Review
BibTex RIS Cite
Year 2021, Volume: 3 Issue: 3, 113 - 124, 31.12.2021

Abstract

References

  • Ando, H., Kumazaki, M., Motosugi, Y., Ushijima, K., Maekawa, T., Ishikawa, E., & Fujimura, A. (2011). Impairment of peripheral circadian clocks precedes metabolic abnormalities in ob/ob mice. Endocrinology, 152(4), 1347–1354. https://doi.org/10.1210/en.2010-1068.
  • Banerjee, A., Udin, S., & Krishna, A. (2011). Regulation of leptin synthesis in white adipose tissue of the female fruit bat, Cynopterus sphinx: role of melatonin with or without insulin. Experimental physiology, 96(2), 216–225. https://doi.org/10.1113/expphysiol.2010.055129.
  • Bolli, G. B., De Feo, P., De Cosmo, S., Perriello, G., Ventura, M. M., Calcinaro, F., Lolli, C., Campbell, P., Brunetti, P., & Gerich, J. E. (1984). Demonstration of a dawn phenomenon in normal human volunteers. Diabetes, 33(12), 1150–1153. https://doi.org/10.2337/diab.33.12.1150.
  • Bordoni, L., & Gabbianelli, R. (2019). Primers on nutrigenetics and nutri(epi)genomics: Origins and development of precision nutrition. Biochimie, 160, 156–171. https://doi.org/10.1016/j.biochi.2019.03.006.
  • Cagampang, F. R., & Bruce, K. D. (2012). The role of the circadian clock system in nutrition and metabolism. The British journal of nutrition, 108(3), 381–392. https://doi.org/10.1017/S0007114512002139.
  • Chakir, I., Dumont, S., Pévet, P., Ouarour, A., Challet, E., & Vuillez, P. (2015). Pineal melatonin is a circadian time-giver for leptin rhythm in Syrian hamsters. Frontiers in neuroscience, 9, 190. https://doi.org/10.3389/fnins.2015.00190.
  • Challet E. (2015). Keeping circadian time with hormones. Diabetes, obesity & metabolism, 17 Suppl 1, 76–83. https://doi.org/10.1111/dom.12516.
  • Cipolla-Neto, J., Amaral, F. G., Afeche, S. C., Tan, D. X., & Reiter, R. J. (2014). Melatonin, energy metabolism, and obesity: a review. Journal of pineal research, 56(4), 371–381. https://doi.org/10.1111/jpi.12137.
  • Damiola, F., Le Minh, N., Preitner, N., Kornmann, B., Fleury-Olela, F., & Schibler, U. (2000). Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes & development, 14(23), 2950–2961. https://doi.org/10.1101/gad.183500.
  • de Luxán-Delgado, B., Potes, Y., Rubio-González, A., Caballero, B., Solano, J. J., Fernández-Fernández, M., Bermúdez, M., Rodrigues Moreira Guimarães, M., Vega-Naredo, I., Boga, J. A., & Coto-Montes, A. (2016). Melatonin reduces endoplasmic reticulum stress and autophagy in liver of leptin-deficient mice. Journal of pineal research, 61(1), 108–123. https://doi.org/10.1111/jpi.12333.
  • Dickmeis T. (2009). Glucocorticoids and the circadian clock. The Journal of endocrinology, 200(1), 3–22. https://doi.org/10.1677/JOE-08-0415.
  • Engin A. (2017). Circadian Rhythms in Diet-Induced Obesity. Advances in experimental medicine and biology, 960, 19–52. https://doi.org/10.1007/978-3-319-48382-5_2.
  • Garaulet, M., Corbalán, M. D., Madrid, J. A., Morales, E., Baraza, J. C., Lee, Y. C., & Ordovas, J. M. (2010). CLOCK gene is implicated in weight reduction in obese patients participating in a dietary programme based on the Mediterranean diet. International journal of obesity (2005), 34(3), 516–523. https://doi.org/10.1038/ijo.2009.255.
  • Gnocchi, D., & Bruscalupi, G. (2017). Circadian Rhythms and Hormonal Homeostasis: Pathophysiological Implications. Biology, 6(1), 10. https://doi.org/10.3390/biology6010010.
  • Grosbellet, E., Dumont, S., Schuster-Klein, C., Guardiola-Lemaitre, B., Pevet, P., Criscuolo, F., & Challet, E. (2015). Leptin modulates the daily rhythmicity of blood glucose. Chronobiology international, 32(5), 637–649. https://doi.org/10.3109/07420528.2015.1035440.
  • Gunapala, K. M., Gallardo, C. M., Hsu, C. T., & Steele, A. D. (2011). Single gene deletions of orexin, leptin, neuropeptide Y, and ghrelin do not appreciably alter food anticipatory activity in mice. PloS one, 6(3), e18377. https://doi.org/10.1371/journal.pone.0018377.
  • Horne, J. A., & Ostberg, O. (1976). A self-assessment questionnaire to determine morningness-eveningness in human circadian rhythms. International journal of chronobiology, 4(2), 97–110.
  • Huang, Y., Xu, C., He, M., Huang, W., & Wu, K. (2020). Saliva cortisol, melatonin levels and circadian rhythm alterations in Chinese primary school children with dyslexia. Medicine, 99(6), e19098. https://doi.org/10.1097/MD.0000000000019098.
  • Kalsbeek, A., Fliers, E., Romijn, J. A., La Fleur, S. E., Wortel, J., Bakker, O., Endert, E., & Buijs, R. M. (2001). The suprachiasmatic nucleus generates the diurnal changes in plasma leptin levels. Endocrinology, 142(6), 2677–2685. https://doi.org/10.1210/endo.142.6.8197.
  • Kim, H. J., Choi, S., Kim, K., Park, H., Kim, K. H., & Park, S. M. (2020). Association between misalignment of circadian rhythm and obesity in Korean men: Sixth Korea National Health and Nutrition Examination Survey. Chronobiology international, 37(2), 272–280. https://doi.org/10.1080/07420528.2019.1671439.
  • Laermans, J., & Depoortere, I. (2016). Chronobesity: role of the circadian system in the obesity epidemic. Obesity reviews : an official journal of the International Association for the Study of Obesity, 17(2), 108–125. https://doi.org/10.1111/obr.12351.
  • LeSauter, J., Hoque, N., Weintraub, M., Pfaff, D. W., & Silver, R. (2009). Stomach ghrelin-secreting cells as food-entrainable circadian clocks. Proceedings of the National Academy of Sciences of the United States of America, 106(32), 13582–13587. https://doi.org/10.1073/pnas.0906426106.
  • Lopez-Minguez, J., Gómez-Abellán, P., & Garaulet, M. (2016). Circadian rhythms, food timing and obesity. The Proceedings of the Nutrition Society, 75(4), 501–511. https://doi.org/10.1017/S0029665116000628.
  • Maukonen, M., Kanerva, N., Partonen, T., Kronholm, E., Konttinen, H., Wennman, H., & Männistö, S. (2016). The associations between chronotype, a healthy diet and obesity. Chronobiology international, 33(8), 972–981. https://doi.org/10.1080/07420528.2016.1183022.
  • Mendoza, J., Graff, C., Dardente, H., Pevet, P., & Challet, E. (2005). Feeding cues alter clock gene oscillations and photic responses in the suprachiasmatic nuclei of mice exposed to a light/dark cycle. The Journal of neuroscience : the official journal of the Society for Neuroscience, 25(6), 1514–1522. https://doi.org/10.1523/JNEUROSCI.4397-04.2005.
  • Mistlberger R. E. (2011). Neurobiology of food anticipatory circadian rhythms. Physiology & behavior, 104(4), 535–545. https://doi.org/10.1016/j.physbeh.2011.04.015.
  • Mühlbauer, E., Gross, E., Labucay, K., Wolgast, S., & Peschke, E. (2009). Loss of melatonin signalling and its impact on circadian rhythms in mouse organs regulating blood glucose. European journal of pharmacology, 606(1-3), 61–71. https://doi.org/10.1016/j.ejphar.2009.01.029.
  • National Institute of General Medical Sciences (2020) Circadian Rhythms. Retrieved from ://www.nigms.nih.gov/education/pages/factsheet_circadianrhythms.aspx
  • Oishi, K., Atsumi, G., Sugiyama, S., Kodomari, I., Kasamatsu, M., Machida, K., & Ishida, N. (2006). Disrupted fat absorption attenuates obesity induced by a high-fat diet in Clock mutant mice. FEBS letters, 580(1),127–130. https://doi.org/10.1016/j.febslet.2005.11.063.
  • Otway, D. T., Frost, G., & Johnston, J. D. (2009). Circadian rhythmicity in murine pre-adipocyte and adipocyte cells. Chronobiology international, 26(7), 1340–1354. https://doi.org/10.3109/07420520903412368.
  • Park, H. K., & Ahima, R. S. (2015). Physiology of leptin: energy homeostasis, neuroendocrine function and metabolism. Metabolism: clinical and experimental, 64(1),24–34. https://doi.org/10.1016/j.metabol.2014.08.004.
  • Patton, D. F., & Mistlberger, R. E. (2013). Circadian adaptations to meal timing: neuroendocrine mechanisms. Frontiers in neuroscience, 7, 185. https://doi.org/10.3389/fnins.2013.00185.
  • Peschke, E., Bähr, I., & Mühlbauer, E. (2013). Melatonin and pancreatic islets: interrelationships between melatonin, insulin and glucagon. International journal of molecular sciences, 14(4), 6981–7015. https://doi.org/10.3390/ijms14046981.
  • Pevet, P., & Challet, E. (2011). Melatonin: both master clock output and internal time-giver in the circadian clocks network. Journal of physiology, Paris, 105(4-6), 170–182. https://doi.org/10.1016/j.jphysparis.2011.07.001.
  • Pezük, P., Mohawk, J. A., Wang, L. A., & Menaker, M. (2012). Glucocorticoids as entraining signals for peripheral circadian oscillators. Endocrinology, 153(10), 4775–4783. https://doi.org/10.1210/en.2012-1486.
  • Rácz, B., Dušková, M., Stárka, L., Hainer, V., & Kunešová, M. (2018). Links between the circadian rhythm, obesity and the microbiome. Physiological research, 67(Suppl 3), S409–S420. https://doi.org/10.33549/physiolres.934020.
  • Reiter R. J. (1991). Melatonin: the chemical expression of darkness. Molecular and cellular endocrinology, 79(1-3), C153–C158. https://doi.org/10.1016/0303-7207(91)90087-9.
  • Rudic, R. D., McNamara, P., Curtis, A. M., Boston, R. C., Panda, S., Hogenesch, J. B., & Fitzgerald, G. A. (2004). BMAL1 and CLOCK, two essential components of the circadian clock, are involved in glucose homeostasis. PLoS biology, 2(11), e377. https://doi.org/10.1371/journal.pbio.0020377.
  • Samblas, M., Milagro, F. I., Gómez-Abellán, P., Martínez, J. A., & Garaulet, M. (2016). Methylation on the Circadian Gene BMAL1 Is Associated with the Effects of a Weight Loss Intervention on Serum Lipid Levels. Journal of biological rhythms, 31(3), 308–317. https://doi.org/10.1177/0748730416629247.
  • Sözlü S. & Şanlıer N. (2017). Sirkadiyen Ritim, Sağlık ve Beslenme İlişkisi. Türkiye Klinikleri Sağlık Bilimleri Dergisi, 2(2), 100-109. https://doi.org/10.5336/healthsci.2015-48902.
  • Tahara, Y., Otsuka, M., Fuse, Y., Hirao, A., & Shibata, S. (2011). Refeeding after fasting elicits insulin-dependent regulation of Per2 and Rev-erbα with shifts in the liver clock. Journal of biological rhythms, 26(3), 230–240. https://doi.org/10.1177/0748730411405958.
  • Tan, D. X., Manchester, L. C., Fuentes-Broto, L., Paredes, S. D., & Reiter, R. J. (2011). Significance and application of melatonin in the regulation of brown adipose tissue metabolism: relation to human obesity. Obesity reviews : an official journal of the International Association for the Study of Obesity, 12(3), 167–188. https://doi.org/10.1111/j.1467-789X.2010.00756.x.
  • Turek, F. W., Joshu, C., Kohsaka, A., Lin, E., Ivanova, G., McDearmon, E., Laposky, A., Losee-Olson, S., Easton, A., Jensen, D. R., Eckel, R. H., Takahashi, J. S., & Bass, J. (2005). Obesity and metabolic syndrome in circadian Clock mutant mice. Science (New York, N.Y.),308(5724),1043–1045. https://doi.org/10.1126/science.1108750.
  • Van Cauter, E., Blackman, J. D., Roland, D., Spire, J. P., Refetoff, S., & Polonsky, K. S. (1991). Modulation of glucose regulation and insulin secretion by circadian rhythmicity and sleep. The Journal of clinical investigation,88(3),934–942. https://doi.org/10.1172/JCI115396.
  • Westerterp-Plantenga M. S. (2016). Sleep, circadian rhythm and body weight: parallel developments. The Proceedings of the Nutrition Society, 75(4), 431–439. https://doi.org/10.1017/S0029665116000227.

The Relationship Between Circadian Rhythm and Body Weight

Year 2021, Volume: 3 Issue: 3, 113 - 124, 31.12.2021

Abstract

Physiological responses of living things take place in a rhythm that repeats every 24 hours. The Circadian rhythm is defined as the biological rhythm that repeats in 24 hours. Various physiological functions such as sleep/wake cycle, blood pressure, blood glucose level, secretion of hormones such as cortisol and melatonin, regulation of body temperature and adipose tissue activity exhibit 24-hour cycles. The circadian system consists of central and peripheral clocks. The suprachiasmatic nucleus in the hypothalamus regulates the central clock according to light and dark information. Peripheral clocks found in organs such as the liver and adipose tissue are regulated by environmental factors including nutrition and physical activity. While the central clock is regulated by the light-dark cycle and peripheral clocks work in harmony with the central clock. External factors (shift work, jetlag, sleep disturbances, sleeping and eating at inappropriate times, etc.) that disrupt the operation of the central and peripheral clocks negatively affect the normal functioning of the human body. In this review, the effect of distrupted circadian rhythm on body weight is examined in detail.

References

  • Ando, H., Kumazaki, M., Motosugi, Y., Ushijima, K., Maekawa, T., Ishikawa, E., & Fujimura, A. (2011). Impairment of peripheral circadian clocks precedes metabolic abnormalities in ob/ob mice. Endocrinology, 152(4), 1347–1354. https://doi.org/10.1210/en.2010-1068.
  • Banerjee, A., Udin, S., & Krishna, A. (2011). Regulation of leptin synthesis in white adipose tissue of the female fruit bat, Cynopterus sphinx: role of melatonin with or without insulin. Experimental physiology, 96(2), 216–225. https://doi.org/10.1113/expphysiol.2010.055129.
  • Bolli, G. B., De Feo, P., De Cosmo, S., Perriello, G., Ventura, M. M., Calcinaro, F., Lolli, C., Campbell, P., Brunetti, P., & Gerich, J. E. (1984). Demonstration of a dawn phenomenon in normal human volunteers. Diabetes, 33(12), 1150–1153. https://doi.org/10.2337/diab.33.12.1150.
  • Bordoni, L., & Gabbianelli, R. (2019). Primers on nutrigenetics and nutri(epi)genomics: Origins and development of precision nutrition. Biochimie, 160, 156–171. https://doi.org/10.1016/j.biochi.2019.03.006.
  • Cagampang, F. R., & Bruce, K. D. (2012). The role of the circadian clock system in nutrition and metabolism. The British journal of nutrition, 108(3), 381–392. https://doi.org/10.1017/S0007114512002139.
  • Chakir, I., Dumont, S., Pévet, P., Ouarour, A., Challet, E., & Vuillez, P. (2015). Pineal melatonin is a circadian time-giver for leptin rhythm in Syrian hamsters. Frontiers in neuroscience, 9, 190. https://doi.org/10.3389/fnins.2015.00190.
  • Challet E. (2015). Keeping circadian time with hormones. Diabetes, obesity & metabolism, 17 Suppl 1, 76–83. https://doi.org/10.1111/dom.12516.
  • Cipolla-Neto, J., Amaral, F. G., Afeche, S. C., Tan, D. X., & Reiter, R. J. (2014). Melatonin, energy metabolism, and obesity: a review. Journal of pineal research, 56(4), 371–381. https://doi.org/10.1111/jpi.12137.
  • Damiola, F., Le Minh, N., Preitner, N., Kornmann, B., Fleury-Olela, F., & Schibler, U. (2000). Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes & development, 14(23), 2950–2961. https://doi.org/10.1101/gad.183500.
  • de Luxán-Delgado, B., Potes, Y., Rubio-González, A., Caballero, B., Solano, J. J., Fernández-Fernández, M., Bermúdez, M., Rodrigues Moreira Guimarães, M., Vega-Naredo, I., Boga, J. A., & Coto-Montes, A. (2016). Melatonin reduces endoplasmic reticulum stress and autophagy in liver of leptin-deficient mice. Journal of pineal research, 61(1), 108–123. https://doi.org/10.1111/jpi.12333.
  • Dickmeis T. (2009). Glucocorticoids and the circadian clock. The Journal of endocrinology, 200(1), 3–22. https://doi.org/10.1677/JOE-08-0415.
  • Engin A. (2017). Circadian Rhythms in Diet-Induced Obesity. Advances in experimental medicine and biology, 960, 19–52. https://doi.org/10.1007/978-3-319-48382-5_2.
  • Garaulet, M., Corbalán, M. D., Madrid, J. A., Morales, E., Baraza, J. C., Lee, Y. C., & Ordovas, J. M. (2010). CLOCK gene is implicated in weight reduction in obese patients participating in a dietary programme based on the Mediterranean diet. International journal of obesity (2005), 34(3), 516–523. https://doi.org/10.1038/ijo.2009.255.
  • Gnocchi, D., & Bruscalupi, G. (2017). Circadian Rhythms and Hormonal Homeostasis: Pathophysiological Implications. Biology, 6(1), 10. https://doi.org/10.3390/biology6010010.
  • Grosbellet, E., Dumont, S., Schuster-Klein, C., Guardiola-Lemaitre, B., Pevet, P., Criscuolo, F., & Challet, E. (2015). Leptin modulates the daily rhythmicity of blood glucose. Chronobiology international, 32(5), 637–649. https://doi.org/10.3109/07420528.2015.1035440.
  • Gunapala, K. M., Gallardo, C. M., Hsu, C. T., & Steele, A. D. (2011). Single gene deletions of orexin, leptin, neuropeptide Y, and ghrelin do not appreciably alter food anticipatory activity in mice. PloS one, 6(3), e18377. https://doi.org/10.1371/journal.pone.0018377.
  • Horne, J. A., & Ostberg, O. (1976). A self-assessment questionnaire to determine morningness-eveningness in human circadian rhythms. International journal of chronobiology, 4(2), 97–110.
  • Huang, Y., Xu, C., He, M., Huang, W., & Wu, K. (2020). Saliva cortisol, melatonin levels and circadian rhythm alterations in Chinese primary school children with dyslexia. Medicine, 99(6), e19098. https://doi.org/10.1097/MD.0000000000019098.
  • Kalsbeek, A., Fliers, E., Romijn, J. A., La Fleur, S. E., Wortel, J., Bakker, O., Endert, E., & Buijs, R. M. (2001). The suprachiasmatic nucleus generates the diurnal changes in plasma leptin levels. Endocrinology, 142(6), 2677–2685. https://doi.org/10.1210/endo.142.6.8197.
  • Kim, H. J., Choi, S., Kim, K., Park, H., Kim, K. H., & Park, S. M. (2020). Association between misalignment of circadian rhythm and obesity in Korean men: Sixth Korea National Health and Nutrition Examination Survey. Chronobiology international, 37(2), 272–280. https://doi.org/10.1080/07420528.2019.1671439.
  • Laermans, J., & Depoortere, I. (2016). Chronobesity: role of the circadian system in the obesity epidemic. Obesity reviews : an official journal of the International Association for the Study of Obesity, 17(2), 108–125. https://doi.org/10.1111/obr.12351.
  • LeSauter, J., Hoque, N., Weintraub, M., Pfaff, D. W., & Silver, R. (2009). Stomach ghrelin-secreting cells as food-entrainable circadian clocks. Proceedings of the National Academy of Sciences of the United States of America, 106(32), 13582–13587. https://doi.org/10.1073/pnas.0906426106.
  • Lopez-Minguez, J., Gómez-Abellán, P., & Garaulet, M. (2016). Circadian rhythms, food timing and obesity. The Proceedings of the Nutrition Society, 75(4), 501–511. https://doi.org/10.1017/S0029665116000628.
  • Maukonen, M., Kanerva, N., Partonen, T., Kronholm, E., Konttinen, H., Wennman, H., & Männistö, S. (2016). The associations between chronotype, a healthy diet and obesity. Chronobiology international, 33(8), 972–981. https://doi.org/10.1080/07420528.2016.1183022.
  • Mendoza, J., Graff, C., Dardente, H., Pevet, P., & Challet, E. (2005). Feeding cues alter clock gene oscillations and photic responses in the suprachiasmatic nuclei of mice exposed to a light/dark cycle. The Journal of neuroscience : the official journal of the Society for Neuroscience, 25(6), 1514–1522. https://doi.org/10.1523/JNEUROSCI.4397-04.2005.
  • Mistlberger R. E. (2011). Neurobiology of food anticipatory circadian rhythms. Physiology & behavior, 104(4), 535–545. https://doi.org/10.1016/j.physbeh.2011.04.015.
  • Mühlbauer, E., Gross, E., Labucay, K., Wolgast, S., & Peschke, E. (2009). Loss of melatonin signalling and its impact on circadian rhythms in mouse organs regulating blood glucose. European journal of pharmacology, 606(1-3), 61–71. https://doi.org/10.1016/j.ejphar.2009.01.029.
  • National Institute of General Medical Sciences (2020) Circadian Rhythms. Retrieved from ://www.nigms.nih.gov/education/pages/factsheet_circadianrhythms.aspx
  • Oishi, K., Atsumi, G., Sugiyama, S., Kodomari, I., Kasamatsu, M., Machida, K., & Ishida, N. (2006). Disrupted fat absorption attenuates obesity induced by a high-fat diet in Clock mutant mice. FEBS letters, 580(1),127–130. https://doi.org/10.1016/j.febslet.2005.11.063.
  • Otway, D. T., Frost, G., & Johnston, J. D. (2009). Circadian rhythmicity in murine pre-adipocyte and adipocyte cells. Chronobiology international, 26(7), 1340–1354. https://doi.org/10.3109/07420520903412368.
  • Park, H. K., & Ahima, R. S. (2015). Physiology of leptin: energy homeostasis, neuroendocrine function and metabolism. Metabolism: clinical and experimental, 64(1),24–34. https://doi.org/10.1016/j.metabol.2014.08.004.
  • Patton, D. F., & Mistlberger, R. E. (2013). Circadian adaptations to meal timing: neuroendocrine mechanisms. Frontiers in neuroscience, 7, 185. https://doi.org/10.3389/fnins.2013.00185.
  • Peschke, E., Bähr, I., & Mühlbauer, E. (2013). Melatonin and pancreatic islets: interrelationships between melatonin, insulin and glucagon. International journal of molecular sciences, 14(4), 6981–7015. https://doi.org/10.3390/ijms14046981.
  • Pevet, P., & Challet, E. (2011). Melatonin: both master clock output and internal time-giver in the circadian clocks network. Journal of physiology, Paris, 105(4-6), 170–182. https://doi.org/10.1016/j.jphysparis.2011.07.001.
  • Pezük, P., Mohawk, J. A., Wang, L. A., & Menaker, M. (2012). Glucocorticoids as entraining signals for peripheral circadian oscillators. Endocrinology, 153(10), 4775–4783. https://doi.org/10.1210/en.2012-1486.
  • Rácz, B., Dušková, M., Stárka, L., Hainer, V., & Kunešová, M. (2018). Links between the circadian rhythm, obesity and the microbiome. Physiological research, 67(Suppl 3), S409–S420. https://doi.org/10.33549/physiolres.934020.
  • Reiter R. J. (1991). Melatonin: the chemical expression of darkness. Molecular and cellular endocrinology, 79(1-3), C153–C158. https://doi.org/10.1016/0303-7207(91)90087-9.
  • Rudic, R. D., McNamara, P., Curtis, A. M., Boston, R. C., Panda, S., Hogenesch, J. B., & Fitzgerald, G. A. (2004). BMAL1 and CLOCK, two essential components of the circadian clock, are involved in glucose homeostasis. PLoS biology, 2(11), e377. https://doi.org/10.1371/journal.pbio.0020377.
  • Samblas, M., Milagro, F. I., Gómez-Abellán, P., Martínez, J. A., & Garaulet, M. (2016). Methylation on the Circadian Gene BMAL1 Is Associated with the Effects of a Weight Loss Intervention on Serum Lipid Levels. Journal of biological rhythms, 31(3), 308–317. https://doi.org/10.1177/0748730416629247.
  • Sözlü S. & Şanlıer N. (2017). Sirkadiyen Ritim, Sağlık ve Beslenme İlişkisi. Türkiye Klinikleri Sağlık Bilimleri Dergisi, 2(2), 100-109. https://doi.org/10.5336/healthsci.2015-48902.
  • Tahara, Y., Otsuka, M., Fuse, Y., Hirao, A., & Shibata, S. (2011). Refeeding after fasting elicits insulin-dependent regulation of Per2 and Rev-erbα with shifts in the liver clock. Journal of biological rhythms, 26(3), 230–240. https://doi.org/10.1177/0748730411405958.
  • Tan, D. X., Manchester, L. C., Fuentes-Broto, L., Paredes, S. D., & Reiter, R. J. (2011). Significance and application of melatonin in the regulation of brown adipose tissue metabolism: relation to human obesity. Obesity reviews : an official journal of the International Association for the Study of Obesity, 12(3), 167–188. https://doi.org/10.1111/j.1467-789X.2010.00756.x.
  • Turek, F. W., Joshu, C., Kohsaka, A., Lin, E., Ivanova, G., McDearmon, E., Laposky, A., Losee-Olson, S., Easton, A., Jensen, D. R., Eckel, R. H., Takahashi, J. S., & Bass, J. (2005). Obesity and metabolic syndrome in circadian Clock mutant mice. Science (New York, N.Y.),308(5724),1043–1045. https://doi.org/10.1126/science.1108750.
  • Van Cauter, E., Blackman, J. D., Roland, D., Spire, J. P., Refetoff, S., & Polonsky, K. S. (1991). Modulation of glucose regulation and insulin secretion by circadian rhythmicity and sleep. The Journal of clinical investigation,88(3),934–942. https://doi.org/10.1172/JCI115396.
  • Westerterp-Plantenga M. S. (2016). Sleep, circadian rhythm and body weight: parallel developments. The Proceedings of the Nutrition Society, 75(4), 431–439. https://doi.org/10.1017/S0029665116000227.
There are 45 citations in total.

Details

Primary Language English
Subjects Nutrition and Dietetics
Journal Section Articles
Authors

Zeynep Gül Gündüz 0000-0002-7041-7843

Nurhan Ünüsan 0000-0002-7445-6903

Publication Date December 31, 2021
Published in Issue Year 2021 Volume: 3 Issue: 3

Cite

APA Gündüz, Z. G., & Ünüsan, N. (2021). The Relationship Between Circadian Rhythm and Body Weight. Journal of Gazi University Health Sciences Institute, 3(3), 113-124.