): 437-442.
  • Hornedo-Ortega, R., Krisa, S., Garcia-Parrilla, M. C., Richard, T., 2016. Effects of gluconic and alcoholic fermentation on anthocyanin composition and antioxidant activity of beverages made from strawberry. Food Science and Technology (LWT), 69: 382-389.
  • Huang, W. Y., Cai, Y. Z., Zhang, Y., 2009. Natural phenolic compounds from medicinal herbs and dietary plants: Potential use for cancer prevention. Nutrition and cancer, 62 (1): 1-20.
  • Kafkas, E., Koşar, M., Paydaş, S., Kafkas, S., Başer, K. H. C., 2007. Quality characterictics of strawberry genotypes at different maturation stages. Food Chemistry, 100 (3): 1229-1236.
  • Kaufmann, B., Christen, P., 2002. Recent extraction techniques for natural products: Microwave-assisted extraction and pressurised solvent extraction. Phytochemical Analysis, 13 (2): 105-113.
  • Lee, J., Durst, R. W., Wrolstad, R. E., 2005. Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: Collaborative study. Journal of AOAC International, 88 (5): 1269-1278.
  • Ljevar, A., Ćurko, N., Tomašević, M., Radošević, K., Srček, V. G., Ganić, K. K., 2016. Phenolic composition, antioxidant capacity and in vitro cytotoxicity assessment of fruit wines. Food Technology and Biotechnology, 54(2): 145-155.
  • Mandal, V., Mohan, Y., Hemalatha, S., 2007. Microwave assisted extraction—an innovative and promising extraction tool for medicinal plant research. Pharmacognosy Reviews, 1 (1): 7-18.
  • Mendes, M., Carvalho, A. P., Magalhaes, J. M. C. S., Moreira, M., Guido, L., Gomes, A. M., Delerue-Matos, C., 2016. Response surface evaluation of microwave-assisted extraction conditions for Lycium barbarum bioactive compounds. Innovative Food Science & Emerging Technologies, 33: 319-326.
  • Nile, S. H., Park, S. W., 2014. Edible berries: Bioactive components and their effect on human health. Nutrition, 30 (2): 134-144.
  • Nohynek, L. J., Alakomi, H.-L., Kähkönen, M. P., Heinonen, M., Helander, I. M., Oksman-Caldentey, K.-M., Puupponen-Pimiä, R. H., 2006. Berry phenolics: antimicrobial properties and mechanisms of action against severe human pathogens. Nutrition and cancer, 54 (1): 18-32.
  • Paredes-Lopez, O., Cervantes-Ceja, M. L., Vigna-Perez, M., Hernandez-Perez, T., 2010. Berries: improving human health and healthy aging, and promoting quality life--a review. Plant Foods Human Nutrition, 65 (3): 299-308.
  • Pinelo, M., Rubilar, M., Jerez, M., Sineiro, J., Nunez, M. J., 2005. Effect of solvent, temperature, and solvent-to-solid ratio on the total phenolic content and antiradical activity of extracts from different components of grape pomace. Journal of Agricultural and Food Chemistry, 53 (6): 2111-2117.
  • Sargent, D. J., Rys, A., Nier, S., Simpson, D. W., Tobutt, K. R., 2007. The development and mapping of functional markers in Fragaria and their transferability and potential for mapping in other genera. Theoretical and Applied Genetics, 114 (2): 373-384.
  • Singleton, V. L., Orthofer, R., Lamuela-Raventos, R. M., 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods in Enzymology, 299: 152-178.
  • Sinha, K., Das Saha, P., Datta, S., 2012. Response surface optimization and artificial neural network modeling of microwave assisted natural dye extraction from pomegranate rind. Industrial Crops and Products, 37 (1): 408-414.
  • Wang, S. J., Chen, F., Wu, J. H., Wang, Z. F., Liao, X. J., Hu, X. S., 2007. Optimization of pectin extraction assisted by microwave from apple pomace using response surface methodology. Journal of Food Engineering, 78 (2): 693-700.
  • Wu, T., Yan, J., Liu, R. H., Marcone, M. F., Aisa, H. A., Tsao, R., 2012. Optimization of microwave-assisted extraction of phenolics from potato and its downstream waste using orthogonal array design. Food Chemistry, 133 (4): 1292-1298.
  • Yang, J., Liu, R. H., 2009. Induction of phase II enzyme, quinone reductase, in murine hepatoma cells in vitro by grape extracts and selected phytochemicals. Food Chemistry, 114 (3): 898-904.
  • Zhang, H., Tsao, R., 2016. Dietary polyphenols, oxidative stress and antioxidant and anti-inflammatory effects. Current Opinion in Food Science, 8: 33-42.
  • Zheng, X., Xu, X., Liu, C., Sun, Y., Lin, Z., Liu, H., 2013. Extraction characteristics and optimal parameters of anthocyanin from blueberry powder under microwave-assisted extraction conditions. Separation and Purification Technology, 104: 17-25.
There are 35 citations in total.

Details

Subjects Agricultural Engineering
Journal Section dp
Authors

Aysel Elik

Derya Koçak Yanık This is me

Fahrettin Göğüş This is me

Publication Date June 19, 2017
Submission Date March 14, 2017
Published in Issue Year 2017 Volume: 21 Issue: 2

Cite

APA Elik, A., Koçak Yanık, D., & Göğüş, F. (2017). Optimization of Microwave-assisted Extraction of Phenolics from Organic Strawberry Using Response Surface Methodology. Harran Tarım Ve Gıda Bilimleri Dergisi, 21(2), 143-154. https://doi.org/10.29050/harranziraat.321124

Indexing and Abstracting 

13435  19617 13436 13440 13441 13442 13443

13445 13447 13449 13464 13466


10749  Harran Journal of Agricultural and Food Science is licensed under Creative Commons 4.0 International License.