Research Article
BibTex RIS Cite

MMT Katkılı IPN Tipi Hidrojellerin Sentez ve Karakterizasyonu

Year 2023, Volume: 4 Issue: 2, 80 - 92, 30.11.2023

Abstract

Bu çalışmanın amacı iç içe geçmiş polimer ağ yapılar (Interpenetrating Polymer Network, IPN) sentezleyerek potansiyel bir salım sistemi geliştirmektir. IPN tipi hidrojeller, doğal polimerlerden karboksimetil selüloz ve jelatin kullanılarak, jelatinin çapraz bağlayıcısı olan gluteraldehit varlığında sentezlenmiştir. Sentez sırasında hidrojel karışımına tabakalı yapıdaki Montmorilonit kili eklenmiştir. Elde edilen hidrojeller hidrojel oluşum verimi, şişme/bozunma testleri, Fourier Dönüşümlü Kızılötesi Spektroskopisi (FT-IR), X-Işını Kırınımı (XRD) ve Taramalı Elektron Mikroskobu (SEM) analizleriyle karakterize edilmiştir. Şişme testleri ağ yapıdaki MMT varlığının hidrojelin şişme özelliğini azalttığını göstermiştir. SEM görüntülerinden, yapıya eklenen MMT kilinin polimer ağ içerisinde homojen bir şekilde dağıldığı ve gözenek içlerine yerleştiği gözlenmiştir. Sentezlenen hidrojeller bu özellikleri sayesinde tarım, gıda, boya giderme ve biomedikal uygulamalarda alternatif bir salım sistemi olabilir.

Supporting Institution

Gazi Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi

Project Number

FDK-6920

Thanks

Sunulan bu çalışma Gazi Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi tarafından FDK-6920 kodlu proje kapsamında desteklenmiştir.

References

  • Ahmed, E. M. (2015). Hydrogel: Preparation, characterization, and applications: A review. Journal of Advanced Research, 6, 105–121.
  • Varaprasad, K., Raghavendra, G. M., Jayaramudu, T., Yallapu, M. M. and Sadiku, R. (2017). A mini review on hydrogels classification and recent developments in miscellaneous applications. Material Science and Engineering C, 79, 958–971.
  • Chang, C., Duan, B., Cai, J. and Zhang, L. (2010). Superabsorbent hydrogels based on cellulose for smart swelling and controllable delivery. European Polymer Journal, 46(1), 92–100.
  • Lin, F., Lu, X., Wang, Z., Lu, Q., Lin, G. and Huang, B. (2019). In situ polymerization approach to cellulose–polyacrylamide interpenetrating network hydrogel with high strength and pH-responsive properties. Cellulose, 26(3), 1825–1839.
  • Chang, C. and Zhang, L. (2011). Cellulose-based hydrogels: Present status and application prospects. Carbohydrate Polymers, 84 (1), 40–53.
  • Ye, J., Yang, G., Zhang, J., Xiao, Z., He, L., Zhang, H. and Liu, Q. (2021). Preparation and characterization of gelatin-polysaccharide composite hydrogels for tissue engineering. Peer J., 11022.
  • Lawchoochaisakul, S., Monvisade, P. and Siriphannon, P. (2021). Cationic starch intercalated montmorillonite nanocomposites as natural based adsorbent for dye removal. Carbohydrate Polymers, 253, 117230.
  • Kevadiya, B. D., Patel, H. A., Joshi, G. V., Abdi, S. H. R. and Bajaj, H. C. (2010). Montmorillonite-Alginate Composites as a Drug Delivery System: Intercalation and In vitro Release of Diclofenac sodium, Indian Journal of Pharmaceutical Sciences, 72(6), 732-737.
  • Qi, X., Guan, Y., Chen, G., Zhang, B., Ren, J., Peng, F. and Sun, R. (2015). A non-covalent strategy for montmorillonite/xylose self-healing hydrogels. RSC Advances, 5, 41006-41012.
  • Pulat, M. and Asıl, D. (2009). Fluconazole release through semi-interpenetrating polymer network hydrogels based on chitosan, acrylic acid, and citraconic acid. Journal of Applied Polymer Science, 113, 2613–2619.
  • Xu, S. W., Zheng, J. P., Tong, L. and Yao, K. D. (2006). Interaction of Functional Groups of Gelatin and Montmorillonite in Nanocomposite. Journal of Applied Polymer Science, 101, 1556–1561.
  • Jeong, D., Kim, C., Kim, Y. and Jung, S. (2020). Dual crosslinked carboxymethyl cellulose/polyacrylamide interpenetrating hydrogels with highly enhanced mechanical strength and superabsorbent properties. European Polymer Journal, 127, 109586.
  • Bauli, C. R., Lima, G. F., Souza, A. G., Ferreira, R. R. and Rosa, D. S. (2021). Eco-friendly carboxymethyl cellulose hydrogels filled with nanocellulose or nanoclays for agriculture applications as soil conditioning and nutrient carrier and their impact on cucumber growing. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 623, 126771.
  • Kim, S., Kang, Y., Krueger, C. A., Sen, M., Holcomb, J. B., Chen, D., Wenke J. C. and Yang, Y. (2012). Sequential delivery of BMP-2 and IGF-1 using a chitosan gel with gelatin microspheres enhances early osteoblastic differentiation. Acta Biomaterialia, 8, 1768-1777.
  • Fortunati, E., Peltzer, M., Armentano, I., Jim´enez, A., and Kenny, J. M. (2013). Combined effects of cellulose nanocrystals and silver nanoparticles on the barrier and migration properties of PLA nano-biocomposites. Journal of Food Engineering, 90, 948–956.
  • Irani, M., Ismail, H., Ahmad, Z. and Fan, M. (2015). Synthesis of linear low-density polyethyleneg- poly (acrylic acid)-co-starch/organo-montmorillonite hydrogel composite as an adsorbent for removal of Pb(ІІ) from aqueous solutions. Journal of Environmental Sciences, 27, 9–20.
  • Bidyadhar, M. and Ray, S. K. (2016). Removal of safranine T and brilliant cresyl blue dyes from water by carboxymethyl cellulose incorporated acrylic hydrogels: isotherms, kinetics and thermodynamic study. Journal of the Taiwan Institute of Chemical Engineers, 60, 313–327.
  • Wen-Bo, W., Da-Jian, H., Yu-Ru, K. and Ai-Qin, W. (2013). One-step in situ fabrication of a granular semi-IPN hydrogel based on chitosan and gelatin for fast and efficient adsorption of Cu2+ ion. Colloids Surf. B: Biointerfaces, 106, 51–59.
  • Sethi, S., Kaith, B.S., Saruchi and Kumar, V. (2019). Fabrication and characterization of microwave assisted carboxymethyl cellulose-gelatin silver nanoparticles imbibed hydrogel: Its evaluation as dye degradation. Reactive and Functional Polymers, 142, 134–146.
  • Ma, Q., Wang, W., Ge, W., Xia, L., Li, H. and Song, S. (2021). Preparation of Carboxymethyl Cellulose‑Based Hydrogel Supported by Two‑Dimensional Montmorillonite Nanosheets for Methylene Blue Removal. Journal of Polymers and the Environment, 29, 3918–3931.
  • Niua, J., Wanga, J., Daia, X., Shaoa, Z. and Huang, X. (2018). Dual physically crosslinked healable polyacrylamide/cellulose nanofibers nanocomposite hydrogels with excellent mechanical properties. Carbohydrate Polymers, 193, 73-81.
  • Weerawan, N., Chalitangkoon, J. and Monvisade, P. (2022). Self-Healing Hydrogels Based on Sodium Carboxymethyl Cellulose/Poly(vinyl alcohol) Reinforced with Montmorillonite. Biointerface Research in Applied Chemistry, 12(4), 4770-4779.
  • Rathna, G. V. N., Rao, D. V. M. and Chatterji, P. R. (1996). Hydrogels of Gelatin-Sodium Carboxymethyl Cellulose: Synthesis and Swelling Kinetics, Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, 33(9), 1199-1207.
  • Burugapallı, K., Bhatia, D., Koul, V., Choudhary, V. (2001). Interpenetrating Polymer Networks Based on Poly(acrylic acid) and Gelatin. I: Swelling and Thermal Behavior, Journal of Applied Polymer Science, 82, 217–227.
  • Hameed, A., Khurshid, S., Adnan, A. (2020). Synthesis and characterization of carboxymethyl cellulose based hydrogel and its applications on water treatment, Desalination and Water Treatment, 196, 214–227.
  • Johlin, J.M. (1930). The Isoelectric Point of Gelatin and Its Relation to the Minimum Physical Properties of Gelatin. Journal of Biological Chemistry, 86(1), 231-243.
  • Kenawy E.R., Azaam M. M., El-nshar EM. (2019). Sodium alginate-g-poly (acrylic acid-co-2-hydroxyethyl methacrylate)/ montmorillonite superabsorbent composite: Preparation, swelling investigation and its application as a slow-release fertilizer, Arabian Journal of Chemistry, 12(6) 847-856.
Year 2023, Volume: 4 Issue: 2, 80 - 92, 30.11.2023

Abstract

Project Number

FDK-6920

References

  • Ahmed, E. M. (2015). Hydrogel: Preparation, characterization, and applications: A review. Journal of Advanced Research, 6, 105–121.
  • Varaprasad, K., Raghavendra, G. M., Jayaramudu, T., Yallapu, M. M. and Sadiku, R. (2017). A mini review on hydrogels classification and recent developments in miscellaneous applications. Material Science and Engineering C, 79, 958–971.
  • Chang, C., Duan, B., Cai, J. and Zhang, L. (2010). Superabsorbent hydrogels based on cellulose for smart swelling and controllable delivery. European Polymer Journal, 46(1), 92–100.
  • Lin, F., Lu, X., Wang, Z., Lu, Q., Lin, G. and Huang, B. (2019). In situ polymerization approach to cellulose–polyacrylamide interpenetrating network hydrogel with high strength and pH-responsive properties. Cellulose, 26(3), 1825–1839.
  • Chang, C. and Zhang, L. (2011). Cellulose-based hydrogels: Present status and application prospects. Carbohydrate Polymers, 84 (1), 40–53.
  • Ye, J., Yang, G., Zhang, J., Xiao, Z., He, L., Zhang, H. and Liu, Q. (2021). Preparation and characterization of gelatin-polysaccharide composite hydrogels for tissue engineering. Peer J., 11022.
  • Lawchoochaisakul, S., Monvisade, P. and Siriphannon, P. (2021). Cationic starch intercalated montmorillonite nanocomposites as natural based adsorbent for dye removal. Carbohydrate Polymers, 253, 117230.
  • Kevadiya, B. D., Patel, H. A., Joshi, G. V., Abdi, S. H. R. and Bajaj, H. C. (2010). Montmorillonite-Alginate Composites as a Drug Delivery System: Intercalation and In vitro Release of Diclofenac sodium, Indian Journal of Pharmaceutical Sciences, 72(6), 732-737.
  • Qi, X., Guan, Y., Chen, G., Zhang, B., Ren, J., Peng, F. and Sun, R. (2015). A non-covalent strategy for montmorillonite/xylose self-healing hydrogels. RSC Advances, 5, 41006-41012.
  • Pulat, M. and Asıl, D. (2009). Fluconazole release through semi-interpenetrating polymer network hydrogels based on chitosan, acrylic acid, and citraconic acid. Journal of Applied Polymer Science, 113, 2613–2619.
  • Xu, S. W., Zheng, J. P., Tong, L. and Yao, K. D. (2006). Interaction of Functional Groups of Gelatin and Montmorillonite in Nanocomposite. Journal of Applied Polymer Science, 101, 1556–1561.
  • Jeong, D., Kim, C., Kim, Y. and Jung, S. (2020). Dual crosslinked carboxymethyl cellulose/polyacrylamide interpenetrating hydrogels with highly enhanced mechanical strength and superabsorbent properties. European Polymer Journal, 127, 109586.
  • Bauli, C. R., Lima, G. F., Souza, A. G., Ferreira, R. R. and Rosa, D. S. (2021). Eco-friendly carboxymethyl cellulose hydrogels filled with nanocellulose or nanoclays for agriculture applications as soil conditioning and nutrient carrier and their impact on cucumber growing. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 623, 126771.
  • Kim, S., Kang, Y., Krueger, C. A., Sen, M., Holcomb, J. B., Chen, D., Wenke J. C. and Yang, Y. (2012). Sequential delivery of BMP-2 and IGF-1 using a chitosan gel with gelatin microspheres enhances early osteoblastic differentiation. Acta Biomaterialia, 8, 1768-1777.
  • Fortunati, E., Peltzer, M., Armentano, I., Jim´enez, A., and Kenny, J. M. (2013). Combined effects of cellulose nanocrystals and silver nanoparticles on the barrier and migration properties of PLA nano-biocomposites. Journal of Food Engineering, 90, 948–956.
  • Irani, M., Ismail, H., Ahmad, Z. and Fan, M. (2015). Synthesis of linear low-density polyethyleneg- poly (acrylic acid)-co-starch/organo-montmorillonite hydrogel composite as an adsorbent for removal of Pb(ІІ) from aqueous solutions. Journal of Environmental Sciences, 27, 9–20.
  • Bidyadhar, M. and Ray, S. K. (2016). Removal of safranine T and brilliant cresyl blue dyes from water by carboxymethyl cellulose incorporated acrylic hydrogels: isotherms, kinetics and thermodynamic study. Journal of the Taiwan Institute of Chemical Engineers, 60, 313–327.
  • Wen-Bo, W., Da-Jian, H., Yu-Ru, K. and Ai-Qin, W. (2013). One-step in situ fabrication of a granular semi-IPN hydrogel based on chitosan and gelatin for fast and efficient adsorption of Cu2+ ion. Colloids Surf. B: Biointerfaces, 106, 51–59.
  • Sethi, S., Kaith, B.S., Saruchi and Kumar, V. (2019). Fabrication and characterization of microwave assisted carboxymethyl cellulose-gelatin silver nanoparticles imbibed hydrogel: Its evaluation as dye degradation. Reactive and Functional Polymers, 142, 134–146.
  • Ma, Q., Wang, W., Ge, W., Xia, L., Li, H. and Song, S. (2021). Preparation of Carboxymethyl Cellulose‑Based Hydrogel Supported by Two‑Dimensional Montmorillonite Nanosheets for Methylene Blue Removal. Journal of Polymers and the Environment, 29, 3918–3931.
  • Niua, J., Wanga, J., Daia, X., Shaoa, Z. and Huang, X. (2018). Dual physically crosslinked healable polyacrylamide/cellulose nanofibers nanocomposite hydrogels with excellent mechanical properties. Carbohydrate Polymers, 193, 73-81.
  • Weerawan, N., Chalitangkoon, J. and Monvisade, P. (2022). Self-Healing Hydrogels Based on Sodium Carboxymethyl Cellulose/Poly(vinyl alcohol) Reinforced with Montmorillonite. Biointerface Research in Applied Chemistry, 12(4), 4770-4779.
  • Rathna, G. V. N., Rao, D. V. M. and Chatterji, P. R. (1996). Hydrogels of Gelatin-Sodium Carboxymethyl Cellulose: Synthesis and Swelling Kinetics, Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, 33(9), 1199-1207.
  • Burugapallı, K., Bhatia, D., Koul, V., Choudhary, V. (2001). Interpenetrating Polymer Networks Based on Poly(acrylic acid) and Gelatin. I: Swelling and Thermal Behavior, Journal of Applied Polymer Science, 82, 217–227.
  • Hameed, A., Khurshid, S., Adnan, A. (2020). Synthesis and characterization of carboxymethyl cellulose based hydrogel and its applications on water treatment, Desalination and Water Treatment, 196, 214–227.
  • Johlin, J.M. (1930). The Isoelectric Point of Gelatin and Its Relation to the Minimum Physical Properties of Gelatin. Journal of Biological Chemistry, 86(1), 231-243.
  • Kenawy E.R., Azaam M. M., El-nshar EM. (2019). Sodium alginate-g-poly (acrylic acid-co-2-hydroxyethyl methacrylate)/ montmorillonite superabsorbent composite: Preparation, swelling investigation and its application as a slow-release fertilizer, Arabian Journal of Chemistry, 12(6) 847-856.
There are 27 citations in total.

Details

Primary Language Turkish
Subjects Physical Chemistry (Other)
Journal Section Araştırma Makaleleri
Authors

Evrim Sever 0000-0001-5015-3468

Mehlika Pulat 0000-0001-5724-5250

Project Number FDK-6920
Publication Date November 30, 2023
Published in Issue Year 2023 Volume: 4 Issue: 2

Cite

APA Sever, E., & Pulat, M. (2023). MMT Katkılı IPN Tipi Hidrojellerin Sentez ve Karakterizasyonu. Gazi Üniversitesi Fen Fakültesi Dergisi, 4(2), 80-92.
AMA Sever E, Pulat M. MMT Katkılı IPN Tipi Hidrojellerin Sentez ve Karakterizasyonu. GÜFFD. November 2023;4(2):80-92.
Chicago Sever, Evrim, and Mehlika Pulat. “MMT Katkılı IPN Tipi Hidrojellerin Sentez Ve Karakterizasyonu”. Gazi Üniversitesi Fen Fakültesi Dergisi 4, no. 2 (November 2023): 80-92.
EndNote Sever E, Pulat M (November 1, 2023) MMT Katkılı IPN Tipi Hidrojellerin Sentez ve Karakterizasyonu. Gazi Üniversitesi Fen Fakültesi Dergisi 4 2 80–92.
IEEE E. Sever and M. Pulat, “MMT Katkılı IPN Tipi Hidrojellerin Sentez ve Karakterizasyonu”, GÜFFD, vol. 4, no. 2, pp. 80–92, 2023.
ISNAD Sever, Evrim - Pulat, Mehlika. “MMT Katkılı IPN Tipi Hidrojellerin Sentez Ve Karakterizasyonu”. Gazi Üniversitesi Fen Fakültesi Dergisi 4/2 (November 2023), 80-92.
JAMA Sever E, Pulat M. MMT Katkılı IPN Tipi Hidrojellerin Sentez ve Karakterizasyonu. GÜFFD. 2023;4:80–92.
MLA Sever, Evrim and Mehlika Pulat. “MMT Katkılı IPN Tipi Hidrojellerin Sentez Ve Karakterizasyonu”. Gazi Üniversitesi Fen Fakültesi Dergisi, vol. 4, no. 2, 2023, pp. 80-92.
Vancouver Sever E, Pulat M. MMT Katkılı IPN Tipi Hidrojellerin Sentez ve Karakterizasyonu. GÜFFD. 2023;4(2):80-92.