Review
BibTex RIS Cite

Nanopartiküllerin Genotoksik Etkileri

Year 2021, Volume: 2 Issue: 2, 19 - 38, 01.11.2021
https://doi.org/10.5281/zenodo.5734749

Abstract

Nanoteknolojinin amacı, nanopartikül (NP) olarak adlandırılan maddeleri endüstriyel amaçlarla tasarlamak ve sentezlemektir. Ebatları ˂100 nm olan nanopartiküller, küçük boyut ve geniş yüzey alanı, iletkenlik, güç, dayanıklılık ve reaktivite gibi yeni olağanüstü özellikler kazanır. Bu özelliklerinden dolayı NP'ler tıp, eczacılık, kozmetik, elektronik, tekstil, boya, endüstri ve gıda koruma gibi çeşitli alanlarda yaygın olarak kullanılmaktadır. Fakat bu tür özellikler, nanopartiküllerin biyolojik ve toksikolojik özelliklerini de etkilemektedir. NP'ler önemli biyolojik bariyerleri ve zarları kolayca geçebilir ve organlar, hücresel organeller ve genetik materyal ile etkileşime girebilir. NP'ler oksidatif strese, inflamasyona, sitotoksisiteye, genotoksisiteye ve apoptoza neden olabilir. Bu sebeple, nanopartiküllerin olası genotoksik etkileri, Kromozom Anormallikleri (KA), Kardeş Kromatid Değişimi (KKD), Mikronukleus (MN), kuyruklu yıldız/Komet ve Allium testleri kullanılarak incelenmektedir. Bu çalışmanın amacı, yukarıda adı geçen testlerle incelenmiş olan bakır oksit (CuO), çinko oksit (ZnO), demir oksit (Fe2O3), gümüş (Ag), kobalt-krom (CoCr), silikon dioksit (SiO2), titanyum dioksit (TiO2) ve tungsten oksit (WO3) nanopartiküllerinin insan lenfositlerinde ve bazı hücre hatlarında in vitro ve Allium cepa ve Vicia faba’daki in vivo genotoksik etkileri konusundaki bazı makaleleri derlemektir. Ayrıca, nanopartiküllerin genotoksik mekanizmaları konusunda ileri sürülen görüşleri derlemektir.

References

  • [1] Baranowska-Wójcik, E., Szwajgier, D., Oleszczuk, P., and Winiarska-Mieczan, A. (2020). Effects of titanium dioxide nanoparticles exposure on human health. Biological Trace Element Research, 193, 118-129.
  • [2] Yin, I.X., Zhang, J., Zhao, I.S., Mei, M.L., Li, Q., and Chu, C.H. (2020). The antibacterial mechanism of silver nanoparticles and its application in dentistry. International Journal of Nanomedicine, 15, 2555-2562.
  • [3] Ahamed, A., Liang, L., Lee, M.Y., Bobacka, J., and Lisak, G. (2021). Too small to matter? Physicochemical transformation and toxicity of engineered nTiO2, nSiO2, nZnO, carbon nanotubes, and nAg. Journal of Hazardous Materials, 124107.
  • [4] Kohl, Y., Rundén-Pran, E., Mariussen, E., Hesler, M., El Yamani, N., Longhin, E.M., and Dusinska, M. (2020). Genotoxicity of nanomaterials: advanced in vitro models and high throughput methods for human hazard assessment. Nanomaterials, 10, 1-25.
  • [5] AlQuraidi, A.O., Mosa, K.A. and Ramamoorthy, K. (2019). Phytotoxic and genotoxic effects of copper nanoparticles in coriander (Coriandrum sativum-Apiaceae). Plants, 8(1), 19.
  • [6] Ealia, S.A.M., and Saravanakumar, M.P. (2017). A review on the classification, characterisation, synthesis of nanoparticles and their application. In IOP Conference Series: Materials Science and Engineering, 263, 032019.
  • [7] Edebali, S. ve Ersöz, M. (2018). Seramik nanopartiküller. Nanoteknolojinin Temelleri, 181-186.
  • [8] Rodriguez-Garraus, A., Azqueta, A., Vettorazzi, A., and Lopez de Cerain, A. (2020). Genotoxicity of silver nanoparticles. Nanomaterials, 10(2), 251.
  • [9] Uyanıkgil, E.Ö.Ç. ve Salmanoğlu, D.S., (2020). Metalik nanopartiküllerin hedeflendirilmesi. Ege Tıp Dergisi, 59 (1), 71-81.
  • [10] Demirkan, A. (2019). Nanoteknolojinin insan sağlığına faydalı ve zararlı yönleri. Ordu Üniversitesi Bilim ve Teknoloji Dergisi, 9(2), 136-148.
  • [11] Giorgetti, L. (2019). Effects of nanoparticles in plants: phytotoxicity and genotoxicity assessment. Nanomaterials in Plants, Algae and Microorganisms, 65-87.
  • [12] Martínez, G., Merinero, M., Pérez-Aranda, M., Pérez-Soriano, E.M., Ortiz, T., Begines, B., and Alcudia, A. (2020). Environmental impact of nanoparticles’ Application as an Emerging Technology. Materials, 14(1), 1-26.
  • [13] Cornu, R., Béduneau, A., and Martin, H. (2020). Influence of nanoparticles on liver tissue and hepatic functions. Toxicology, 430, 152344.
  • [14] Raja, G., Jang, Y.K., Suh, J.S., Kim, H.S., Ahn, S.H., and Kim, T.J. (2020). Microcellular environmental regulation of silver nanoparticles in cancer therapy. Cancers, 12, 664.
  • [15] García-Rodríguez, A., Rubio, L., Vila, L., Xamena, N., Velázquez, A., Marcos, R. and Hernández, A. (2019). The comet assay as a tool to detect the genotoxic potential of nanomaterials. Nanomaterials, 9(10), 1385.
  • [16] Gatoo, M.A., Naseem, S., Arfat, M.Y., Dar, A.M., Qasim, K., and Zubair, S. (2014). Physicochemical properties of nanomaterials: Implication in associated toxic manifestation. BioMed Research International, 498420.
  • [17] Schneider, G. (2017). Antimicrobial silver nanoparticles-regulatory situation in the European Union. Materials Today: Proceedings, 4, S200-S207.
  • [18] Beykaya, M., ve Çağlar, A. (2016). Bitkisel özütler kullanılarak gümüş nanopartikül (AgNP) sentezlenmesi ve antimikrobiyal etkinlikleri üzerine bir araştırma. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 16, 035403, 631-641.
  • [19] Eraslan, T. (2020). Daphne oleoides'den Sentezlenen Gümüş Nanopartiküllerin Antioksidan Aktivitesinin Değerlendirilmesi. Yüksek Lisans Tezi. Necmettin Erbakan Üniversitesi. Fen Bilimleri Enstitüsü. Konya. 99.
  • [20] Altıner, A., Atalay, H., and Bilal, T. (2018). Serbest radikaller ve stres ile ilişkisi. Balıkesir Sağlık Bilimleri Dergisi, 7(1), 51-55.
  • [21] Fresegna, A.M., Ursini, C.L., Ciervo, A., Maiello, R., Casciardi, S., Iavicoli, S., Cavallo, D. (2021). Assessment of the influence of crystalline form on cyto-genotoxic and inflammatory effects induced by TiO2 nanoparticles on human bronchial and alveolar cells. Nanomaterials, 11, 253.
  • [22] Chang, X., Wang, X., Li, J., Shang, M., Niu, S., Zhang, W., Li, Y., Sun, Z., Gan, J., Li, W., Tang, M., and Xue, Y. (2021). Silver nanoparticles induced cytotoxicity in HT22 cells through autophagy and apoptosis via PI3K/AKT/mTOR signaling pathway. Ecotoxicology and Environmental Safety, 208, 111696.
  • [23] Mecwan, M., Das, M., Thakore, S., Bakshi, S.R. (2021). In-vitro study on genotoxicity of green synthesized silver nanoparticles. Nano Biomedicine and Engineering, 13(1), 72-81.
  • [24] Agnihotri, R., Gaur, S., and Albin, S. (2020). Nanometals in dentistry: applications and toxicological implications. Biological Trace Element Research, 197, 70-88.
  • [25] Assadian, E., Zarei, M.H., Gilani, A.H., Farshin, M., Degampanah, H., and Pourahmad, J. (2018). Toxicity of copper oxide (CuO) nanoparticles on human blood lymphocytes. Biological Trace Element Research, 184, 350-357.
  • [26] Saygılı, Y. (2015). Bazı nanopartiküllerin (SiO2, CuO, Fe2O3) in vitro periferal insan lenfositlerinde genotoksik etkileri. Doktora Tezi. Gazi Üniversitesi Fen Bilimleri Enstitüsü. Ankara. 125.
  • [27] Barillet, S., Jugan, M.L., Laye, M., Leconte, Y., Herlin-Boime, N., Reynaud, C., and Carrière, M. (2010). In vitro evaluation of SiO nanoparticles impact on A549 pulmonary cells: Cyto-genotoxicity and oxidative stress. Toxicology Letters, 198(3), 324-330.
  • [28] Foldbjerg, R., Dang, D. A., and Autrup, H. (2011). Cytotoxicity and genotoxicity of silver nanoparticles in the human lung cancer cell line, A549. Archives of Toxicology, 85(7), 743-750.
  • [29] Wang, J., Che, B., Zhang, L. W., Dong, G., Luo, Q., and Xin, L. (2017). Comparative genotoxicity of silver nanoparticles in human liver HepG2 and lung epithelial A549 cells. Journal of Applied Toxicology, 37(4), 495-501.
  • [30] Sharma, V., Anderson, D., and Dhawan, A. (2011). Zinc oxide nanoparticles induce oxidative stress and genotoxicity in human liver cells (HepG2). Journal of Biomedical Nanotechnology, 7(1), 98-99.
  • [31] Brandão, F., Fernández-Bertólez, N., Rosário, F., Bessa, M.J., Fraga, S., Pásaro, E., and Costa, C. (2020). Genotoxicity of TiO2 nanoparticles in four different human cell lines (A549, HEPG2, A172 and SH-SY5Y)” Nanomaterials, 10(3), 412.
  • [32] Fernández-Bertólez, N., Costa, C., Bessa, M.J., Park, M., Carriere, M., Dussert, F., Teixeira, J.P., Pásaro, E., Laffon, B., and Valdiglesias, V. (2019). Assessment of oxidative damage induced by iron oxide nanoparticles on different nervous system cells. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 845, 402989.
  • [33] Fernández-Bertólez, N., Brandão, F., Costa, C., Pásaro, E., Teixeira, J. P., Laffon, B., and Valdiglesias, V. (2021). Suitability of the in vitro cytokinesis-block micronucleus test for genotoxicity assessment of TiO2 nanoparticles on SH-SY5Y cells. International Journal of Molecular Sciences, 22(16), 8558.
  • [34] Chen, Z., Wang, Y., Ba, T., Li, Y., Pu, J., Chen, T., and Jia, G. (2014). Genotoxic evaluation of titanium dioxide nanoparticles in vivo and in vitro. Toxicology Letters, 226 (3), 314-319.
  • [35] Meena, R., Kajal, K., and Paulraj, R. (2015). Cytotoxic and genotoxic effects of titanium dioxide nanoparticles in testicular cells of male wistar rat. Applied Biochemistry and Biotechnology, 175(2), 825-840.
  • [36] Ghosh, M., Ghosh, I., Godderis, L., Hoet, P. and Mukherjee, A. (2019). Genotoxicity of engineered nanoparticles in higher plants. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 842, 132-145.
  • [37] López-Moreno, M. L., de la Rosa, G., Hernández-Viezcas, J. Á., Castillo-Michel, H., Botez, C. E., Peralta-Videa, J. R., and Gardea-Torresdey, J. L. (2010). Evidence of the differential biotransformation and genotoxicity of ZnO and CeO2 nanoparticles on soybean (Glycine max) plants. Environmental Science and and Technology, 44(19), 7315-7320.
  • [38] Shaymurat, T., Gu, J., Xu, C., Yang, Z., Zhao, Q., Liu, Y. and Liu, Y. (2012). Phytotoxic and genotoxic effects of ZnO nanoparticles on garlic (Allium sativum L.): A morphological study. Nanotoxicology, 6(3), 241-248.
  • [39] Rafique, S., Zahra, Z., Virk, N., Shahid, M., Pinelli, E., Park, T.J., Kallerhoff, J., and Arshad, M. (2018). Dose-dependent physiological responses of Triticum aestivum L. to soil applied TiO2 nanoparticles: Alterations in chlorophyll content, H2O2, production, and genotoxicity. Agriculture, Ecosystems and Environment, 255, 95-101.
  • [40] Bellani, L., Muccifora, S., Barbieri, F., Tassi, E., Castiglione, M.R., Giorgetti, L. (2020). Genotoxicity of the food additive E171, titanium dioxide, in the plants Lens culinaris L. and Allium cepa L. Mutation Research/Genetic Toxicology and Environmental. Mutagenesis, 849, 503142.
  • [41] Waani, S.P.T., Irum, S., Gul, I., Yaqoob, K., Khalid, M.U., Ali, M.A., Manzoor, U., Noor, T., Ali, S., Rizwan, M., and Arshad, M. (2021). TiO2 nanoparticles dose, application method and phosphorous levels influence genotoxicity in Rice (Oryza sativa L.), soil enzymatic activities and plant growth. Ecotoxicology and Environmental Safety, 213, 111977.
  • [42] Kim, H.R., Park, Y.J., Da Young Shin, S.M.O., and Chung, K.H. (2013). Appropriate in vitro methods for genotoxicity testing of silver nanoparticles. Environmental Health and Toxicology, 28, e2013003.
  • [43] Cao, Y., Li, S., and Chen, J. (2020). Modeling better in vitro models for the prediction of nanoparticle toxicity. Toxicology Mechanisms and Methods, 31(1), 1-17.
  • [44] Di Virgilio, A.L., Reigosa, M., Arnal, P.M., and Fernández Lorenzo de Mele, M. (2010). Comparative study of the cytotoxic and genotoxic effects of titanium oxide and aluminium oxide nanoparticles in Chinese hamster ovary (CHO-K1) cells. Journal of Hazardous Materials, 177(1-3), 711-718.
  • [45] Azim, S.A.A, Darwish, H.A., Rizk, M.Z., Ali, S.A., and Kadry, M.O. (2015). Amelioration of titanium dioxide nanoparticles-induced liver injury in mice: Possible role of some antioxidants. Experimental and Toxicologic Pathology, 67, 305-314.
  • [46] Martins Jr, A.D.C., Azevedo, L.F., de Souza Rocha, C.C., Carneiro, M.F.H., Venancio, V.P., de Almeida, M.R., Antunes, L.M.G., Hott, R.C., Rodrigues, J.L., Ogunjimi, A.T., Adeyemi, J.A, and Barbosa Jr, F. (2017). Evaluation of distribution, redox parameters, and genotoxicity in Wistar rats co-exposed to silver and titanium dioxide nanoparticles. Journal of Toxicology and Environmental Health, 80(19-21), 1156-1165.
  • [47] Patlolla, A. K., Hackett, D., and Tchounwou, P. B. (2015). Genotoxicity study of silver nanoparticles in bone marrow cells of Sprague-Dawley rats. Food and Chemical Toxicology, 85, 52-60.
  • [48] Golbamaki, A., Golbamaki, N., Sizochenko, N., Rasulev, B., Leszczynski, J., and Benfenati, E. (2018). Genotoxicity induced by metal oxide nanoparticles: A weight of evidence study and effect of particle surface and electronic properties. Nanotoxicology Informa UK Limited, Trading as Taylor and Francis Group, 12, 1113-1129.
  • [49] Kazimirova, A., Baranokova, M., Staruchova, M., Drlickova, M., Volkovova, K., and Dusinska, M. (2019). Titanium dioxide nanoparticles tested for genotoxicity with the comet and micronucleus assays in vitro, ex vivo and in vivo. Mutation Research/ Genetic Toxicology and Environmental Mutagenesis, 843, 57-65.
  • [50] Nadaroğlu, H., Alaylı, A., Çeker, S., Öğütçü, H., and Agar, G. (2020). Biosynthesis of silver nanoparticles and investigation of genotoxic effects and antimicrobial activity. International Journal of Nano Dimension, 11, 158-167.
  • [51] Rastogi, A., Zivcak, M., Sytar, O., Kalaji, H. M., He, X., Mbarki, S. and Brestic, M. (2017). Impact of metal and metal oxide nanoparticles on plant: a critical review. Frontiers In Chemistry, 5, 78.
  • [52] Ünal, F., Helvacı Tülek, N.D., Yüzbaşıoğlu, ve D., Çelik, M. (2020). Methidathion insektisit/akarisitinin sitotoksik ve genotoksik potansiyelinin Allium testi ile incelenmesi. Gazi Üniversitesi Fen Fakültesi Dergisi, 1 (1-2), 1-12.
  • [53] Kaygisiz, S.Y., and Cigerci, I.H. (2017). Genotoxic evaluation of different sizes of iron oxide nanoparticles and ionic form by SMART, Allium and comet assay. Toxicology and Industrial Health, 33(10), 802-209.
  • [54] Galal, A.O., Thabet, F.A., Tuda, M., and El-Samahy, F.M. (2020). RAPD Analysis of Genotoxic Effects of Nano-Scale SiO2 and TiO2 on Broad Bean (Vicia faba L.). Journal-Faculty of Kyushu University, 65 (1), 57-63.
  • [55] Karkucak, M. (2016). Kromozom anomalileri ve fertilite problemleri. Androloji Bülteni, 18(64), 33–39.
  • [56] Abdel-Khalek, A. A., Al-Quraishy, S., and Abdel-Gaber, R. (2021). Silver nanoparticles induce time-and tissue-specific genotoxicity in oreochromis niloticus: Utilizing the adsorptive capacities of fruit peels to minimize genotoxicity. Bulletin of Environmental Contamination and Toxicology, 1-9.
  • [57] Di Giampaolo, L., Zaccariello, G., Benedetti, A., Vecchiotti, G., Caposano, F., Sabbioni, E., Groppi, F., Manenti, S., Niu, Q., Poma, A.M.G., Gioacchino, M.D., and Petrarca, C. (2021). Genotoxicity and immunotoxicity of titanium dioxide-embedded mesoporous silica nanoparticles (TiO2@ msn) in primary peripheral human blood mononuclear cells (PBMC). Nanomaterials, 11(2), 270.
  • [58] Şekeroğlu, Z. A., ve Şekeroğlu, V. (2011). Genetik toksisite testleri. TÜBAV Bilim Dergisi, 4(3), 221-229.
  • [59] Tumini, E., and Aguilera, A. (2021). The sister-chromatid exchange assay in human cells. In Homologous Recombination, 383-393.
  • [60] Kwasniewska, J., and Bara, A. (2020). EdU-based step-by-step method for the detection of sister chromatid exchanges for application in plant genotoxicity assessment. Frontiers in Plant Science, 11, 1146.
  • [61] Mourelatos, D. (2016). Sister chromatid exchange assay as a predictor of tumor chemoresponse. Mutation Research, 803-804, 1-12.
  • [62] Sommer, S., Buraczewska, I., and Kruszewski, M. (2020). Micronucleus assay: the state of art, and future directions. International Journal of Molecular Sciences, 21(4), 1534
  • [63] Fenech, M., Knasmueller, S., Bolognesi, C., Holland, N., Bonassi, S., and Kirsch-Volders, M. (2020). Micronuclei as biomarkers of DNA damage, aneuploidy, inducers of chromosomal hypermutation and as sources of pro-inflammatory DNA in humans. Mutation Research/Reviews in Mutation Research, 786, 108342.
  • [64] Araldi, R.P., de Melo, T.C., Mendes, T.B., de Sá Júnior, PL., Nozima, B. H.N., Ito, E. T., Carvalho, R.F., Souza, E.B., and Stocco, R.C. (2015). Using the comet and micronucleus assays for genotoxicity studies: A review. Biomedicine and Pharmacotherapy, 72, 74-82.
  • [65] Antonoglou, O., Lafazanis, K., Mourdikoudis, S., Vourlias, G., Lialiaris, T., Pantazaki, A., and Dendrinou-Samara, C. (2019). Biological relevance of CuFeO2 nanoparticles: Antibacterial and antiinflammatory activity, genotoxicity, DNA and protein interactions. Materials Science and Engineering, 99, 264-274.
  • [66] Soria, N.G.C., Aga, D.S., and Gokcumen, G.E.A. (2019). Lipidomics reveals insights on the biological effects of copper oxide nanoparticles in a human colon carcinoma cell line. Molecular Omics, 15, 30-38.
  • [67] Di Bucchianico, S., Fabbrizi, M. R., Misra, S. K., Valsami-Jones, E., Berhanu, D., Reip, P., Bergamaschi, E., and Migliore, L. (2013). Multiple cytotoxic and genotoxic effects induced in vitro by differently shaped copper oxide nanomaterials. Mutagenesis, 28(3), 287-299.
  • [68] Ekman Nilsson, A., Macias Aragonés, M., Arroyo Torralvo, F., Dunon, V., Angel, H., Komnitsas, K., and Willquist, K. (2017). A review of the carbon footprint of Cu and Zn production from primary and secondary sources. Minerals, 7(9), 168.
  • [69] Sun, Z., Xiong, T., Zhang, T., Wang, N., Chen, D., and Li, S. (2019). Influences of zinc oxide nanoparticles on Allium cepa root cells and the primary cause of phytotoxicity. Ecotoxicology, 28(2), 175-188.
  • [70] Azem, NFA., ve Birlik, I. (2018). Sol-jel yöntemi ile hazırlanmış ZnO nanopartiküllerin optimizasyonu. Fen ve Mühendislik Dergisi, 20(58), 121-127.
  • [71] Saber, M., Hayaei-Tehrani, R. S., Mokhtari, S., Hoorzad, P., and Esfandiari, F. (2021). In vitro cytotoxicity of zinc oxide nanoparticles in mouse ovarian germ cells. Toxicology In Vitro, 70, 105032.
  • [72] Akbaba, G.B., and Türkez, H. (2018). Investigation of the genotoxicity of aluminum oxide, β tricalcium phosphate, and zinc oxide nanoparticles ın vitro. International Journal of Toxicology, 37(3), 216-222.
  • [73] Yılmaz, H.Ö., Yılmaz, O., and Dağlıoğlu, Y. (2019). Determination of genotoxic effects in vitro of ZnO TiO2 nanoparticles on human peripheral lymphocytes. Journal of International Environmental Application and Science, 14(1), 7-12.
  • [74] Bhattacharya, D., Santra, C.R., Ghosh, A.N., and Karmakar, P. (2014). Differential toxicity of rod and spherical zinc oxide nanoparticles on human peripheral blood mononuclear cells. Journal of Biomedical Nanotechnology, 10(4), 707-716.
  • [75] Khan, M., Naqvi, A.H., and Ahmad, M. (2015). Comparative study of the cytotoxic and genotoxic potentials of zinc oxide and titanium dioxide nanoparticles. Toxicology Reports, 2, 765-774.
  • [76] Andersson-Willman, B., Gehrmann, U., Cansu, Z., Buerki-Thurnherr, T., Krug, H.F., Gabrielsson, S. and Scheynius, A. (2012). Effects of subtoxic concentrations of TiO2 and ZnO nanoparticles on human lymphocytes, dendritic cells and exosome production. Toxicology and Applied Pharmacology, 264(1), 92-103.
  • [77] Assadian, E., Dezhampanah, H., Seydi, E., and Pourahmad, J. (2019). Toxicity of Fe2O3 nanoparticles on human blood lymphocytes. Journal of Biochemical and Molecular Toxicology, 33(6), e22303.
  • [78] Seçkin, H. (2020). Gümüş-kalay alaşım nanopartiküllerinin insan akciğer epitel hücreler üzerindeki sitotoksik ve genotoksik etkilerinin araştırılması. Yüksek Lisans Tezi. Fen Bilimleri Enstitüsü. Uludağ Üniversitesi. 57.
  • [79] Vuković, B., Milić, M., Dobrošević, B., Milić, M., Ilić, K., Pavičić, I., Šerić, V., and Vrček, I.V. (2020). Surface stabilization affects toxicity of silver nanoparticles in human peripheral blood mononuclear cells. Nanomaterials, 10, 1390.
  • [80] Farahani, Z., Parivar, K., Hayati Roodbari, N., and Farhadi, M. (2020). Comparative study of the cytotoxic effect of silver nanoparticles on human lymphocytes and HPB-ALL cell line: As an in vitro study. Iranian Red Crescent Medical Journal, 22(2).
  • [81] Li Y., Qin, T., Ingle, T., Yan, J., He, W., Yin, J., and Chen, T. (2017). Differential genotoxicity mechanisms of silver nanoparticles and silver ions. Archives of Toxicology, 91, 509-519.
  • [82] Ghosh, M., Manivannan, J., Sinha, S., Chakraborty, A., Mallick, S.K., Bandyopadhyay, M., and Mukherjee, A. (2012). In vitro and in vivo genotoxicity of silver nanoparticles. Mutation Research, 749, 60-69.
  • [83] Kumari, R., Saini, A.K., Kumar, A., and Saini, R.V. (2020). Apoptosis induction in lung and prostate cancer cells through silver nanoparticles synthesized from Pinus roxburghii bioactive fraction. JBIC Journal of Biological Inorganic Chemistry, 25, 23-37.
  • [84] Lu, W., Senapati, D., Wang, S., Tovmachenko, O., Singh, A. K., Yu, H., and Ray, P. C. (2010). Effect of surface coating on the toxicity of silver nanomaterials on human skin keratinocytes. Chemical Physics Letters, 487(1-3), 92-96.
  • [85] Şekeroğlu, A.T. (2013). Nanoteknolojiden nanogenotoksikolojiye: Kobalt-Krom nanopartiküllerinin genotoksik etkisi. Türk Hijyen ve Deneysel Biyoloji Dergisi, 70(1), 33-42.
  • [86] Chattopadhyay, S., Dash, S. K., Tripathy, S., Das, B., Mandal, D., Pramanik, P., and Roy, S. (2015). Toxicity of cobalt oxide nanoparticles to normal cells; an in vitro and in vivo study. Chemico-Biological Interactions, 226, 58-71.
  • [87] Rajiv, S., Jerobin, J., Saranya, V., Nainawat, M., Sharma, A., Makwana, P., Gayathri, C., Bharath, L., Singh, M., Kumar, M., Mukherje, A., and Chandrasekaran, N. (2016). Comparative cytotoxicity and genotoxicity of cobalt (II, III) oxide, iron (III) oxide, silicon dioxide, and aluminum oxide nanoparticles on human lymphocytes in vitro. Human and Experimental Toxicology, 35(2), 170-183.
  • [88] Lojk, J., Strojan, K., Miš, K., Bregar, B. V., Bratkovič, I. H., Bizjak, M., Pirkmajerb, S., and Pavlin, M. (2017). Cell stress response to two different types of polymer coated cobalt ferrite nanoparticles. Toxicology Letters, 270, 108-118.
  • [89] Battal, D., Çelik, A., Güler, G., Aktaş, A., Yıldırımcan, S., Ocakoğlu, K., and Çömelekoǧlu, Ü. (2015). SiO2 nanoparticule-induced size-dependent genotoxicity-an in vitro study using sister chromatid exchange, micronucleus and comet assay. Drug and Chemical Toxicology, 38(2), 196-204.
  • [90] Andreeva, E.R., Rudimov, E.G., Gornostaeva, A.N., Beklemyshev, V.I., Makhonin, I.I., Maugeri, U.O.G., and Buravkova, L. B. (2013). In vitro study of interactions between silicon-containing nanoparticles and human peripheral blood leukocytes. Bulletin of Experimental Biology and Medicine, 155(3), 396-398.
  • [91] Lankoff, A., Arabski, M., Wegierek-Ciuk, A., Kruszewski, M., Lisowska, H., Banasik-Nowak, A., Rozga-Wijas, K., Wojewodzka, M., and Slomkowski, S. (2012). Effect of surface modification of silica nanoparticles on toxicity and cellular uptake by human peripheral blood lymphocytes in vitro. Nanotoxicology, 7(3), 235-250.
  • [92] Waghmode, M.S., Gunjal, A.B., Mulla, J.A., Patil, N.N., and Nawani, N.N. (2019). Studies on the titanium dioxide nanoparticles: Biosynthesis, applications and remediation. SN Applied Sciences, 1(4), 1-9.
  • [93] Akkurt, K. (2019). Titanyum dioksit (TiO2) nanopartiküllerinin iğne ve küresel formlarının in vitro insan periferal lenfositlerindeki genotoksik etkilerinin karşılaştırılması. Yüksek Lisans Tezi. Gazi Üniversitesi Fen Bilimleri Enstitüsü. Ankara. 100.
  • [94] Ghosh, M., Chakraborty, A., and Mukherjee, A. (2013). Cytotoxic, genotoxic and the hemolytic effect of titanium dioxide (TiO2) nanoparticles on human erythrocyte and lymphocyte cells in vitro. Journal of Applied Toxicology, 33(10), 1097-1110.
  • [95] Catalán, J., Järventaus, H., Vippola, M., Savolainen, K., and Norppa, H. (2012). Induction of chromosomal aberrations by carbon nanotubes and titanium dioxide nanoparticles in human lymphocytes in vitro. Nanotoxicology, 6(8), 825-836.
  • [96] Andreoli, C., Leter, G., De Berardis, B., Degan, P., De Angelis, I., Pacchierotti, F., Crebelli, R., Barone, F., and Zijno, A. (2018). Critical issues in genotoxicity assessment of TiO2 nanoparticles by human peripheral blood mononuclear cells. Journal of Applied Toxicology, 38(12), 1471-1482.
  • [97] Bhattacharya, K., Davoren, M., Boertz, J., Schins, R. P., Hoffmann, E., and Dopp, E. (2009). Titanium dioxide nanoparticles induce oxidative stress and DNA-adduct formation but not DNA-breakage in human lung cells. Particle and Fibre Toxicology, 6(1), 1-11.
  • [98] Akbaba, B. G., Tükez, H., Sönmez, E., Akbaba, U., Aydın, E., Tatar, A., Turgut, G., and Cerig, S. (2016). In vitro genotoxicity evaluation of tungsten (VI) oxide nanopowder using human lymphocytes. Biomedical Research, 27(1), 229-234.
  • [99] Moche, H., Chevalier, D., Barois, N., Lorge, E., Claude, N., and Nesslany, F. (2014). Tungsten carbide-cobalt as a nanoparticulate reference positive control in in vitro genotoxicity assays. Toxicological Sciences, 137(1), 125-134.
  • [100] Singh, Z., and Singh, I. (2019). CTAB surfactant assisted and high pH nano-formulations of CuO nanoparticles pose greater cytotoxic and genotoxic effects. Scientific Reports, 9(1), 1-13.
  • [101] Çalbay, Ö. (2014). Bakır oksit ve silikon dioksit nanopartiküllerinin Allium cepa’daki genotoksik etkileri. Yüksek Lisans Tezi. Gazi Üniversitesi Fen Bilimleri Enstitüsü. Ankara. 118.
  • [102] Ghodake, G., Seo, Y.D., and Lee, D.S. (2011). Hazardous phytotoxic nature of cobalt and zinc oxide nanoparticles assessed using Allium cepa. Journal of Hazardous Materials, 186(1), 952-955.
  • [103] Sampaio, L.L.G., Bogea, É.P.C., Neves, E.L., de Mo Mendes, L., Araújo, É.F.L., Baia, M.O., Silva, J.O., Malafaia, G., and de Menezes, I.P.P. (2021). Zinc oxide nanoparticles at environmentally relevant concentrations cause cytotoxic and chromosomal damage to Allium cepa root cells. Genetics and Molecular Research, 20 (1), gmr18690
  • [104] Scherer, M.D., Sposito, J.C.V., Falco, W.F., Grisolia, A.B., Andrade, L.H.C., Lima. S.M., Machado, G., Nascimento, V.A., Gonçalves, D.A., Wender, H., Oliveira, S.L., and Caires, A.R.L. (2019). Cytotoxic and genotoxic effects of silver nanoparticles on meristematic cells of Allium cepa roots: A close analysis of particle size dependence. Science of the Total Environment, 660, 459-467.
  • [105] Atacı, G. Ve Türkoğlu, Ş. (2020). The investigation of toxic, genotoxic and cytotoxic effects of various nanoparticles in Allium cepa and Caenorhabditis elegans test systems. World Journal of Advanced Research and Reviews, 5(1), 016-035.
  • [106] Liman, R., Acikbas, Y., Ciğerci, İ.H., Ali, M.M., and Kars, M.D. (2020). Cytotoxic and genotoxic assessment of silicon dioxide nanoparticles by Allium and comet tests. Bulletin of Environmental Contamination and Toxicology, 104(2), 215-221.
  • [107] Demir, E., Kaya, N., Kaya, B. (2014). Genotoxic effects of Zinc oxide and Titanium dioxide nanoparticles on root meristem cells of Allium cepa by comet assay. Turkish Journal of Biology, 38, 31-39.
  • [108] Da Silva, G.H., and Monteiro, R.T.R. (2017). Toxicity assessment of silica nanoparticles on Allium cepa. Ecotoxicology and Environmental Contamination, 12(1), 25-31.
  • [109] Filho, R.D.S., Vicari, T., Santos, S.A., Felisbino, K., Mattoso, N., Santos, B., Cestari, M.M., and Leme, D.M. (2019). Genotoxicity of titanium dioxide nanoparticles and triggering of defense mechanisms in Allium cepa. Genetics and Molecular Biology, 42, 2, 425-435.
  • [110] Pakrashi, S., Jain, N., Dalai, S., Jayakumar, J., Chandrasekaran, P.T., Raichur, A.M., Chandrasekaran, N., and Mukherjee, A. (2014). In vivo genotoxicity assessment of titanium dioxide nanoparticles by Allium cepa root tip assay at high exposure concentrations. Plos One, 9(2), e87789.
  • [111] Liman, R., Başbuğ, B., Ali, M. M., Acikbas, Y., and Ciğerci, İ. H. (2021). Cytotoxic and genotoxic assessment of tungsten oxide nanoparticles in Allium cepa cells by Allium ana-telophase and comet assays. Journal of Applied Genetics, 62(1), 85-92.
  • [112] Patlolla, A.K., Berry, A., May, L., and Tchounwou, P.B. (2012). Genotoxicity of silver nanoparticles in Vicia faba: A pilot study on the environmental monitoring of nanoparticles. International Journal of Environmental Research and Public Health, 9(5), 1649-1662.
  • [113] Mahmoud, H. (2019). Molecular and cytogenetic assessment of Zinc nanoparticles on Vicia faba plant cells. The Egyptian Journal of Experimental Biology (Botany), 15(1), 39-49.
  • [114] Abdel-Azeem, E.A., and Elsayed, B.A. (2013). Phytotoxicity of silver nanoparticles on Vicia faba seedlings. New York Science Journal, 6(12), 148-156.
  • [115] Thabet, A.F., Galal, O.A., Tuda, M., El-Samahy, M. F., and Helmy, E.A. (2020). Toxicity evaluation of nano silver on faba bean germination and seedling development. Journal of the Faculty of Agriculture, 65(2), 263-268.
  • [116] Kuswah, K.S., and Patel, S. (2020). Effect of titanium dioxide nanoparticles (TiO2 NPs) on Faba bean (Vicia faba L.) and induced asynaptic mutation: A meiotic study. Journal of Plant Growth Regulation, 39, 1107-1118.
  • [117] Foltête, A.S., Masfaraud, J.F., Bigorgne, E., Nahmani, J., Chaurand, P., Botta, C., Labille, J., Rose, J., Férard, J.F., and Cotelle, S. (2011). Environmental impact of sunscreen nanomaterials: Ecotoxicity and genotoxicity of altered TiO2 nanocomposites on Vicia faba. Environmental Pollution, 159(10), 2515-2522.
  • [118] Wang, H., Wu, F., Meng, W., White, J.C., Holden, P.A., and Xing, B. (2013). Engineered nanoparticles may induce genotoxicity. Environmental Science and Technology, 47, 13212-13214.
  • [119] Barnes, C.A., Elsaesser, A., Arkusz, J., Smok, A., Palus, J., Lesniak, A., Salvati, A., Hanrahan, J.P., Jong, W.H., Dziubałtowska, E., Stepnik, M., Rydzynski, K., McKerr, G., Lynch, I., Dawson, K.A., and Howard, C.V. (2008). Reproducible comet assay of amorphous silica nanoparticles detects no genotoxicity. Nano Letters, 8(9), 3069-3074.
  • [120] Saygılı, Y., Yüzbaşıoğlu, D. ve Ünal, F. (2021). Metal oksit nanopartiküllerin genotoksik etkileri. International Journal of Advances in Engineering and Pure Sciences, 33(3), 429-443.
  • [121] Evans, S.J., Clift, M.J., Singh, N., Wills, J.W., Hondow, N., Wilkinson, T.S., Burgum, M.J., Brown, A.P., Jenkins, G.J., and Doak, S.H. (2019). In vitro detection of in vitro secondary mechanisms of genotoxicity induced by engineered nanomaterials. Particle and Fibre Toxicology, 16(1), 1-14.
  • [122] Magdolenova, Z., Collins, A., Kumar, A., Dhawan, A., Stone, V., and Dusinska, M. (2014). Mechanisms of genotoxicity a review of in vitro and in vivo studies with engineered nanoparticles. Nanotoxicology, 8(3), 233-278.
  • [123] Åkerlund, E., Islam, M.S., McCarrick, S., Moreno, E.A., Karlsson, H.L. (2019). Inflammation and (secondary) genotoxicity of Ni and NiO nanoparticles. Nanotoxicology, 13(8), 1060-1072.
  • [124] Modrzynska, J., Berthing, T., Ravn-Haren, G., Jacobsen, N.R., Weydahl, I., K., Loeschener, K., Mortensen, A., Saber, A. T., Saber, A. T., and Vogel, U. (2018). Primary genotoxicity in the liver following pulmonary exposure to carbon black nanoparticles in mice. Particle and Fibre Toxicology, 15(1), 2.
Year 2021, Volume: 2 Issue: 2, 19 - 38, 01.11.2021
https://doi.org/10.5281/zenodo.5734749

Abstract

References

  • [1] Baranowska-Wójcik, E., Szwajgier, D., Oleszczuk, P., and Winiarska-Mieczan, A. (2020). Effects of titanium dioxide nanoparticles exposure on human health. Biological Trace Element Research, 193, 118-129.
  • [2] Yin, I.X., Zhang, J., Zhao, I.S., Mei, M.L., Li, Q., and Chu, C.H. (2020). The antibacterial mechanism of silver nanoparticles and its application in dentistry. International Journal of Nanomedicine, 15, 2555-2562.
  • [3] Ahamed, A., Liang, L., Lee, M.Y., Bobacka, J., and Lisak, G. (2021). Too small to matter? Physicochemical transformation and toxicity of engineered nTiO2, nSiO2, nZnO, carbon nanotubes, and nAg. Journal of Hazardous Materials, 124107.
  • [4] Kohl, Y., Rundén-Pran, E., Mariussen, E., Hesler, M., El Yamani, N., Longhin, E.M., and Dusinska, M. (2020). Genotoxicity of nanomaterials: advanced in vitro models and high throughput methods for human hazard assessment. Nanomaterials, 10, 1-25.
  • [5] AlQuraidi, A.O., Mosa, K.A. and Ramamoorthy, K. (2019). Phytotoxic and genotoxic effects of copper nanoparticles in coriander (Coriandrum sativum-Apiaceae). Plants, 8(1), 19.
  • [6] Ealia, S.A.M., and Saravanakumar, M.P. (2017). A review on the classification, characterisation, synthesis of nanoparticles and their application. In IOP Conference Series: Materials Science and Engineering, 263, 032019.
  • [7] Edebali, S. ve Ersöz, M. (2018). Seramik nanopartiküller. Nanoteknolojinin Temelleri, 181-186.
  • [8] Rodriguez-Garraus, A., Azqueta, A., Vettorazzi, A., and Lopez de Cerain, A. (2020). Genotoxicity of silver nanoparticles. Nanomaterials, 10(2), 251.
  • [9] Uyanıkgil, E.Ö.Ç. ve Salmanoğlu, D.S., (2020). Metalik nanopartiküllerin hedeflendirilmesi. Ege Tıp Dergisi, 59 (1), 71-81.
  • [10] Demirkan, A. (2019). Nanoteknolojinin insan sağlığına faydalı ve zararlı yönleri. Ordu Üniversitesi Bilim ve Teknoloji Dergisi, 9(2), 136-148.
  • [11] Giorgetti, L. (2019). Effects of nanoparticles in plants: phytotoxicity and genotoxicity assessment. Nanomaterials in Plants, Algae and Microorganisms, 65-87.
  • [12] Martínez, G., Merinero, M., Pérez-Aranda, M., Pérez-Soriano, E.M., Ortiz, T., Begines, B., and Alcudia, A. (2020). Environmental impact of nanoparticles’ Application as an Emerging Technology. Materials, 14(1), 1-26.
  • [13] Cornu, R., Béduneau, A., and Martin, H. (2020). Influence of nanoparticles on liver tissue and hepatic functions. Toxicology, 430, 152344.
  • [14] Raja, G., Jang, Y.K., Suh, J.S., Kim, H.S., Ahn, S.H., and Kim, T.J. (2020). Microcellular environmental regulation of silver nanoparticles in cancer therapy. Cancers, 12, 664.
  • [15] García-Rodríguez, A., Rubio, L., Vila, L., Xamena, N., Velázquez, A., Marcos, R. and Hernández, A. (2019). The comet assay as a tool to detect the genotoxic potential of nanomaterials. Nanomaterials, 9(10), 1385.
  • [16] Gatoo, M.A., Naseem, S., Arfat, M.Y., Dar, A.M., Qasim, K., and Zubair, S. (2014). Physicochemical properties of nanomaterials: Implication in associated toxic manifestation. BioMed Research International, 498420.
  • [17] Schneider, G. (2017). Antimicrobial silver nanoparticles-regulatory situation in the European Union. Materials Today: Proceedings, 4, S200-S207.
  • [18] Beykaya, M., ve Çağlar, A. (2016). Bitkisel özütler kullanılarak gümüş nanopartikül (AgNP) sentezlenmesi ve antimikrobiyal etkinlikleri üzerine bir araştırma. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 16, 035403, 631-641.
  • [19] Eraslan, T. (2020). Daphne oleoides'den Sentezlenen Gümüş Nanopartiküllerin Antioksidan Aktivitesinin Değerlendirilmesi. Yüksek Lisans Tezi. Necmettin Erbakan Üniversitesi. Fen Bilimleri Enstitüsü. Konya. 99.
  • [20] Altıner, A., Atalay, H., and Bilal, T. (2018). Serbest radikaller ve stres ile ilişkisi. Balıkesir Sağlık Bilimleri Dergisi, 7(1), 51-55.
  • [21] Fresegna, A.M., Ursini, C.L., Ciervo, A., Maiello, R., Casciardi, S., Iavicoli, S., Cavallo, D. (2021). Assessment of the influence of crystalline form on cyto-genotoxic and inflammatory effects induced by TiO2 nanoparticles on human bronchial and alveolar cells. Nanomaterials, 11, 253.
  • [22] Chang, X., Wang, X., Li, J., Shang, M., Niu, S., Zhang, W., Li, Y., Sun, Z., Gan, J., Li, W., Tang, M., and Xue, Y. (2021). Silver nanoparticles induced cytotoxicity in HT22 cells through autophagy and apoptosis via PI3K/AKT/mTOR signaling pathway. Ecotoxicology and Environmental Safety, 208, 111696.
  • [23] Mecwan, M., Das, M., Thakore, S., Bakshi, S.R. (2021). In-vitro study on genotoxicity of green synthesized silver nanoparticles. Nano Biomedicine and Engineering, 13(1), 72-81.
  • [24] Agnihotri, R., Gaur, S., and Albin, S. (2020). Nanometals in dentistry: applications and toxicological implications. Biological Trace Element Research, 197, 70-88.
  • [25] Assadian, E., Zarei, M.H., Gilani, A.H., Farshin, M., Degampanah, H., and Pourahmad, J. (2018). Toxicity of copper oxide (CuO) nanoparticles on human blood lymphocytes. Biological Trace Element Research, 184, 350-357.
  • [26] Saygılı, Y. (2015). Bazı nanopartiküllerin (SiO2, CuO, Fe2O3) in vitro periferal insan lenfositlerinde genotoksik etkileri. Doktora Tezi. Gazi Üniversitesi Fen Bilimleri Enstitüsü. Ankara. 125.
  • [27] Barillet, S., Jugan, M.L., Laye, M., Leconte, Y., Herlin-Boime, N., Reynaud, C., and Carrière, M. (2010). In vitro evaluation of SiO nanoparticles impact on A549 pulmonary cells: Cyto-genotoxicity and oxidative stress. Toxicology Letters, 198(3), 324-330.
  • [28] Foldbjerg, R., Dang, D. A., and Autrup, H. (2011). Cytotoxicity and genotoxicity of silver nanoparticles in the human lung cancer cell line, A549. Archives of Toxicology, 85(7), 743-750.
  • [29] Wang, J., Che, B., Zhang, L. W., Dong, G., Luo, Q., and Xin, L. (2017). Comparative genotoxicity of silver nanoparticles in human liver HepG2 and lung epithelial A549 cells. Journal of Applied Toxicology, 37(4), 495-501.
  • [30] Sharma, V., Anderson, D., and Dhawan, A. (2011). Zinc oxide nanoparticles induce oxidative stress and genotoxicity in human liver cells (HepG2). Journal of Biomedical Nanotechnology, 7(1), 98-99.
  • [31] Brandão, F., Fernández-Bertólez, N., Rosário, F., Bessa, M.J., Fraga, S., Pásaro, E., and Costa, C. (2020). Genotoxicity of TiO2 nanoparticles in four different human cell lines (A549, HEPG2, A172 and SH-SY5Y)” Nanomaterials, 10(3), 412.
  • [32] Fernández-Bertólez, N., Costa, C., Bessa, M.J., Park, M., Carriere, M., Dussert, F., Teixeira, J.P., Pásaro, E., Laffon, B., and Valdiglesias, V. (2019). Assessment of oxidative damage induced by iron oxide nanoparticles on different nervous system cells. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 845, 402989.
  • [33] Fernández-Bertólez, N., Brandão, F., Costa, C., Pásaro, E., Teixeira, J. P., Laffon, B., and Valdiglesias, V. (2021). Suitability of the in vitro cytokinesis-block micronucleus test for genotoxicity assessment of TiO2 nanoparticles on SH-SY5Y cells. International Journal of Molecular Sciences, 22(16), 8558.
  • [34] Chen, Z., Wang, Y., Ba, T., Li, Y., Pu, J., Chen, T., and Jia, G. (2014). Genotoxic evaluation of titanium dioxide nanoparticles in vivo and in vitro. Toxicology Letters, 226 (3), 314-319.
  • [35] Meena, R., Kajal, K., and Paulraj, R. (2015). Cytotoxic and genotoxic effects of titanium dioxide nanoparticles in testicular cells of male wistar rat. Applied Biochemistry and Biotechnology, 175(2), 825-840.
  • [36] Ghosh, M., Ghosh, I., Godderis, L., Hoet, P. and Mukherjee, A. (2019). Genotoxicity of engineered nanoparticles in higher plants. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 842, 132-145.
  • [37] López-Moreno, M. L., de la Rosa, G., Hernández-Viezcas, J. Á., Castillo-Michel, H., Botez, C. E., Peralta-Videa, J. R., and Gardea-Torresdey, J. L. (2010). Evidence of the differential biotransformation and genotoxicity of ZnO and CeO2 nanoparticles on soybean (Glycine max) plants. Environmental Science and and Technology, 44(19), 7315-7320.
  • [38] Shaymurat, T., Gu, J., Xu, C., Yang, Z., Zhao, Q., Liu, Y. and Liu, Y. (2012). Phytotoxic and genotoxic effects of ZnO nanoparticles on garlic (Allium sativum L.): A morphological study. Nanotoxicology, 6(3), 241-248.
  • [39] Rafique, S., Zahra, Z., Virk, N., Shahid, M., Pinelli, E., Park, T.J., Kallerhoff, J., and Arshad, M. (2018). Dose-dependent physiological responses of Triticum aestivum L. to soil applied TiO2 nanoparticles: Alterations in chlorophyll content, H2O2, production, and genotoxicity. Agriculture, Ecosystems and Environment, 255, 95-101.
  • [40] Bellani, L., Muccifora, S., Barbieri, F., Tassi, E., Castiglione, M.R., Giorgetti, L. (2020). Genotoxicity of the food additive E171, titanium dioxide, in the plants Lens culinaris L. and Allium cepa L. Mutation Research/Genetic Toxicology and Environmental. Mutagenesis, 849, 503142.
  • [41] Waani, S.P.T., Irum, S., Gul, I., Yaqoob, K., Khalid, M.U., Ali, M.A., Manzoor, U., Noor, T., Ali, S., Rizwan, M., and Arshad, M. (2021). TiO2 nanoparticles dose, application method and phosphorous levels influence genotoxicity in Rice (Oryza sativa L.), soil enzymatic activities and plant growth. Ecotoxicology and Environmental Safety, 213, 111977.
  • [42] Kim, H.R., Park, Y.J., Da Young Shin, S.M.O., and Chung, K.H. (2013). Appropriate in vitro methods for genotoxicity testing of silver nanoparticles. Environmental Health and Toxicology, 28, e2013003.
  • [43] Cao, Y., Li, S., and Chen, J. (2020). Modeling better in vitro models for the prediction of nanoparticle toxicity. Toxicology Mechanisms and Methods, 31(1), 1-17.
  • [44] Di Virgilio, A.L., Reigosa, M., Arnal, P.M., and Fernández Lorenzo de Mele, M. (2010). Comparative study of the cytotoxic and genotoxic effects of titanium oxide and aluminium oxide nanoparticles in Chinese hamster ovary (CHO-K1) cells. Journal of Hazardous Materials, 177(1-3), 711-718.
  • [45] Azim, S.A.A, Darwish, H.A., Rizk, M.Z., Ali, S.A., and Kadry, M.O. (2015). Amelioration of titanium dioxide nanoparticles-induced liver injury in mice: Possible role of some antioxidants. Experimental and Toxicologic Pathology, 67, 305-314.
  • [46] Martins Jr, A.D.C., Azevedo, L.F., de Souza Rocha, C.C., Carneiro, M.F.H., Venancio, V.P., de Almeida, M.R., Antunes, L.M.G., Hott, R.C., Rodrigues, J.L., Ogunjimi, A.T., Adeyemi, J.A, and Barbosa Jr, F. (2017). Evaluation of distribution, redox parameters, and genotoxicity in Wistar rats co-exposed to silver and titanium dioxide nanoparticles. Journal of Toxicology and Environmental Health, 80(19-21), 1156-1165.
  • [47] Patlolla, A. K., Hackett, D., and Tchounwou, P. B. (2015). Genotoxicity study of silver nanoparticles in bone marrow cells of Sprague-Dawley rats. Food and Chemical Toxicology, 85, 52-60.
  • [48] Golbamaki, A., Golbamaki, N., Sizochenko, N., Rasulev, B., Leszczynski, J., and Benfenati, E. (2018). Genotoxicity induced by metal oxide nanoparticles: A weight of evidence study and effect of particle surface and electronic properties. Nanotoxicology Informa UK Limited, Trading as Taylor and Francis Group, 12, 1113-1129.
  • [49] Kazimirova, A., Baranokova, M., Staruchova, M., Drlickova, M., Volkovova, K., and Dusinska, M. (2019). Titanium dioxide nanoparticles tested for genotoxicity with the comet and micronucleus assays in vitro, ex vivo and in vivo. Mutation Research/ Genetic Toxicology and Environmental Mutagenesis, 843, 57-65.
  • [50] Nadaroğlu, H., Alaylı, A., Çeker, S., Öğütçü, H., and Agar, G. (2020). Biosynthesis of silver nanoparticles and investigation of genotoxic effects and antimicrobial activity. International Journal of Nano Dimension, 11, 158-167.
  • [51] Rastogi, A., Zivcak, M., Sytar, O., Kalaji, H. M., He, X., Mbarki, S. and Brestic, M. (2017). Impact of metal and metal oxide nanoparticles on plant: a critical review. Frontiers In Chemistry, 5, 78.
  • [52] Ünal, F., Helvacı Tülek, N.D., Yüzbaşıoğlu, ve D., Çelik, M. (2020). Methidathion insektisit/akarisitinin sitotoksik ve genotoksik potansiyelinin Allium testi ile incelenmesi. Gazi Üniversitesi Fen Fakültesi Dergisi, 1 (1-2), 1-12.
  • [53] Kaygisiz, S.Y., and Cigerci, I.H. (2017). Genotoxic evaluation of different sizes of iron oxide nanoparticles and ionic form by SMART, Allium and comet assay. Toxicology and Industrial Health, 33(10), 802-209.
  • [54] Galal, A.O., Thabet, F.A., Tuda, M., and El-Samahy, F.M. (2020). RAPD Analysis of Genotoxic Effects of Nano-Scale SiO2 and TiO2 on Broad Bean (Vicia faba L.). Journal-Faculty of Kyushu University, 65 (1), 57-63.
  • [55] Karkucak, M. (2016). Kromozom anomalileri ve fertilite problemleri. Androloji Bülteni, 18(64), 33–39.
  • [56] Abdel-Khalek, A. A., Al-Quraishy, S., and Abdel-Gaber, R. (2021). Silver nanoparticles induce time-and tissue-specific genotoxicity in oreochromis niloticus: Utilizing the adsorptive capacities of fruit peels to minimize genotoxicity. Bulletin of Environmental Contamination and Toxicology, 1-9.
  • [57] Di Giampaolo, L., Zaccariello, G., Benedetti, A., Vecchiotti, G., Caposano, F., Sabbioni, E., Groppi, F., Manenti, S., Niu, Q., Poma, A.M.G., Gioacchino, M.D., and Petrarca, C. (2021). Genotoxicity and immunotoxicity of titanium dioxide-embedded mesoporous silica nanoparticles (TiO2@ msn) in primary peripheral human blood mononuclear cells (PBMC). Nanomaterials, 11(2), 270.
  • [58] Şekeroğlu, Z. A., ve Şekeroğlu, V. (2011). Genetik toksisite testleri. TÜBAV Bilim Dergisi, 4(3), 221-229.
  • [59] Tumini, E., and Aguilera, A. (2021). The sister-chromatid exchange assay in human cells. In Homologous Recombination, 383-393.
  • [60] Kwasniewska, J., and Bara, A. (2020). EdU-based step-by-step method for the detection of sister chromatid exchanges for application in plant genotoxicity assessment. Frontiers in Plant Science, 11, 1146.
  • [61] Mourelatos, D. (2016). Sister chromatid exchange assay as a predictor of tumor chemoresponse. Mutation Research, 803-804, 1-12.
  • [62] Sommer, S., Buraczewska, I., and Kruszewski, M. (2020). Micronucleus assay: the state of art, and future directions. International Journal of Molecular Sciences, 21(4), 1534
  • [63] Fenech, M., Knasmueller, S., Bolognesi, C., Holland, N., Bonassi, S., and Kirsch-Volders, M. (2020). Micronuclei as biomarkers of DNA damage, aneuploidy, inducers of chromosomal hypermutation and as sources of pro-inflammatory DNA in humans. Mutation Research/Reviews in Mutation Research, 786, 108342.
  • [64] Araldi, R.P., de Melo, T.C., Mendes, T.B., de Sá Júnior, PL., Nozima, B. H.N., Ito, E. T., Carvalho, R.F., Souza, E.B., and Stocco, R.C. (2015). Using the comet and micronucleus assays for genotoxicity studies: A review. Biomedicine and Pharmacotherapy, 72, 74-82.
  • [65] Antonoglou, O., Lafazanis, K., Mourdikoudis, S., Vourlias, G., Lialiaris, T., Pantazaki, A., and Dendrinou-Samara, C. (2019). Biological relevance of CuFeO2 nanoparticles: Antibacterial and antiinflammatory activity, genotoxicity, DNA and protein interactions. Materials Science and Engineering, 99, 264-274.
  • [66] Soria, N.G.C., Aga, D.S., and Gokcumen, G.E.A. (2019). Lipidomics reveals insights on the biological effects of copper oxide nanoparticles in a human colon carcinoma cell line. Molecular Omics, 15, 30-38.
  • [67] Di Bucchianico, S., Fabbrizi, M. R., Misra, S. K., Valsami-Jones, E., Berhanu, D., Reip, P., Bergamaschi, E., and Migliore, L. (2013). Multiple cytotoxic and genotoxic effects induced in vitro by differently shaped copper oxide nanomaterials. Mutagenesis, 28(3), 287-299.
  • [68] Ekman Nilsson, A., Macias Aragonés, M., Arroyo Torralvo, F., Dunon, V., Angel, H., Komnitsas, K., and Willquist, K. (2017). A review of the carbon footprint of Cu and Zn production from primary and secondary sources. Minerals, 7(9), 168.
  • [69] Sun, Z., Xiong, T., Zhang, T., Wang, N., Chen, D., and Li, S. (2019). Influences of zinc oxide nanoparticles on Allium cepa root cells and the primary cause of phytotoxicity. Ecotoxicology, 28(2), 175-188.
  • [70] Azem, NFA., ve Birlik, I. (2018). Sol-jel yöntemi ile hazırlanmış ZnO nanopartiküllerin optimizasyonu. Fen ve Mühendislik Dergisi, 20(58), 121-127.
  • [71] Saber, M., Hayaei-Tehrani, R. S., Mokhtari, S., Hoorzad, P., and Esfandiari, F. (2021). In vitro cytotoxicity of zinc oxide nanoparticles in mouse ovarian germ cells. Toxicology In Vitro, 70, 105032.
  • [72] Akbaba, G.B., and Türkez, H. (2018). Investigation of the genotoxicity of aluminum oxide, β tricalcium phosphate, and zinc oxide nanoparticles ın vitro. International Journal of Toxicology, 37(3), 216-222.
  • [73] Yılmaz, H.Ö., Yılmaz, O., and Dağlıoğlu, Y. (2019). Determination of genotoxic effects in vitro of ZnO TiO2 nanoparticles on human peripheral lymphocytes. Journal of International Environmental Application and Science, 14(1), 7-12.
  • [74] Bhattacharya, D., Santra, C.R., Ghosh, A.N., and Karmakar, P. (2014). Differential toxicity of rod and spherical zinc oxide nanoparticles on human peripheral blood mononuclear cells. Journal of Biomedical Nanotechnology, 10(4), 707-716.
  • [75] Khan, M., Naqvi, A.H., and Ahmad, M. (2015). Comparative study of the cytotoxic and genotoxic potentials of zinc oxide and titanium dioxide nanoparticles. Toxicology Reports, 2, 765-774.
  • [76] Andersson-Willman, B., Gehrmann, U., Cansu, Z., Buerki-Thurnherr, T., Krug, H.F., Gabrielsson, S. and Scheynius, A. (2012). Effects of subtoxic concentrations of TiO2 and ZnO nanoparticles on human lymphocytes, dendritic cells and exosome production. Toxicology and Applied Pharmacology, 264(1), 92-103.
  • [77] Assadian, E., Dezhampanah, H., Seydi, E., and Pourahmad, J. (2019). Toxicity of Fe2O3 nanoparticles on human blood lymphocytes. Journal of Biochemical and Molecular Toxicology, 33(6), e22303.
  • [78] Seçkin, H. (2020). Gümüş-kalay alaşım nanopartiküllerinin insan akciğer epitel hücreler üzerindeki sitotoksik ve genotoksik etkilerinin araştırılması. Yüksek Lisans Tezi. Fen Bilimleri Enstitüsü. Uludağ Üniversitesi. 57.
  • [79] Vuković, B., Milić, M., Dobrošević, B., Milić, M., Ilić, K., Pavičić, I., Šerić, V., and Vrček, I.V. (2020). Surface stabilization affects toxicity of silver nanoparticles in human peripheral blood mononuclear cells. Nanomaterials, 10, 1390.
  • [80] Farahani, Z., Parivar, K., Hayati Roodbari, N., and Farhadi, M. (2020). Comparative study of the cytotoxic effect of silver nanoparticles on human lymphocytes and HPB-ALL cell line: As an in vitro study. Iranian Red Crescent Medical Journal, 22(2).
  • [81] Li Y., Qin, T., Ingle, T., Yan, J., He, W., Yin, J., and Chen, T. (2017). Differential genotoxicity mechanisms of silver nanoparticles and silver ions. Archives of Toxicology, 91, 509-519.
  • [82] Ghosh, M., Manivannan, J., Sinha, S., Chakraborty, A., Mallick, S.K., Bandyopadhyay, M., and Mukherjee, A. (2012). In vitro and in vivo genotoxicity of silver nanoparticles. Mutation Research, 749, 60-69.
  • [83] Kumari, R., Saini, A.K., Kumar, A., and Saini, R.V. (2020). Apoptosis induction in lung and prostate cancer cells through silver nanoparticles synthesized from Pinus roxburghii bioactive fraction. JBIC Journal of Biological Inorganic Chemistry, 25, 23-37.
  • [84] Lu, W., Senapati, D., Wang, S., Tovmachenko, O., Singh, A. K., Yu, H., and Ray, P. C. (2010). Effect of surface coating on the toxicity of silver nanomaterials on human skin keratinocytes. Chemical Physics Letters, 487(1-3), 92-96.
  • [85] Şekeroğlu, A.T. (2013). Nanoteknolojiden nanogenotoksikolojiye: Kobalt-Krom nanopartiküllerinin genotoksik etkisi. Türk Hijyen ve Deneysel Biyoloji Dergisi, 70(1), 33-42.
  • [86] Chattopadhyay, S., Dash, S. K., Tripathy, S., Das, B., Mandal, D., Pramanik, P., and Roy, S. (2015). Toxicity of cobalt oxide nanoparticles to normal cells; an in vitro and in vivo study. Chemico-Biological Interactions, 226, 58-71.
  • [87] Rajiv, S., Jerobin, J., Saranya, V., Nainawat, M., Sharma, A., Makwana, P., Gayathri, C., Bharath, L., Singh, M., Kumar, M., Mukherje, A., and Chandrasekaran, N. (2016). Comparative cytotoxicity and genotoxicity of cobalt (II, III) oxide, iron (III) oxide, silicon dioxide, and aluminum oxide nanoparticles on human lymphocytes in vitro. Human and Experimental Toxicology, 35(2), 170-183.
  • [88] Lojk, J., Strojan, K., Miš, K., Bregar, B. V., Bratkovič, I. H., Bizjak, M., Pirkmajerb, S., and Pavlin, M. (2017). Cell stress response to two different types of polymer coated cobalt ferrite nanoparticles. Toxicology Letters, 270, 108-118.
  • [89] Battal, D., Çelik, A., Güler, G., Aktaş, A., Yıldırımcan, S., Ocakoğlu, K., and Çömelekoǧlu, Ü. (2015). SiO2 nanoparticule-induced size-dependent genotoxicity-an in vitro study using sister chromatid exchange, micronucleus and comet assay. Drug and Chemical Toxicology, 38(2), 196-204.
  • [90] Andreeva, E.R., Rudimov, E.G., Gornostaeva, A.N., Beklemyshev, V.I., Makhonin, I.I., Maugeri, U.O.G., and Buravkova, L. B. (2013). In vitro study of interactions between silicon-containing nanoparticles and human peripheral blood leukocytes. Bulletin of Experimental Biology and Medicine, 155(3), 396-398.
  • [91] Lankoff, A., Arabski, M., Wegierek-Ciuk, A., Kruszewski, M., Lisowska, H., Banasik-Nowak, A., Rozga-Wijas, K., Wojewodzka, M., and Slomkowski, S. (2012). Effect of surface modification of silica nanoparticles on toxicity and cellular uptake by human peripheral blood lymphocytes in vitro. Nanotoxicology, 7(3), 235-250.
  • [92] Waghmode, M.S., Gunjal, A.B., Mulla, J.A., Patil, N.N., and Nawani, N.N. (2019). Studies on the titanium dioxide nanoparticles: Biosynthesis, applications and remediation. SN Applied Sciences, 1(4), 1-9.
  • [93] Akkurt, K. (2019). Titanyum dioksit (TiO2) nanopartiküllerinin iğne ve küresel formlarının in vitro insan periferal lenfositlerindeki genotoksik etkilerinin karşılaştırılması. Yüksek Lisans Tezi. Gazi Üniversitesi Fen Bilimleri Enstitüsü. Ankara. 100.
  • [94] Ghosh, M., Chakraborty, A., and Mukherjee, A. (2013). Cytotoxic, genotoxic and the hemolytic effect of titanium dioxide (TiO2) nanoparticles on human erythrocyte and lymphocyte cells in vitro. Journal of Applied Toxicology, 33(10), 1097-1110.
  • [95] Catalán, J., Järventaus, H., Vippola, M., Savolainen, K., and Norppa, H. (2012). Induction of chromosomal aberrations by carbon nanotubes and titanium dioxide nanoparticles in human lymphocytes in vitro. Nanotoxicology, 6(8), 825-836.
  • [96] Andreoli, C., Leter, G., De Berardis, B., Degan, P., De Angelis, I., Pacchierotti, F., Crebelli, R., Barone, F., and Zijno, A. (2018). Critical issues in genotoxicity assessment of TiO2 nanoparticles by human peripheral blood mononuclear cells. Journal of Applied Toxicology, 38(12), 1471-1482.
  • [97] Bhattacharya, K., Davoren, M., Boertz, J., Schins, R. P., Hoffmann, E., and Dopp, E. (2009). Titanium dioxide nanoparticles induce oxidative stress and DNA-adduct formation but not DNA-breakage in human lung cells. Particle and Fibre Toxicology, 6(1), 1-11.
  • [98] Akbaba, B. G., Tükez, H., Sönmez, E., Akbaba, U., Aydın, E., Tatar, A., Turgut, G., and Cerig, S. (2016). In vitro genotoxicity evaluation of tungsten (VI) oxide nanopowder using human lymphocytes. Biomedical Research, 27(1), 229-234.
  • [99] Moche, H., Chevalier, D., Barois, N., Lorge, E., Claude, N., and Nesslany, F. (2014). Tungsten carbide-cobalt as a nanoparticulate reference positive control in in vitro genotoxicity assays. Toxicological Sciences, 137(1), 125-134.
  • [100] Singh, Z., and Singh, I. (2019). CTAB surfactant assisted and high pH nano-formulations of CuO nanoparticles pose greater cytotoxic and genotoxic effects. Scientific Reports, 9(1), 1-13.
  • [101] Çalbay, Ö. (2014). Bakır oksit ve silikon dioksit nanopartiküllerinin Allium cepa’daki genotoksik etkileri. Yüksek Lisans Tezi. Gazi Üniversitesi Fen Bilimleri Enstitüsü. Ankara. 118.
  • [102] Ghodake, G., Seo, Y.D., and Lee, D.S. (2011). Hazardous phytotoxic nature of cobalt and zinc oxide nanoparticles assessed using Allium cepa. Journal of Hazardous Materials, 186(1), 952-955.
  • [103] Sampaio, L.L.G., Bogea, É.P.C., Neves, E.L., de Mo Mendes, L., Araújo, É.F.L., Baia, M.O., Silva, J.O., Malafaia, G., and de Menezes, I.P.P. (2021). Zinc oxide nanoparticles at environmentally relevant concentrations cause cytotoxic and chromosomal damage to Allium cepa root cells. Genetics and Molecular Research, 20 (1), gmr18690
  • [104] Scherer, M.D., Sposito, J.C.V., Falco, W.F., Grisolia, A.B., Andrade, L.H.C., Lima. S.M., Machado, G., Nascimento, V.A., Gonçalves, D.A., Wender, H., Oliveira, S.L., and Caires, A.R.L. (2019). Cytotoxic and genotoxic effects of silver nanoparticles on meristematic cells of Allium cepa roots: A close analysis of particle size dependence. Science of the Total Environment, 660, 459-467.
  • [105] Atacı, G. Ve Türkoğlu, Ş. (2020). The investigation of toxic, genotoxic and cytotoxic effects of various nanoparticles in Allium cepa and Caenorhabditis elegans test systems. World Journal of Advanced Research and Reviews, 5(1), 016-035.
  • [106] Liman, R., Acikbas, Y., Ciğerci, İ.H., Ali, M.M., and Kars, M.D. (2020). Cytotoxic and genotoxic assessment of silicon dioxide nanoparticles by Allium and comet tests. Bulletin of Environmental Contamination and Toxicology, 104(2), 215-221.
  • [107] Demir, E., Kaya, N., Kaya, B. (2014). Genotoxic effects of Zinc oxide and Titanium dioxide nanoparticles on root meristem cells of Allium cepa by comet assay. Turkish Journal of Biology, 38, 31-39.
  • [108] Da Silva, G.H., and Monteiro, R.T.R. (2017). Toxicity assessment of silica nanoparticles on Allium cepa. Ecotoxicology and Environmental Contamination, 12(1), 25-31.
  • [109] Filho, R.D.S., Vicari, T., Santos, S.A., Felisbino, K., Mattoso, N., Santos, B., Cestari, M.M., and Leme, D.M. (2019). Genotoxicity of titanium dioxide nanoparticles and triggering of defense mechanisms in Allium cepa. Genetics and Molecular Biology, 42, 2, 425-435.
  • [110] Pakrashi, S., Jain, N., Dalai, S., Jayakumar, J., Chandrasekaran, P.T., Raichur, A.M., Chandrasekaran, N., and Mukherjee, A. (2014). In vivo genotoxicity assessment of titanium dioxide nanoparticles by Allium cepa root tip assay at high exposure concentrations. Plos One, 9(2), e87789.
  • [111] Liman, R., Başbuğ, B., Ali, M. M., Acikbas, Y., and Ciğerci, İ. H. (2021). Cytotoxic and genotoxic assessment of tungsten oxide nanoparticles in Allium cepa cells by Allium ana-telophase and comet assays. Journal of Applied Genetics, 62(1), 85-92.
  • [112] Patlolla, A.K., Berry, A., May, L., and Tchounwou, P.B. (2012). Genotoxicity of silver nanoparticles in Vicia faba: A pilot study on the environmental monitoring of nanoparticles. International Journal of Environmental Research and Public Health, 9(5), 1649-1662.
  • [113] Mahmoud, H. (2019). Molecular and cytogenetic assessment of Zinc nanoparticles on Vicia faba plant cells. The Egyptian Journal of Experimental Biology (Botany), 15(1), 39-49.
  • [114] Abdel-Azeem, E.A., and Elsayed, B.A. (2013). Phytotoxicity of silver nanoparticles on Vicia faba seedlings. New York Science Journal, 6(12), 148-156.
  • [115] Thabet, A.F., Galal, O.A., Tuda, M., El-Samahy, M. F., and Helmy, E.A. (2020). Toxicity evaluation of nano silver on faba bean germination and seedling development. Journal of the Faculty of Agriculture, 65(2), 263-268.
  • [116] Kuswah, K.S., and Patel, S. (2020). Effect of titanium dioxide nanoparticles (TiO2 NPs) on Faba bean (Vicia faba L.) and induced asynaptic mutation: A meiotic study. Journal of Plant Growth Regulation, 39, 1107-1118.
  • [117] Foltête, A.S., Masfaraud, J.F., Bigorgne, E., Nahmani, J., Chaurand, P., Botta, C., Labille, J., Rose, J., Férard, J.F., and Cotelle, S. (2011). Environmental impact of sunscreen nanomaterials: Ecotoxicity and genotoxicity of altered TiO2 nanocomposites on Vicia faba. Environmental Pollution, 159(10), 2515-2522.
  • [118] Wang, H., Wu, F., Meng, W., White, J.C., Holden, P.A., and Xing, B. (2013). Engineered nanoparticles may induce genotoxicity. Environmental Science and Technology, 47, 13212-13214.
  • [119] Barnes, C.A., Elsaesser, A., Arkusz, J., Smok, A., Palus, J., Lesniak, A., Salvati, A., Hanrahan, J.P., Jong, W.H., Dziubałtowska, E., Stepnik, M., Rydzynski, K., McKerr, G., Lynch, I., Dawson, K.A., and Howard, C.V. (2008). Reproducible comet assay of amorphous silica nanoparticles detects no genotoxicity. Nano Letters, 8(9), 3069-3074.
  • [120] Saygılı, Y., Yüzbaşıoğlu, D. ve Ünal, F. (2021). Metal oksit nanopartiküllerin genotoksik etkileri. International Journal of Advances in Engineering and Pure Sciences, 33(3), 429-443.
  • [121] Evans, S.J., Clift, M.J., Singh, N., Wills, J.W., Hondow, N., Wilkinson, T.S., Burgum, M.J., Brown, A.P., Jenkins, G.J., and Doak, S.H. (2019). In vitro detection of in vitro secondary mechanisms of genotoxicity induced by engineered nanomaterials. Particle and Fibre Toxicology, 16(1), 1-14.
  • [122] Magdolenova, Z., Collins, A., Kumar, A., Dhawan, A., Stone, V., and Dusinska, M. (2014). Mechanisms of genotoxicity a review of in vitro and in vivo studies with engineered nanoparticles. Nanotoxicology, 8(3), 233-278.
  • [123] Åkerlund, E., Islam, M.S., McCarrick, S., Moreno, E.A., Karlsson, H.L. (2019). Inflammation and (secondary) genotoxicity of Ni and NiO nanoparticles. Nanotoxicology, 13(8), 1060-1072.
  • [124] Modrzynska, J., Berthing, T., Ravn-Haren, G., Jacobsen, N.R., Weydahl, I., K., Loeschener, K., Mortensen, A., Saber, A. T., Saber, A. T., and Vogel, U. (2018). Primary genotoxicity in the liver following pulmonary exposure to carbon black nanoparticles in mice. Particle and Fibre Toxicology, 15(1), 2.
There are 124 citations in total.

Details

Primary Language Turkish
Journal Section Derlemeler
Authors

Aleyna Halıcı This is me 0000-0002-0423-8441

Açelya Seyrek This is me 0000-0003-0334-5154

Kübra Aykan This is me 0000-0002-9412-8317

Fatma Ünal 0000-0002-7468-6186

Deniz Yüzbaşıoğlu 0000-0003-2756-7712

Publication Date November 1, 2021
Published in Issue Year 2021 Volume: 2 Issue: 2

Cite

APA Halıcı, A., Seyrek, A., Aykan, K., Ünal, F., et al. (2021). Nanopartiküllerin Genotoksik Etkileri. Gazi Üniversitesi Fen Fakültesi Dergisi, 2(2), 19-38. https://doi.org/10.5281/zenodo.5734749
AMA Halıcı A, Seyrek A, Aykan K, Ünal F, Yüzbaşıoğlu D. Nanopartiküllerin Genotoksik Etkileri. GÜFFD. November 2021;2(2):19-38. doi:10.5281/zenodo.5734749
Chicago Halıcı, Aleyna, Açelya Seyrek, Kübra Aykan, Fatma Ünal, and Deniz Yüzbaşıoğlu. “Nanopartiküllerin Genotoksik Etkileri”. Gazi Üniversitesi Fen Fakültesi Dergisi 2, no. 2 (November 2021): 19-38. https://doi.org/10.5281/zenodo.5734749.
EndNote Halıcı A, Seyrek A, Aykan K, Ünal F, Yüzbaşıoğlu D (November 1, 2021) Nanopartiküllerin Genotoksik Etkileri. Gazi Üniversitesi Fen Fakültesi Dergisi 2 2 19–38.
IEEE A. Halıcı, A. Seyrek, K. Aykan, F. Ünal, and D. Yüzbaşıoğlu, “Nanopartiküllerin Genotoksik Etkileri”, GÜFFD, vol. 2, no. 2, pp. 19–38, 2021, doi: 10.5281/zenodo.5734749.
ISNAD Halıcı, Aleyna et al. “Nanopartiküllerin Genotoksik Etkileri”. Gazi Üniversitesi Fen Fakültesi Dergisi 2/2 (November 2021), 19-38. https://doi.org/10.5281/zenodo.5734749.
JAMA Halıcı A, Seyrek A, Aykan K, Ünal F, Yüzbaşıoğlu D. Nanopartiküllerin Genotoksik Etkileri. GÜFFD. 2021;2:19–38.
MLA Halıcı, Aleyna et al. “Nanopartiküllerin Genotoksik Etkileri”. Gazi Üniversitesi Fen Fakültesi Dergisi, vol. 2, no. 2, 2021, pp. 19-38, doi:10.5281/zenodo.5734749.
Vancouver Halıcı A, Seyrek A, Aykan K, Ünal F, Yüzbaşıoğlu D. Nanopartiküllerin Genotoksik Etkileri. GÜFFD. 2021;2(2):19-38.