Research Article
BibTex RIS Cite

Methidathion İnsektisit/Akarisitinin Sitotoksik ve Genotoksik Potansiyelinin Allium Testi ile İncelenmesi

Year 2020, Volume: 1 Issue: 1-2, 1 - 12, 30.12.2020
https://doi.org/10.5281/zenodo.4317924

Abstract

Organik fosforlu pestisitlerden olan Methidathion (Supracide 40 EC, MET), meyve ağaçlarında, sebzelerde,
tütünde, yoncada, ayçiçeğinde, seralarda ve gül bahçelerinde çeşitli böcek ve akarlara karşı
kullanılmaktadır. Bu araştırmada, Allium testi kullanılarak, methidathionun Allium cepa kök ucu
hücrelerindeki sitotoksik ve genotoksik etkileri incelenmiştir. Kök büyüme inhibisyon testi ile, etkili
konsantrasyon (EC50) değeri 30 mg/L olarak tespit edildikten sonra, Allium cepa kök uçları, MET’un dört
farklı konsantrasyonu (7,5, 15, 30 ve 45 mg/L) ile 12, 24 ve 48 saat muamele edilmiştir. MET, mitotik indeksi
(MI), tüm konsantrasyonlarda ve uygulama sürelerinde, kontrole kıyasla anlamlı şekilde düşürmüştür. Diğer
yandan MET, kromozomal anormallikleri, kontrole kıyasla anlamlı düzeyde artırmıştır. En yaygın görülen
anormallikler kroımozom yapışıklığı (%47,50) ve C-mitoz (%44,24)’dur. Bunları sırasıyla fragment (%2,75),
köprü (%2,55), geri kalma (%1,63) ve çok kutupluluk (%1,33) takip etmiştir. Çalışmada ayrıca, ön işleme
tabi tutulmuş kök uçlarında kromozom ve kromatid kırıkları, fragmentler ve poliploidi tespit edilmiştir. Bu
çalışmadan elde edilen sonuçlar, MET’un Allium cepa'da belirgin şekilde sitotoksik ve genotoksik olduğunu
göstermiştir. Ayrıca, Allium testinin, MET’un toksik etkilerini belirlemede çok hassas ve etkili bir test
olduğunu doğrulamıştır.

References

  • [1] UN. 2015. United Nations, Department of Economic and Social Affairs, Population Division (2015). World Population Prospects: The 2015 Revision, Key Findings and Advance Tables. Working Paper No. ESA/P/WP.241. United Nations New York, 2015.
  • [2] Carvalho, F. P. (2017). Pesticides, environment, and food safety. Food and Energy Security, 6(2), 48-60.
  • [3] İnternet 1: FAO. 2017. http://www.fao.org/faostat/en/#home (Son Erişim Tarihi: 02. 07. 2020).
  • [4] İnternet 2: FAO. 2020. http://www.fao.org/faostat/en/#home (Son Erişim Tarihi: 02. 07. 2020).
  • [5] Yüzbaşıoğlu, D., Ünal, F. and Sancak C. (2009). Genotoxic effects of herbicide Illoxan (Diclofop-Methyl) on Allium cepa L. Turkish Journal of Biology, 33, 283-290.
  • [6] Mostafalou, S. and Abdollahi, M. (2017). Pesticides: an update of human exposure and toxicity. Archives of Toxicology, 91(2), 549-599.
  • [7] World Health Organization. (2020). The WHO recommended classification of pesticides by hazard and guidelines to classification 2019. World Health Organization.
  • [8] Ünal, G. ve Gürkan, M. O. (2001). İnsektisitler, Kimyasal Yapıları, Toksikolojileri ve Ekotoksikolojileri. Ankara Üniversitesi Ziraat Fakültesi Bitki Koruma Bölümü, Ankara, 159.
  • [9] Singh, K. D., Labala, R. K., Devi, T. B., Singh, N. I., Chanu, H. D., Sougrakpam, S., and Rajashekar, Y. (2017). Biochemical efficacy, molecular docking and inhibitory effect of 2, 3-dimethylmaleic anhydride on insect acetylcholinesterase. Scientific Reports, 7(1), 1-11.
  • [10] Bedford, C. T. and Robinson, J. (1972). The alkylating properties of organophosphates. Xenobiotica, 2(4), 307- 337.
  • [11] Wooder, M. F. and Wright, A. S. (1981). Alkylation of DNA by organophosphorus pesticides. Acta Pharmacologica et Toxicologica, 49, 51-55.
  • [12] Timoroğlu, İ., Yüzbaşıoğlu, D., Ünal, F., Yılmaz S., Aksoy H., and Çelik M. (2014). Assessment of genotoxic effects of organophosphorus insecticides phorate and trichlorfon in human lymphocytes. Environmental Toxicology, 29, 577-587.
  • [13] Ezzi, L., Salah, I. B., Haouas, Z., Sakly, A., Grissa, I., Chakroun, S., and Cheikh, H. B. (2016). Histopathological and genotoxic effects of chlorpyrifos in rats. Environmental Science and Pollution Research, 23(5), 4859-4867.
  • [14] Cortés-Eslava, J., Gómez-Arroyo, S., Risueño, M. C., and Testillano, P. S. (2018). The effects of organophosphorus insecticides and heavy metals on DNA damage and programmed cell death in two plant models. Environmental Pollution, 240, 77-86.
  • [15] Yahia, D. and Ali, M. F. (2019). Cytogenetic and genotoxic effects of penconazole and chlorpyrifos pesticides in bone marrow of rats. Journal of Advanced Veterinary Research, 9(2), 29-38.
  • [16]İnternet:https://www.tarimorman.gov.tr/Konular/Bitki-Sagligi-Hizmetleri/Bitki-Koruma-Urunleri-VeMakinalari/Bitki-Koruma-Urunleri (Yasaklanan Bitki Koruma Ürünleri Aktif Madde Listesi) (Son Erişim Tarihi: 19.10.2020).
  • [17] Ukai, S. and Kakuta, N. (1992). Standard Methods of Chemical Analysis in Poisoning With Commentary. Pharmaceutical Society of Japan, 4th ed. Nanzandou Co., Tokyo.
  • [18] Stivaktakis, P. D., Giannakopoulos, E., Vlastos, D., and Matthopoulos, D. P. (2017). Determination of genotoxic effects of methidathion alkaline hydrolysis in human lymphocytes using the micronucleus assay and square-wave voltammetry. Bioelectrochemistry, 113, 9-14.
  • [19] Lodovici, M., Casalini, C., Briani, C., and Dolara, P. (1997). Oxidative liver DNA damage in rats treated with pesticide mixtures. Toxicology, 117, 55-60.
  • [20] Kevekordes, S., Gebel, T., Pav K., Edenharder, R., and Dunkelberg, H. (1996). Genotoxicity of selected pesticides in the mouse bone-marrow micronucleus test and in sister-chromatid exchange test with human lymphocytes in vitro. Toxicology Letters, 89, 35-42.
  • [21] Karabulut A. K. and Yeşilada E. (2014). Genotoxicity testing of tributyltin and methidathion in Drosophila melanogaster using the wing somatic mutation and recombination test. Fresenius Environmental Bulletin, 23, 3475- 3480.
  • [22] Alshehri, M. A. (2014). Cytogenetic effects of methidathion pesticide on rat bone marrow cells. Environmental Research Journal, 8(2), 48-54.
  • [23] Ünal, F., Demir, H., and Yüzbaşioğlu, D. (2017). Genotoxic effects of environmental contaminant methidathion and triadimenol pesticides. The 3rd International Symposium on EuroAsian Biodiversity 05-08 July 2017, MinskBelarus.
  • [24] Bonciu, E., Firbas, P., Fontanetti, C. S., Wusheng, J., Karaismailoğlu, M. C., Liu, D., and Schiff, S. (2018). An evaluation for the standardization of the Allium cepa test as cytotoxicity and genotoxicity assay. Caryologia, 71(3), 191-209.
  • [25] Ma, T. H. (1999). The international program on plant Bioassays and the report of the follow-up study after the hands-on workshop in China. Mutation Research, 426, 103-106.
  • [26] Ma, T. H., Cabrera, G. L., and Owens E. (2005). Genotoxic agents detected by plant bioassays. Reviews on Environmental Health, 20(1), 1-14.
  • [27] Palmieri, M. J., Andrade-Vieira, L. F., Trento, M. V. C., Eleutério, M. W. F., Luber, J., Davide, L. C., et al. (2016). Cytogenotoxic effects of spent pot liner (SPL) and its main components on human leukocytes and meristematic cells of Allium cepa. Water Air and Soil Pollution, 227,156.
  • [28] Vicentini, V. E. P., Camparoto, M. L., Teixeira, R. O., and Mantovani, M. S. (2001). Averrhoa carambola L., Syzygium cumini (L.) Skeels and Cissus sicyoides L.: medicinal herbal tea effects on vegetal and test systems. Acta Scientiarum, 23(2), 593-598.
  • [29] Teixeira, R. O., Camparoto, M. L., Mantovani, M. S., and Vicentini, V. E. P. (2003). Assesment of two medicinal plants Psidium guajava L. and Achillea millefolium L., in vitro and in vivo assays. Genetics and Molecular Biology, 26(4), 551-555.
  • [30] Tedesco, S. B. and Laughinghouse, I. V. H. D. (2012). Bioindicator of genotoxicity: The Allium cepa test. In: Srivastava J, editor. Environmental Contamination. Croatia: InTech, 137-156.
  • [31] Özkul M., Özel Ç.A., Yüzbaşıoğlu D., and Ünal F. (2016). Does 2,4-dichlorophenoxyacetic acid (2,4-D) induce genotoxic effects in tissue cultured Allium roots? Cytotechnology, 68, 2395-2405.
  • [32] Doroftei, E., Antofie, M. M., Sava, D., and Arcus, M. (2010). Cytogenetic effects induced by Manganese and Lead micro-elements on germination at Allium cepa. Botanica Serbica, 34(2), 115-121.
  • [33] Bonciu, E. (2012). Cytological effects induced by Agil herbicide to onion. Journal of Horticulture, Forestry and Biotechnology, 16(1), 68-72.
  • [34] Khanna, N. and Sharma, S. (2013). Allium cepa root chromosomal aberration assay: A review. Indian Journal of Pharmaceutical Sciences, 1(3), 2320-9267.
  • [35] Sarac, I., Bonciu, E., Butnariu, M., Petrescu, and I., Madosa, E. (2019). Evaluation of the cytotoxic and genotoxic potential of some heavy metals by use of Allium test. Caryologia, 72(2), 37-43.
  • [36] Leme, D. M. and Marin-Morales, M. A. (2009). Allium cepa test in environmental monitoring: A review on its application. Mutation Research/Reviews in Mutation Research, 682(1),71-81.
  • [37] İnternet: https://www.sigmaaldrich.com/catalog/product/sial/36158?lang=en&region=TR&cm_sp=Insite-_- caSrpResults_srpRecs_srpModel_950-37-8-_-srpRecs3-1 (Son Erişim Tarihi: 21.11.2020).
  • [38] Fiskesjö, G. (1985). The Allium test as a standard in environmental monitoring. Hereditas, 102(1), 99-112.
  • [39] Rank, J. and Nielsen, M.H. (1994). Evaluation of Allium anaphase-telophase test in relation to genotoxicity screening of industrial wastewater. Mutation Research, 312: 17-24.
  • [40] Rank, J. and Nielsen, M.H. (1998). Genotoxicity testing of wastewater sludge using the Allium cepa anaphasetelophase chromosome aberration assay. Mutation Research, 418, 113-119.
  • [41] El-Ghamery, A.A., El-Nahas, A.I., and Mansour, M.M. (2000). The action of atrazine herbicide as an inhibitor of cell division on chromosomes and nucleic acids content in root meristems of Allium cepa and Vicia faba. Cytologia, 65, 277-287.
  • [42] Rank, J., Lopez, L.C., Nielsen, M.H., and Moretton, J. (2002). Genotoxicity of maleic hydrazide, acridine and DEHP in Allium cepa root cells performed by two different laboratories. Hereditas, 136, 13-18.
  • [43] Fiskesjö, G. (1988). The Allium test-an alternative in environmental studies: The relative toxicity of metal ions. Mutation Research, 197, 243-260.
  • [44] Kanaya, N., Gill, B.S., Grover, I.S., Murin, A., Osiecka, R., Sandhu, S.S., and Andersson, H.C. (1994). Vicia faba chromosomal aberration assay. Mutation Research, 310, 231-247.
  • [45] Barr, D. B., Allen R., Olsson A. O., Bravo R., Caltabiano, L. M., Montesano, A., Nguyen, J., Udunka, S., Walden, D., Walker, R.D., Weerasekera, G., Whitehead, R. D. Jr, Schober, S. E., and Needham, L. L. (2005). Concentrations of selective metabolites of organophosphorus pesticides in the United States population. Environmental Research, 99(3), 314-326.
  • [46] Barr, D. B., Olsson, A. O., Wong, L. Y., Udunka, S., Baker, S. E., Whitehead, R. D., Magsumbol, M. S., Williams, B. L., and Needham, L. L. (2010). Urinary concentrations of metabolites of pyrethroid insecticides in the general U.S. population: National Health and Nutrition Examination Survey 1999-2002. Environmental Health Perspectives, 118, 742-748.
  • [47] Lee, W. J., Sandler, D. P., Blair, A., Samanic, C., Cross, A. J., and Alavanja, M. C. (2007). Pesticide use and colorectal cancer risk in the Agricultural Health Study. The International Journal of Cancer, 121(2), 339-346.
  • [48] Thongprakaisang, S., Thiantanawat, A., Rangkadilok, N., Suriyo, T., and Satayavivad, J. (2013). Glyphosate induces human breast cancer cells growth via estrogen receptors. Food and Chemical Toxicology, 59, 129-136.
  • [49] Luo, D., Zhou, T., Tao, Y., Feng, Y., Shen, X., and Mei, S. (2016). Exposure to organochlorine pesticides and non-Hodgkin lymphoma: a meta-analysis of observational studies. Scientific Reports, 6, 25768.
  • [50] Mostafalou, S. and Abdollahi, M. (2012) Current concerns on genotoxicity of pesticides. International Journal of Pharmacology, 8, 473-474.
  • [51] Shadnia, S., Azizi, E., Hosseini, R., Khoei, S., Fouladdel, S., Pajoumand, A., and Abdollahi, M. (2005). Evaluation of oxidative stress and genotoxicity in organophosphorus insecticide formulators. Human & Experimental Toxicology, 24(9), 439-445.
  • [52] Sabarwal, A., Kumar, K., and Singh, R. P. (2018). Hazardous effects of chemical pesticides on human healthCancer and other associated disorders. Environmental Toxicology and Pharmacology, 63, 103-114.
  • [53] Yüzbaşıoğlu, D. (2003). Cytogenetic effects of fungicide afugan on the meristematic cells of Allium cepa L. Cytologia, 68(3), 237-243.
  • [54] Yüzbaşıoğlu, D., Çelik, M., Yılmaz, S., Ünal, F., and Aksoy, H. (2006). Clastogenicity of the fungicide afugan in cultured human lymphocytes. Mutation Research, 604, 53-59.
  • [55] Sinha, V. S. and Kumar, N. (2014). Assessment of mito-inhibitory and genotoxic effects of two organophosphate pesticides in the root tip cells of Allium cepa L. Annals of Plant Sciences, 3, 699-703.
  • [56] Pandır, D. (2018). Assesment of the genotoxic effect of the Diazinon on root cells of Allium cepa (L.). Brazilian Archives of Biology and Technology, 61.
  • [57] Sheikh, N., Patowary, H., and Laskar, R. A. (2020). Screening of cytotoxic and genotoxic potency of two pesticides (malathion and cypermethrin) on Allium cepa L. Molecular & Cellular Toxıcology, 16, 291–299.
  • [58] Sudhakar, R., Nınge Gowda, K. N., and Venu, G., (2001). Mitotic abnormalities induced by silk dyeing industry effluents in the cell of Allium cepa. Cytologia, 66, 235-239.
  • [59] Jain, A.K. and Andsorbhoy, R.K. (1988). Cytogenetical studies on the effects of some chlorinated pesticides III. Concluding Remarks. Cytologia, 53, 427-436.
  • [60] Hidalgo, A., Gonzales-Reyes, J.A., Navas, P., and Garcia-Herdugo, G. (1989). Abnormal mitosis and growth inhibition in Allium cepa roots induced by propham and chlorpropham. Cytobios, 57(228), 7-14.
  • [61] Chauhan, L. K. S., Dikshith, T. S. S., and Sundararaman, V., (1986). Effects of deltametrin on plant cells I. Cytological effects on the root meristems of Allium cepa. Mutation Research, 171, 25-30.
  • [62] Adesuyi, A. A., Njoku, K. L., Ogunyebi, A. L., Dada, E. O., Adedokun, A. H., Jolaoso, A. O., and Akinola, M. O. (2018). Evaluation of the cytogenotoxic effects of emulsifiable concentrate form of amitraz pesticide on Allium cepa L. Journal of Applied Sciences and Environmental Management, 22(11), 1841-1847.
  • [63] Klasterska, I., Natarajan, A. T., and Ramel, C. (1976). An interpretation of the orgin of subchromatid aberrations of chromosome stickiness as a category of chromatid aberrations. Hereditas, 83, 153-162.
  • [64] Patil, B.C. and Bhat, G.I. (1992). A comparative study of MH and EMS in the induction of chromosomal aberrations on lateral root meristem in Clitoria ternata L. Cytologia, 57, 259-264.
  • [65] Mc-Gill, M., Pathak, S., and Hsu, T.C., (1974). Effects of ethidium bromide on mitosis and chromosomes: A possible material basis for chromosomes stickiness. Chromosoma, 47, 157-167.
  • [66] Datta, S., Singh, J., Singh, J., Singh, S., Singh S. (2018). Assessment of genotoxic effects of pesticide and vermicompost treated soil with Allium cepa test. Sustainable Environment Research, 28(4), 171-178.
  • [67] Panda, B.B. and Sahu, U.K. (1985). Induction of abnormal spindle function and cytokinesis inhibition in mitotic cells of Allium cepa by the organophosphorus insecticide fensulfotion. Cytobios, 42, 147-155.
  • [68] Ahmad, S. and Yasmin, R., (1992). Effects of methyl paration and tri-miltox on the mitosis of Allium cepa. Cytologia, 57, 155-160.
  • [69] Özkara, A., Akyıl, D., Eren, Y., and Erdoğmuş, S. F. (2015). Potential cytotoxic effect of Anilofos by using Allium cepa assay. Cytotechnology, 67(5), 783-791.
  • [70] Grant, W.F. (1978). Chromosomal aberrations in plants as a monitoring system. Environmental Health Perspectives, 27, 37-43.
  • [71] Kihlman, B.A. (1966). Action of chemicals on dividing cells. Prentice-Hall Inc, Englewood Cliffs, New Jersey.
Year 2020, Volume: 1 Issue: 1-2, 1 - 12, 30.12.2020
https://doi.org/10.5281/zenodo.4317924

Abstract

References

  • [1] UN. 2015. United Nations, Department of Economic and Social Affairs, Population Division (2015). World Population Prospects: The 2015 Revision, Key Findings and Advance Tables. Working Paper No. ESA/P/WP.241. United Nations New York, 2015.
  • [2] Carvalho, F. P. (2017). Pesticides, environment, and food safety. Food and Energy Security, 6(2), 48-60.
  • [3] İnternet 1: FAO. 2017. http://www.fao.org/faostat/en/#home (Son Erişim Tarihi: 02. 07. 2020).
  • [4] İnternet 2: FAO. 2020. http://www.fao.org/faostat/en/#home (Son Erişim Tarihi: 02. 07. 2020).
  • [5] Yüzbaşıoğlu, D., Ünal, F. and Sancak C. (2009). Genotoxic effects of herbicide Illoxan (Diclofop-Methyl) on Allium cepa L. Turkish Journal of Biology, 33, 283-290.
  • [6] Mostafalou, S. and Abdollahi, M. (2017). Pesticides: an update of human exposure and toxicity. Archives of Toxicology, 91(2), 549-599.
  • [7] World Health Organization. (2020). The WHO recommended classification of pesticides by hazard and guidelines to classification 2019. World Health Organization.
  • [8] Ünal, G. ve Gürkan, M. O. (2001). İnsektisitler, Kimyasal Yapıları, Toksikolojileri ve Ekotoksikolojileri. Ankara Üniversitesi Ziraat Fakültesi Bitki Koruma Bölümü, Ankara, 159.
  • [9] Singh, K. D., Labala, R. K., Devi, T. B., Singh, N. I., Chanu, H. D., Sougrakpam, S., and Rajashekar, Y. (2017). Biochemical efficacy, molecular docking and inhibitory effect of 2, 3-dimethylmaleic anhydride on insect acetylcholinesterase. Scientific Reports, 7(1), 1-11.
  • [10] Bedford, C. T. and Robinson, J. (1972). The alkylating properties of organophosphates. Xenobiotica, 2(4), 307- 337.
  • [11] Wooder, M. F. and Wright, A. S. (1981). Alkylation of DNA by organophosphorus pesticides. Acta Pharmacologica et Toxicologica, 49, 51-55.
  • [12] Timoroğlu, İ., Yüzbaşıoğlu, D., Ünal, F., Yılmaz S., Aksoy H., and Çelik M. (2014). Assessment of genotoxic effects of organophosphorus insecticides phorate and trichlorfon in human lymphocytes. Environmental Toxicology, 29, 577-587.
  • [13] Ezzi, L., Salah, I. B., Haouas, Z., Sakly, A., Grissa, I., Chakroun, S., and Cheikh, H. B. (2016). Histopathological and genotoxic effects of chlorpyrifos in rats. Environmental Science and Pollution Research, 23(5), 4859-4867.
  • [14] Cortés-Eslava, J., Gómez-Arroyo, S., Risueño, M. C., and Testillano, P. S. (2018). The effects of organophosphorus insecticides and heavy metals on DNA damage and programmed cell death in two plant models. Environmental Pollution, 240, 77-86.
  • [15] Yahia, D. and Ali, M. F. (2019). Cytogenetic and genotoxic effects of penconazole and chlorpyrifos pesticides in bone marrow of rats. Journal of Advanced Veterinary Research, 9(2), 29-38.
  • [16]İnternet:https://www.tarimorman.gov.tr/Konular/Bitki-Sagligi-Hizmetleri/Bitki-Koruma-Urunleri-VeMakinalari/Bitki-Koruma-Urunleri (Yasaklanan Bitki Koruma Ürünleri Aktif Madde Listesi) (Son Erişim Tarihi: 19.10.2020).
  • [17] Ukai, S. and Kakuta, N. (1992). Standard Methods of Chemical Analysis in Poisoning With Commentary. Pharmaceutical Society of Japan, 4th ed. Nanzandou Co., Tokyo.
  • [18] Stivaktakis, P. D., Giannakopoulos, E., Vlastos, D., and Matthopoulos, D. P. (2017). Determination of genotoxic effects of methidathion alkaline hydrolysis in human lymphocytes using the micronucleus assay and square-wave voltammetry. Bioelectrochemistry, 113, 9-14.
  • [19] Lodovici, M., Casalini, C., Briani, C., and Dolara, P. (1997). Oxidative liver DNA damage in rats treated with pesticide mixtures. Toxicology, 117, 55-60.
  • [20] Kevekordes, S., Gebel, T., Pav K., Edenharder, R., and Dunkelberg, H. (1996). Genotoxicity of selected pesticides in the mouse bone-marrow micronucleus test and in sister-chromatid exchange test with human lymphocytes in vitro. Toxicology Letters, 89, 35-42.
  • [21] Karabulut A. K. and Yeşilada E. (2014). Genotoxicity testing of tributyltin and methidathion in Drosophila melanogaster using the wing somatic mutation and recombination test. Fresenius Environmental Bulletin, 23, 3475- 3480.
  • [22] Alshehri, M. A. (2014). Cytogenetic effects of methidathion pesticide on rat bone marrow cells. Environmental Research Journal, 8(2), 48-54.
  • [23] Ünal, F., Demir, H., and Yüzbaşioğlu, D. (2017). Genotoxic effects of environmental contaminant methidathion and triadimenol pesticides. The 3rd International Symposium on EuroAsian Biodiversity 05-08 July 2017, MinskBelarus.
  • [24] Bonciu, E., Firbas, P., Fontanetti, C. S., Wusheng, J., Karaismailoğlu, M. C., Liu, D., and Schiff, S. (2018). An evaluation for the standardization of the Allium cepa test as cytotoxicity and genotoxicity assay. Caryologia, 71(3), 191-209.
  • [25] Ma, T. H. (1999). The international program on plant Bioassays and the report of the follow-up study after the hands-on workshop in China. Mutation Research, 426, 103-106.
  • [26] Ma, T. H., Cabrera, G. L., and Owens E. (2005). Genotoxic agents detected by plant bioassays. Reviews on Environmental Health, 20(1), 1-14.
  • [27] Palmieri, M. J., Andrade-Vieira, L. F., Trento, M. V. C., Eleutério, M. W. F., Luber, J., Davide, L. C., et al. (2016). Cytogenotoxic effects of spent pot liner (SPL) and its main components on human leukocytes and meristematic cells of Allium cepa. Water Air and Soil Pollution, 227,156.
  • [28] Vicentini, V. E. P., Camparoto, M. L., Teixeira, R. O., and Mantovani, M. S. (2001). Averrhoa carambola L., Syzygium cumini (L.) Skeels and Cissus sicyoides L.: medicinal herbal tea effects on vegetal and test systems. Acta Scientiarum, 23(2), 593-598.
  • [29] Teixeira, R. O., Camparoto, M. L., Mantovani, M. S., and Vicentini, V. E. P. (2003). Assesment of two medicinal plants Psidium guajava L. and Achillea millefolium L., in vitro and in vivo assays. Genetics and Molecular Biology, 26(4), 551-555.
  • [30] Tedesco, S. B. and Laughinghouse, I. V. H. D. (2012). Bioindicator of genotoxicity: The Allium cepa test. In: Srivastava J, editor. Environmental Contamination. Croatia: InTech, 137-156.
  • [31] Özkul M., Özel Ç.A., Yüzbaşıoğlu D., and Ünal F. (2016). Does 2,4-dichlorophenoxyacetic acid (2,4-D) induce genotoxic effects in tissue cultured Allium roots? Cytotechnology, 68, 2395-2405.
  • [32] Doroftei, E., Antofie, M. M., Sava, D., and Arcus, M. (2010). Cytogenetic effects induced by Manganese and Lead micro-elements on germination at Allium cepa. Botanica Serbica, 34(2), 115-121.
  • [33] Bonciu, E. (2012). Cytological effects induced by Agil herbicide to onion. Journal of Horticulture, Forestry and Biotechnology, 16(1), 68-72.
  • [34] Khanna, N. and Sharma, S. (2013). Allium cepa root chromosomal aberration assay: A review. Indian Journal of Pharmaceutical Sciences, 1(3), 2320-9267.
  • [35] Sarac, I., Bonciu, E., Butnariu, M., Petrescu, and I., Madosa, E. (2019). Evaluation of the cytotoxic and genotoxic potential of some heavy metals by use of Allium test. Caryologia, 72(2), 37-43.
  • [36] Leme, D. M. and Marin-Morales, M. A. (2009). Allium cepa test in environmental monitoring: A review on its application. Mutation Research/Reviews in Mutation Research, 682(1),71-81.
  • [37] İnternet: https://www.sigmaaldrich.com/catalog/product/sial/36158?lang=en&region=TR&cm_sp=Insite-_- caSrpResults_srpRecs_srpModel_950-37-8-_-srpRecs3-1 (Son Erişim Tarihi: 21.11.2020).
  • [38] Fiskesjö, G. (1985). The Allium test as a standard in environmental monitoring. Hereditas, 102(1), 99-112.
  • [39] Rank, J. and Nielsen, M.H. (1994). Evaluation of Allium anaphase-telophase test in relation to genotoxicity screening of industrial wastewater. Mutation Research, 312: 17-24.
  • [40] Rank, J. and Nielsen, M.H. (1998). Genotoxicity testing of wastewater sludge using the Allium cepa anaphasetelophase chromosome aberration assay. Mutation Research, 418, 113-119.
  • [41] El-Ghamery, A.A., El-Nahas, A.I., and Mansour, M.M. (2000). The action of atrazine herbicide as an inhibitor of cell division on chromosomes and nucleic acids content in root meristems of Allium cepa and Vicia faba. Cytologia, 65, 277-287.
  • [42] Rank, J., Lopez, L.C., Nielsen, M.H., and Moretton, J. (2002). Genotoxicity of maleic hydrazide, acridine and DEHP in Allium cepa root cells performed by two different laboratories. Hereditas, 136, 13-18.
  • [43] Fiskesjö, G. (1988). The Allium test-an alternative in environmental studies: The relative toxicity of metal ions. Mutation Research, 197, 243-260.
  • [44] Kanaya, N., Gill, B.S., Grover, I.S., Murin, A., Osiecka, R., Sandhu, S.S., and Andersson, H.C. (1994). Vicia faba chromosomal aberration assay. Mutation Research, 310, 231-247.
  • [45] Barr, D. B., Allen R., Olsson A. O., Bravo R., Caltabiano, L. M., Montesano, A., Nguyen, J., Udunka, S., Walden, D., Walker, R.D., Weerasekera, G., Whitehead, R. D. Jr, Schober, S. E., and Needham, L. L. (2005). Concentrations of selective metabolites of organophosphorus pesticides in the United States population. Environmental Research, 99(3), 314-326.
  • [46] Barr, D. B., Olsson, A. O., Wong, L. Y., Udunka, S., Baker, S. E., Whitehead, R. D., Magsumbol, M. S., Williams, B. L., and Needham, L. L. (2010). Urinary concentrations of metabolites of pyrethroid insecticides in the general U.S. population: National Health and Nutrition Examination Survey 1999-2002. Environmental Health Perspectives, 118, 742-748.
  • [47] Lee, W. J., Sandler, D. P., Blair, A., Samanic, C., Cross, A. J., and Alavanja, M. C. (2007). Pesticide use and colorectal cancer risk in the Agricultural Health Study. The International Journal of Cancer, 121(2), 339-346.
  • [48] Thongprakaisang, S., Thiantanawat, A., Rangkadilok, N., Suriyo, T., and Satayavivad, J. (2013). Glyphosate induces human breast cancer cells growth via estrogen receptors. Food and Chemical Toxicology, 59, 129-136.
  • [49] Luo, D., Zhou, T., Tao, Y., Feng, Y., Shen, X., and Mei, S. (2016). Exposure to organochlorine pesticides and non-Hodgkin lymphoma: a meta-analysis of observational studies. Scientific Reports, 6, 25768.
  • [50] Mostafalou, S. and Abdollahi, M. (2012) Current concerns on genotoxicity of pesticides. International Journal of Pharmacology, 8, 473-474.
  • [51] Shadnia, S., Azizi, E., Hosseini, R., Khoei, S., Fouladdel, S., Pajoumand, A., and Abdollahi, M. (2005). Evaluation of oxidative stress and genotoxicity in organophosphorus insecticide formulators. Human & Experimental Toxicology, 24(9), 439-445.
  • [52] Sabarwal, A., Kumar, K., and Singh, R. P. (2018). Hazardous effects of chemical pesticides on human healthCancer and other associated disorders. Environmental Toxicology and Pharmacology, 63, 103-114.
  • [53] Yüzbaşıoğlu, D. (2003). Cytogenetic effects of fungicide afugan on the meristematic cells of Allium cepa L. Cytologia, 68(3), 237-243.
  • [54] Yüzbaşıoğlu, D., Çelik, M., Yılmaz, S., Ünal, F., and Aksoy, H. (2006). Clastogenicity of the fungicide afugan in cultured human lymphocytes. Mutation Research, 604, 53-59.
  • [55] Sinha, V. S. and Kumar, N. (2014). Assessment of mito-inhibitory and genotoxic effects of two organophosphate pesticides in the root tip cells of Allium cepa L. Annals of Plant Sciences, 3, 699-703.
  • [56] Pandır, D. (2018). Assesment of the genotoxic effect of the Diazinon on root cells of Allium cepa (L.). Brazilian Archives of Biology and Technology, 61.
  • [57] Sheikh, N., Patowary, H., and Laskar, R. A. (2020). Screening of cytotoxic and genotoxic potency of two pesticides (malathion and cypermethrin) on Allium cepa L. Molecular & Cellular Toxıcology, 16, 291–299.
  • [58] Sudhakar, R., Nınge Gowda, K. N., and Venu, G., (2001). Mitotic abnormalities induced by silk dyeing industry effluents in the cell of Allium cepa. Cytologia, 66, 235-239.
  • [59] Jain, A.K. and Andsorbhoy, R.K. (1988). Cytogenetical studies on the effects of some chlorinated pesticides III. Concluding Remarks. Cytologia, 53, 427-436.
  • [60] Hidalgo, A., Gonzales-Reyes, J.A., Navas, P., and Garcia-Herdugo, G. (1989). Abnormal mitosis and growth inhibition in Allium cepa roots induced by propham and chlorpropham. Cytobios, 57(228), 7-14.
  • [61] Chauhan, L. K. S., Dikshith, T. S. S., and Sundararaman, V., (1986). Effects of deltametrin on plant cells I. Cytological effects on the root meristems of Allium cepa. Mutation Research, 171, 25-30.
  • [62] Adesuyi, A. A., Njoku, K. L., Ogunyebi, A. L., Dada, E. O., Adedokun, A. H., Jolaoso, A. O., and Akinola, M. O. (2018). Evaluation of the cytogenotoxic effects of emulsifiable concentrate form of amitraz pesticide on Allium cepa L. Journal of Applied Sciences and Environmental Management, 22(11), 1841-1847.
  • [63] Klasterska, I., Natarajan, A. T., and Ramel, C. (1976). An interpretation of the orgin of subchromatid aberrations of chromosome stickiness as a category of chromatid aberrations. Hereditas, 83, 153-162.
  • [64] Patil, B.C. and Bhat, G.I. (1992). A comparative study of MH and EMS in the induction of chromosomal aberrations on lateral root meristem in Clitoria ternata L. Cytologia, 57, 259-264.
  • [65] Mc-Gill, M., Pathak, S., and Hsu, T.C., (1974). Effects of ethidium bromide on mitosis and chromosomes: A possible material basis for chromosomes stickiness. Chromosoma, 47, 157-167.
  • [66] Datta, S., Singh, J., Singh, J., Singh, S., Singh S. (2018). Assessment of genotoxic effects of pesticide and vermicompost treated soil with Allium cepa test. Sustainable Environment Research, 28(4), 171-178.
  • [67] Panda, B.B. and Sahu, U.K. (1985). Induction of abnormal spindle function and cytokinesis inhibition in mitotic cells of Allium cepa by the organophosphorus insecticide fensulfotion. Cytobios, 42, 147-155.
  • [68] Ahmad, S. and Yasmin, R., (1992). Effects of methyl paration and tri-miltox on the mitosis of Allium cepa. Cytologia, 57, 155-160.
  • [69] Özkara, A., Akyıl, D., Eren, Y., and Erdoğmuş, S. F. (2015). Potential cytotoxic effect of Anilofos by using Allium cepa assay. Cytotechnology, 67(5), 783-791.
  • [70] Grant, W.F. (1978). Chromosomal aberrations in plants as a monitoring system. Environmental Health Perspectives, 27, 37-43.
  • [71] Kihlman, B.A. (1966). Action of chemicals on dividing cells. Prentice-Hall Inc, Englewood Cliffs, New Jersey.
There are 71 citations in total.

Details

Primary Language Turkish
Journal Section Araştırma Makaleleri
Authors

Fatma Ünal This is me

Nesrin Durdu Helvacı Tülek This is me

Deniz Yüzbaşıoğlu

Mustafa Çelik

Publication Date December 30, 2020
Published in Issue Year 2020 Volume: 1 Issue: 1-2

Cite

APA Ünal, F., Helvacı Tülek, N. D., Yüzbaşıoğlu, D., Çelik, M. (2020). Methidathion İnsektisit/Akarisitinin Sitotoksik ve Genotoksik Potansiyelinin Allium Testi ile İncelenmesi. Gazi Üniversitesi Fen Fakültesi Dergisi, 1(1-2), 1-12. https://doi.org/10.5281/zenodo.4317924
AMA Ünal F, Helvacı Tülek ND, Yüzbaşıoğlu D, Çelik M. Methidathion İnsektisit/Akarisitinin Sitotoksik ve Genotoksik Potansiyelinin Allium Testi ile İncelenmesi. GÜFFD. December 2020;1(1-2):1-12. doi:10.5281/zenodo.4317924
Chicago Ünal, Fatma, Nesrin Durdu Helvacı Tülek, Deniz Yüzbaşıoğlu, and Mustafa Çelik. “Methidathion İnsektisit/Akarisitinin Sitotoksik Ve Genotoksik Potansiyelinin Allium Testi Ile İncelenmesi”. Gazi Üniversitesi Fen Fakültesi Dergisi 1, no. 1-2 (December 2020): 1-12. https://doi.org/10.5281/zenodo.4317924.
EndNote Ünal F, Helvacı Tülek ND, Yüzbaşıoğlu D, Çelik M (December 1, 2020) Methidathion İnsektisit/Akarisitinin Sitotoksik ve Genotoksik Potansiyelinin Allium Testi ile İncelenmesi. Gazi Üniversitesi Fen Fakültesi Dergisi 1 1-2 1–12.
IEEE F. Ünal, N. D. Helvacı Tülek, D. Yüzbaşıoğlu, and M. Çelik, “Methidathion İnsektisit/Akarisitinin Sitotoksik ve Genotoksik Potansiyelinin Allium Testi ile İncelenmesi”, GÜFFD, vol. 1, no. 1-2, pp. 1–12, 2020, doi: 10.5281/zenodo.4317924.
ISNAD Ünal, Fatma et al. “Methidathion İnsektisit/Akarisitinin Sitotoksik Ve Genotoksik Potansiyelinin Allium Testi Ile İncelenmesi”. Gazi Üniversitesi Fen Fakültesi Dergisi 1/1-2 (December 2020), 1-12. https://doi.org/10.5281/zenodo.4317924.
JAMA Ünal F, Helvacı Tülek ND, Yüzbaşıoğlu D, Çelik M. Methidathion İnsektisit/Akarisitinin Sitotoksik ve Genotoksik Potansiyelinin Allium Testi ile İncelenmesi. GÜFFD. 2020;1:1–12.
MLA Ünal, Fatma et al. “Methidathion İnsektisit/Akarisitinin Sitotoksik Ve Genotoksik Potansiyelinin Allium Testi Ile İncelenmesi”. Gazi Üniversitesi Fen Fakültesi Dergisi, vol. 1, no. 1-2, 2020, pp. 1-12, doi:10.5281/zenodo.4317924.
Vancouver Ünal F, Helvacı Tülek ND, Yüzbaşıoğlu D, Çelik M. Methidathion İnsektisit/Akarisitinin Sitotoksik ve Genotoksik Potansiyelinin Allium Testi ile İncelenmesi. GÜFFD. 2020;1(1-2):1-12.