Review
BibTex RIS Cite

SARS-COV-2 VE COVID-19 PATOGENEZİ

Year 2020, , 78 - 87, 06.09.2020

Abstract

Aralık ayı sonlarında Çin’in Wuhan kentinden tüm dünyaya yayılan koronavirüs hastalığı-2019 (COVID-19), 11 Mart 2020’ de Dünya Sağlık Örgütü tarafından pandemi olarak açıklanmıştır. Etkeni SARS-CoV-2, bilinen koronavirüslere benzese de son 20 yıl içerisinde görülen Şiddetli Akut Solunum Sendromu (SARS) ve Orta Doğu Solunum Sendromu (MERS) ile koronavirüslerin hayvandan insana geçişle birlikte ölümcül olabildiği ortaya çıkmıştır. Kuru öksürük, boğaz ağrısı, baş ağrısı, halsizlik ve ateş gibi görece hafif belirtiler ile seyredebileceği gibi özellikle ileri yaş grubu ve komorbid hastalıkları olan vakalarda akut solunum sıkıntısı sendromu (ARDS) ile sonuçlanabilen ağır pnömoni ve ölüme neden olabilmektedir. Üstelik hastalığın her zaman semptom veren bireylerden bulaşmadığı, asemptomatik kişilerin de hastalığın yayılmasında önemli olduğuna dikkat çekilmektedir. COVID-19, enfekte bireyle yakın temas sırasında damlacık yoluyla ve kontamine yüzeylere temas ile kolaylıkla bulaşmakta ve hızla yayılmaktadır. Henüz COVID-19 etkenine karşı kullanılabilecek kanıta dayalı, etkin ve güvenilir, spesifik bir tedavi bulunmamaktadır. Bu noktada SARS-CoV-2 ve COVID-19 enfeksiyonunun gelişiminin aydınlatılması önemlidir. Bu derlemede, COVID-19 hastalığının patogenezine ilişkin bilgiler gözden geçirilmiştir.

References

  • 1. World Health Organization, WHO Director-General’s Remarksat the Media Briefing On2019-nCoV Date: 11.02.2020. Available: https://www.who.int/dg/speeches/ detail/who-director-general-s-remarks-at-the-media-briefing-on-2019-ncov-on-11february-2020).
  • 2. Richman DD, Whitley RJ, Hayden FG. Clinical Virology, 4th ed. Washington: ASM Press; 2016.
  • 3. Chu DKW, Pan Y, Cheng SMS, Hui KPY, Krishnan P, Liu Y et al. Molecular diagnosis of a novel coronavirus (2019-nCoV) causing an outbreak of pneumonia. Clin Chem. 2020; 66(4):549‐555. doi:10.1093/clinchem/hvaa029
  • 4. Chan-Yeung M, Xu RH. SARS: Epidemiology. Respirology. 2003; 8:9–14. doi: 10.1046/j.1440-1843.2003.00518.x.
  • 5. Middle East Respiratory Syndrome Coronavirus. Date:16.02.2020. Available: https://www.who.int/emergencies/mers-cov/en/.
  • 6. Andersen KG, Rambaut A, Lipkin WI, Holmes EC, Garry RF. The proximal origin of SARS-CoV-2. Nat Med. 2020; 26(4):450-452. doi: 10.1038/s41591-020-0820-9.
  • 7. Rothe C, Schunk M, Sothmann P, Bretzel G, Froeschl G, Wallrauch C. et al. Transmission of 2019 nCoV infection from an asymptomatic contact in Germany. N Engl J Med. 2020; 382(10):970-971. doi: 10.1056/NEJMc2001468.
  • 8. Zou L, Ruan F, Huang M, Liang L, Huang H, Hong Z. et al. SARS-CoV-2 viral load in upper respiratory specimens of infected patients. N Engl J Med. 2020; 382(12):1177-1179. doi: 10.1056/NEJMc2001737.
  • 9. Backer JA, Klinkenberg D, Wallinga J. Incubation period of 2019 novel coronavirus (2019-nCoV) infections among travellers from Wuhan, China, 20–28 January 2020. Euro Surveill. 2020; 25(5):2000062. doi: 10.2807/1560-7917.ES.2020.25.5.2000062.
  • 10. Linton NM, Kobayashi T, Yang Y, Hayashi K, Akhmetzhanov AR, Jung SM. et al. Incubation period and other epidemiological characteristics of 2019 novel coronavirus infections with right truncation: a statistical analysis of publicly available case data. J Clin Med. 2020; 9(2):538. doi: 10.3390/jcm9020538.
  • 11. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020; 395(10223):497-506. doi: 10.1016/S0140-6736(20)30183-5.
  • 12. Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y et al. Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus-Infected Pneumonia. N Engl J Med. 2020;382(13):1199‐1207. doi:10.1056/NEJMoa2001316
  • 13. Kampf G, Todt D, Pfaender S, Steinmann E. Persistence of coronaviruses on inanimate surfaces and its inactivation with biocidal agents. J Hosp Infect. 2020; 104(3):246-251. doi: 10.1016/j.jhin.2020.01.022.
  • 14. Cui J, Li F, Shi Z-L. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol 2019; 17(3):181-192. doi: 10.1038/s41579-018-0118-9.
  • 15. Yu P, Zhu J, Zhang Z, Han Y, Huang L. A familial cluster of infection associated with the 2019 novel coronavirus indicating potential person-to-person transmission during the incubation period. J Infect Dis 2020; 221(11):1757-1761. doi: 10.1093/infdis/jiaa077.
  • 16. Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020; 395(10223):507-513. doi: 10.1016/S0140-6736(20)30211-7.
  • 17. Bai Y, Yao L, Wei T, Tian F, Jin D-Y, Chen L et al. Presumed Asymptomatic Carrier Transmission of COVID-19 JAMA. 2020; 323(14):1406‐1407. doi:10.1001/jama.2020.2565
  • 18. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China . JAMA. 2020; 323(11):1061‐1069. doi:10.1001/jama.2020.1585
  • 19. Onder G, Rezza G, Brusaferro S. Case-fatality rate and characteristics of patients dying in relation to COVID-19 in Italy. JAMA. 2020 Mar 23. doi: 10.1001/jama.2020.4683.
  • 20. Chen T, Wu D, Chen H, Yan W, Yang D, Chen G, et al. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: Retrospective study. BMJ. 2020; 368:m1091. doi: 10.1136/bmj.m1091.
  • 21. Mc Michael TM, Currie DW, Clark S, Pogosjans S, Kay M, Schwartz NG et al. Epidemiology of COVID-19 in a long-term care facility in King County, Washington. N Engl J Med. 2020 382(21):2005-2011. doi: 10.1056/NEJMoa2005412.
  • 22. Schwartz DA. An analysis of 38 pregnant women with COVID-19, their newborn infants, and maternal-fetal transmission of SARS-CoV-2: maternal coronavirus infections and pregnancy outcomes. Arch Pathol Lab Med 2020. doi: 10.5858/arpa.2020-0901-SA.
  • 23. Wang W, Xu Y, Gao R, Lu R, Han K, Wu G, et al. Detection of SARS-CoV-2 in different types of clinical specimens. JAMA 2020; 323(18):1843-1844. doi: 10.1001/jama.2020.3786.
  • 24. Rabi FA, Al Zoubi MS, Kasasbeh GA, Salameh DM, Al-Nasser AD. SARS-CoV-2 and Coronavirus disease 2019: What we know so far. Pathogens 2020; 9(3):231. doi: 10.3390/pathogens9030231.
  • 25. Bosch BJ, van der Zee R, de Haan CAM, Rottier PJM, The coronavirus spike protein is a class I virus fusion protein: structural and functional characterization of the fusion core complex. J Virol. 2003; 77(16):8801-11. doi: 10.1128/jvi.77.16.8801-8811.2003.
  • 26. Li W, Moore MJ, Vasilieva N, Sui J, Wong SK, Berne MA et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus, Nature. 2003; 426(6965):450-4. doi: 10.1038/nature02145.
  • 27. Chen Y, Guo Y, Pan Y, Zhao ZJ. Structure analysis of the receptor binding of 2019-nCoV, Biochem Biophys Res Commun. 2020; 525(1):135-140. doi: 10.1016/j.bbrc.2020.02.071.
  • 28. Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell. 2020; 181(2):281-292.e6. doi: 10.1016/j.cell.2020.02.058.
  • 29. Letko M, Marzi A, Munster V. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nat Microbiol. 2020; 5(4):562-569. doi: 10.1038/s41564-020-0688-y.
  • 30. Zou X, Chen K, Zou J, Han P, Hao J, Han Z. Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection. Front Med. 2020; 14(2):185-192. doi: 10.1007/s11684-020-0754-0.
  • 31. Belouzard S, Chu VC, Whittaker GR. Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites. Proc Natl Acad Sci U S A. 2009; 106(14):5871-6. doi: 10.1073/pnas.0809524106.
  • 32. Guan WJ, Ni ZY, Hu Y, Liang WH, Ou C-Q, He J-X et al. Clinical characteristics of Coronavirus Disease 2019 in China. N Engl J Med. 2020; 382(18):1708‐1720. doi:10.1056/NEJMoa2002032.
  • 33. Hamming I, Timens W, Bulthuis ML, Lely AT, Navis G, van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol. 2004; 203(2):631‐637. doi:10.1002/path.1570.
  • 34. Jia HP, Look DC, Shi L, Hickey M, Pewe L, Netland J et al. ACE2 receptor expression and severe acute respiratory syndrome coronavirus infection depend on differentiation of human airway epithelia. J Virol. 2005; 79(23):14614‐14621. doi:10.1128/JVI.79.23.14614-14621.2005
  • 35. Yoshikawa T, Hill T, Li K, Peters CJ, Tseng C-T. Severe acute respiratory syndrome (SARS) coronavirus-induced lung epithelial cytokines exacerbate SARS pathogenesis by modulating intrinsic functions of monocyte-derived macrophages and dendritic cells. J Virol. 2009; 83(7):3039‐3048. doi:10.1128/JVI.01792-08
  • 36. Fujimoto I, Pan J, Takizawa T, Nakanishi Y. Virus clearance through apoptosis-dependent phagocytosis of influenza A virus-infected cells by macrophages. J Virol. 2000; 74(7):3399‐3403. doi:10.1128/jvi.74.7.3399-3403.2000
  • 37. Jeffers SA, Tusell SM, Gillim-Ross L, Hemmila EM, Achenbach JE, Babcock GJ et al. CD209L (L-SIGN) is a receptor for severe acute respiratory syndrome coronavirus. Proc Natl Acad Sci U S A. 2004; 101(44):15748‐15753. doi:10.1073/pnas.0403812101
  • 38. Marzi A, Gramberg T, Simmons G, Möller P, Rennekamp AJ, Krumbiegel M et al. DC-SIGN and DC-SIGNR interact with the glycoprotein of Marburg virüs and the S protein of severe acute respiratory syndrome coronavirus. J Virol. 2004; 78(21):12090‐12095. doi:10.1128/JVI.78.21.12090-12095.2004.
  • 39. Yang ZY, Huang Y, Ganesh L, Leung K, Kong W-P, Schwartz O et al. pH-dependent entry of severe acute respiratory syndrome coronavirus is mediated by the spike glycoprotein and enhanced by dendritic cell transfer through DC-SIGN. J Virol. 2004; 78(11):5642‐5650. doi:10.1128/JVI.78.11.5642-5650.2004
  • 40. Zhou Y, Fu B, Zheng X, Wnag D, Zhao C, Qi Y et al. Pathogenic T cells and inflammatory monocytes incite inflammatory storm in severe COVID-19 patients. Natl Sci Rev. 2020; Mar 13 nwaa041. doi: 10.1093/nsr/nwaa041
  • 41. Qin C, Zhou L, Hu Z, Zhang S, Yang S, Tao Y et al. Dysregulation of immune response in patients with COVID-19 in Wuhan, China Clin Infect Dis. 2020 Mar 12;ciaa248. doi: 10.1093/cid/ciaa248.
  • 42. Huang H, Wang S, Jiang T, Fan R, Zhang Z, Mu J et al. High levels of circulating GM-CSF+CD4+ T cells are predictive of poor outcomes in sepsis patients: A prospective cohort study. Cell Mol Immunol. 2019;16(6):602‐610. doi:10.1038/s41423-018-0164-2
  • 43. Croxford AL, Lanzinger M, Hartmann FJ, Schreiner B, Mair F, Pelczar P et al. The cytokine GM-CSF drives the inflammatory signature of CCR2+ monocytes and licenses autoimmunity. Immunity. 2015; 43(3):502‐514. doi:10.1016/j.immuni.2015.08.010
  • 44. Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome . Lancet Respir Med. 2020; 8(4):420‐422. doi:10.1016/S2213-2600(20)30076-X
  • 45. Tian S, Hu W, Niu L, Liu H, Xu H, Xiao S-Y. Pulmonary Pathology of Early-Phase 2019 Novel Coronavirus (COVID-19) Pneumonia in Two Patients With Lung Cancer. J Thorac Oncol. 2020; 15(5):700‐704. doi:10.1016/j.jtho.2020.02.010
  • 46. Young RE, Thompson RD, Larbi KY, La M, Roberts CE, Shapiro SD, et al. Neutrophil elastase (NE)-deficient mice demonstrate a nonredundant role for NE in neutrophil migration, generation of proinflammatory mediators, and phagocytosis in response to zymosan particles in vivo. J Immunol. 2004; 172(7):4493‐4502. doi:10.4049/jimmunol.172.7.4493
  • 47. Liu S, Su X, Pan P, Zhang L, Hu Y, Tan H et al. Neutrophil extracellular traps are indirectly triggered by lipopolysaccharide and contribute to acute lung injury. Sci Rep. 2016; 6:37252 doi:10.1038/srep37252
  • 48. Koutsogiannaki S., M. Shimaoka, K. Yuki, The use of volatile anesthetics as sedatives for acute respiratory distress syndrome. Transl Perioper Pain Med. 2019; 6(2):27-38. doi: 10.31480/2330-4871/084.
  • 49. Fang M, Siciliano NA, Hersperger AR, Roscoe F, Hu A, Ma X et al. Perforin-dependent CD4+ T-cell cytotoxicity contributes to control a murinepox virus infection. Proc Natl Acad Sci U S A. 2012; 109(25):9983-8. doi: 10.1073/pnas.1202143109.
  • 50. Small BA, Dressel SA, Lawrence CW, Drake 3rd DR, Stoler MH, Enelow RI, et al. CD8(+) T cell-mediated injury in vivo progresses in the absence of effector T cells. J Exp Med. 2001; 194(12):1835-46. doi: 10.1084/jem.194.12.1835.
  • 51. Fehr AR, Perlman S. Coronaviruses: An overview of their replication and pathogenesis. Methods Mol Biol. 2015;1282:1-23. doi: 10.1007/978-1-4939-2438-7_1.
  • 52. Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020; 181(2):271-280.e8. doi: 10.1016/j.cell.2020.02.052.
  • 53. Matsuyama S, Nao N, Shirato K, Kawase M, Saito S, Takayama I et al . Enhanced isolation of SARS-CoV-2 by TMPRSS2-expressing cells. Proc Natl Acad Sci U S A 2020; 117(13):7001-7003. doi: 10.1073/pnas.2002589117.
  • 54. Shereen MA, Khan S, Kazmi A, Bashir N, Siddique R. COVID-19 infection: Origin, transmission, and characteristics of human coronaviruses. J Adv Res. 2020; 24:91–98 doi: 10.1016/j.jare.2020.03.005.
  • 55. Aronson JK, Ferner RE. Drugs and the renin-angiotensin system in covid-19. BMJ. 2020 ;369:m1313. doi: 10.1136/bmj.m1313
Year 2020, , 78 - 87, 06.09.2020

Abstract

References

  • 1. World Health Organization, WHO Director-General’s Remarksat the Media Briefing On2019-nCoV Date: 11.02.2020. Available: https://www.who.int/dg/speeches/ detail/who-director-general-s-remarks-at-the-media-briefing-on-2019-ncov-on-11february-2020).
  • 2. Richman DD, Whitley RJ, Hayden FG. Clinical Virology, 4th ed. Washington: ASM Press; 2016.
  • 3. Chu DKW, Pan Y, Cheng SMS, Hui KPY, Krishnan P, Liu Y et al. Molecular diagnosis of a novel coronavirus (2019-nCoV) causing an outbreak of pneumonia. Clin Chem. 2020; 66(4):549‐555. doi:10.1093/clinchem/hvaa029
  • 4. Chan-Yeung M, Xu RH. SARS: Epidemiology. Respirology. 2003; 8:9–14. doi: 10.1046/j.1440-1843.2003.00518.x.
  • 5. Middle East Respiratory Syndrome Coronavirus. Date:16.02.2020. Available: https://www.who.int/emergencies/mers-cov/en/.
  • 6. Andersen KG, Rambaut A, Lipkin WI, Holmes EC, Garry RF. The proximal origin of SARS-CoV-2. Nat Med. 2020; 26(4):450-452. doi: 10.1038/s41591-020-0820-9.
  • 7. Rothe C, Schunk M, Sothmann P, Bretzel G, Froeschl G, Wallrauch C. et al. Transmission of 2019 nCoV infection from an asymptomatic contact in Germany. N Engl J Med. 2020; 382(10):970-971. doi: 10.1056/NEJMc2001468.
  • 8. Zou L, Ruan F, Huang M, Liang L, Huang H, Hong Z. et al. SARS-CoV-2 viral load in upper respiratory specimens of infected patients. N Engl J Med. 2020; 382(12):1177-1179. doi: 10.1056/NEJMc2001737.
  • 9. Backer JA, Klinkenberg D, Wallinga J. Incubation period of 2019 novel coronavirus (2019-nCoV) infections among travellers from Wuhan, China, 20–28 January 2020. Euro Surveill. 2020; 25(5):2000062. doi: 10.2807/1560-7917.ES.2020.25.5.2000062.
  • 10. Linton NM, Kobayashi T, Yang Y, Hayashi K, Akhmetzhanov AR, Jung SM. et al. Incubation period and other epidemiological characteristics of 2019 novel coronavirus infections with right truncation: a statistical analysis of publicly available case data. J Clin Med. 2020; 9(2):538. doi: 10.3390/jcm9020538.
  • 11. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020; 395(10223):497-506. doi: 10.1016/S0140-6736(20)30183-5.
  • 12. Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y et al. Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus-Infected Pneumonia. N Engl J Med. 2020;382(13):1199‐1207. doi:10.1056/NEJMoa2001316
  • 13. Kampf G, Todt D, Pfaender S, Steinmann E. Persistence of coronaviruses on inanimate surfaces and its inactivation with biocidal agents. J Hosp Infect. 2020; 104(3):246-251. doi: 10.1016/j.jhin.2020.01.022.
  • 14. Cui J, Li F, Shi Z-L. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol 2019; 17(3):181-192. doi: 10.1038/s41579-018-0118-9.
  • 15. Yu P, Zhu J, Zhang Z, Han Y, Huang L. A familial cluster of infection associated with the 2019 novel coronavirus indicating potential person-to-person transmission during the incubation period. J Infect Dis 2020; 221(11):1757-1761. doi: 10.1093/infdis/jiaa077.
  • 16. Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020; 395(10223):507-513. doi: 10.1016/S0140-6736(20)30211-7.
  • 17. Bai Y, Yao L, Wei T, Tian F, Jin D-Y, Chen L et al. Presumed Asymptomatic Carrier Transmission of COVID-19 JAMA. 2020; 323(14):1406‐1407. doi:10.1001/jama.2020.2565
  • 18. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China . JAMA. 2020; 323(11):1061‐1069. doi:10.1001/jama.2020.1585
  • 19. Onder G, Rezza G, Brusaferro S. Case-fatality rate and characteristics of patients dying in relation to COVID-19 in Italy. JAMA. 2020 Mar 23. doi: 10.1001/jama.2020.4683.
  • 20. Chen T, Wu D, Chen H, Yan W, Yang D, Chen G, et al. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: Retrospective study. BMJ. 2020; 368:m1091. doi: 10.1136/bmj.m1091.
  • 21. Mc Michael TM, Currie DW, Clark S, Pogosjans S, Kay M, Schwartz NG et al. Epidemiology of COVID-19 in a long-term care facility in King County, Washington. N Engl J Med. 2020 382(21):2005-2011. doi: 10.1056/NEJMoa2005412.
  • 22. Schwartz DA. An analysis of 38 pregnant women with COVID-19, their newborn infants, and maternal-fetal transmission of SARS-CoV-2: maternal coronavirus infections and pregnancy outcomes. Arch Pathol Lab Med 2020. doi: 10.5858/arpa.2020-0901-SA.
  • 23. Wang W, Xu Y, Gao R, Lu R, Han K, Wu G, et al. Detection of SARS-CoV-2 in different types of clinical specimens. JAMA 2020; 323(18):1843-1844. doi: 10.1001/jama.2020.3786.
  • 24. Rabi FA, Al Zoubi MS, Kasasbeh GA, Salameh DM, Al-Nasser AD. SARS-CoV-2 and Coronavirus disease 2019: What we know so far. Pathogens 2020; 9(3):231. doi: 10.3390/pathogens9030231.
  • 25. Bosch BJ, van der Zee R, de Haan CAM, Rottier PJM, The coronavirus spike protein is a class I virus fusion protein: structural and functional characterization of the fusion core complex. J Virol. 2003; 77(16):8801-11. doi: 10.1128/jvi.77.16.8801-8811.2003.
  • 26. Li W, Moore MJ, Vasilieva N, Sui J, Wong SK, Berne MA et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus, Nature. 2003; 426(6965):450-4. doi: 10.1038/nature02145.
  • 27. Chen Y, Guo Y, Pan Y, Zhao ZJ. Structure analysis of the receptor binding of 2019-nCoV, Biochem Biophys Res Commun. 2020; 525(1):135-140. doi: 10.1016/j.bbrc.2020.02.071.
  • 28. Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell. 2020; 181(2):281-292.e6. doi: 10.1016/j.cell.2020.02.058.
  • 29. Letko M, Marzi A, Munster V. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nat Microbiol. 2020; 5(4):562-569. doi: 10.1038/s41564-020-0688-y.
  • 30. Zou X, Chen K, Zou J, Han P, Hao J, Han Z. Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection. Front Med. 2020; 14(2):185-192. doi: 10.1007/s11684-020-0754-0.
  • 31. Belouzard S, Chu VC, Whittaker GR. Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites. Proc Natl Acad Sci U S A. 2009; 106(14):5871-6. doi: 10.1073/pnas.0809524106.
  • 32. Guan WJ, Ni ZY, Hu Y, Liang WH, Ou C-Q, He J-X et al. Clinical characteristics of Coronavirus Disease 2019 in China. N Engl J Med. 2020; 382(18):1708‐1720. doi:10.1056/NEJMoa2002032.
  • 33. Hamming I, Timens W, Bulthuis ML, Lely AT, Navis G, van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol. 2004; 203(2):631‐637. doi:10.1002/path.1570.
  • 34. Jia HP, Look DC, Shi L, Hickey M, Pewe L, Netland J et al. ACE2 receptor expression and severe acute respiratory syndrome coronavirus infection depend on differentiation of human airway epithelia. J Virol. 2005; 79(23):14614‐14621. doi:10.1128/JVI.79.23.14614-14621.2005
  • 35. Yoshikawa T, Hill T, Li K, Peters CJ, Tseng C-T. Severe acute respiratory syndrome (SARS) coronavirus-induced lung epithelial cytokines exacerbate SARS pathogenesis by modulating intrinsic functions of monocyte-derived macrophages and dendritic cells. J Virol. 2009; 83(7):3039‐3048. doi:10.1128/JVI.01792-08
  • 36. Fujimoto I, Pan J, Takizawa T, Nakanishi Y. Virus clearance through apoptosis-dependent phagocytosis of influenza A virus-infected cells by macrophages. J Virol. 2000; 74(7):3399‐3403. doi:10.1128/jvi.74.7.3399-3403.2000
  • 37. Jeffers SA, Tusell SM, Gillim-Ross L, Hemmila EM, Achenbach JE, Babcock GJ et al. CD209L (L-SIGN) is a receptor for severe acute respiratory syndrome coronavirus. Proc Natl Acad Sci U S A. 2004; 101(44):15748‐15753. doi:10.1073/pnas.0403812101
  • 38. Marzi A, Gramberg T, Simmons G, Möller P, Rennekamp AJ, Krumbiegel M et al. DC-SIGN and DC-SIGNR interact with the glycoprotein of Marburg virüs and the S protein of severe acute respiratory syndrome coronavirus. J Virol. 2004; 78(21):12090‐12095. doi:10.1128/JVI.78.21.12090-12095.2004.
  • 39. Yang ZY, Huang Y, Ganesh L, Leung K, Kong W-P, Schwartz O et al. pH-dependent entry of severe acute respiratory syndrome coronavirus is mediated by the spike glycoprotein and enhanced by dendritic cell transfer through DC-SIGN. J Virol. 2004; 78(11):5642‐5650. doi:10.1128/JVI.78.11.5642-5650.2004
  • 40. Zhou Y, Fu B, Zheng X, Wnag D, Zhao C, Qi Y et al. Pathogenic T cells and inflammatory monocytes incite inflammatory storm in severe COVID-19 patients. Natl Sci Rev. 2020; Mar 13 nwaa041. doi: 10.1093/nsr/nwaa041
  • 41. Qin C, Zhou L, Hu Z, Zhang S, Yang S, Tao Y et al. Dysregulation of immune response in patients with COVID-19 in Wuhan, China Clin Infect Dis. 2020 Mar 12;ciaa248. doi: 10.1093/cid/ciaa248.
  • 42. Huang H, Wang S, Jiang T, Fan R, Zhang Z, Mu J et al. High levels of circulating GM-CSF+CD4+ T cells are predictive of poor outcomes in sepsis patients: A prospective cohort study. Cell Mol Immunol. 2019;16(6):602‐610. doi:10.1038/s41423-018-0164-2
  • 43. Croxford AL, Lanzinger M, Hartmann FJ, Schreiner B, Mair F, Pelczar P et al. The cytokine GM-CSF drives the inflammatory signature of CCR2+ monocytes and licenses autoimmunity. Immunity. 2015; 43(3):502‐514. doi:10.1016/j.immuni.2015.08.010
  • 44. Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome . Lancet Respir Med. 2020; 8(4):420‐422. doi:10.1016/S2213-2600(20)30076-X
  • 45. Tian S, Hu W, Niu L, Liu H, Xu H, Xiao S-Y. Pulmonary Pathology of Early-Phase 2019 Novel Coronavirus (COVID-19) Pneumonia in Two Patients With Lung Cancer. J Thorac Oncol. 2020; 15(5):700‐704. doi:10.1016/j.jtho.2020.02.010
  • 46. Young RE, Thompson RD, Larbi KY, La M, Roberts CE, Shapiro SD, et al. Neutrophil elastase (NE)-deficient mice demonstrate a nonredundant role for NE in neutrophil migration, generation of proinflammatory mediators, and phagocytosis in response to zymosan particles in vivo. J Immunol. 2004; 172(7):4493‐4502. doi:10.4049/jimmunol.172.7.4493
  • 47. Liu S, Su X, Pan P, Zhang L, Hu Y, Tan H et al. Neutrophil extracellular traps are indirectly triggered by lipopolysaccharide and contribute to acute lung injury. Sci Rep. 2016; 6:37252 doi:10.1038/srep37252
  • 48. Koutsogiannaki S., M. Shimaoka, K. Yuki, The use of volatile anesthetics as sedatives for acute respiratory distress syndrome. Transl Perioper Pain Med. 2019; 6(2):27-38. doi: 10.31480/2330-4871/084.
  • 49. Fang M, Siciliano NA, Hersperger AR, Roscoe F, Hu A, Ma X et al. Perforin-dependent CD4+ T-cell cytotoxicity contributes to control a murinepox virus infection. Proc Natl Acad Sci U S A. 2012; 109(25):9983-8. doi: 10.1073/pnas.1202143109.
  • 50. Small BA, Dressel SA, Lawrence CW, Drake 3rd DR, Stoler MH, Enelow RI, et al. CD8(+) T cell-mediated injury in vivo progresses in the absence of effector T cells. J Exp Med. 2001; 194(12):1835-46. doi: 10.1084/jem.194.12.1835.
  • 51. Fehr AR, Perlman S. Coronaviruses: An overview of their replication and pathogenesis. Methods Mol Biol. 2015;1282:1-23. doi: 10.1007/978-1-4939-2438-7_1.
  • 52. Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020; 181(2):271-280.e8. doi: 10.1016/j.cell.2020.02.052.
  • 53. Matsuyama S, Nao N, Shirato K, Kawase M, Saito S, Takayama I et al . Enhanced isolation of SARS-CoV-2 by TMPRSS2-expressing cells. Proc Natl Acad Sci U S A 2020; 117(13):7001-7003. doi: 10.1073/pnas.2002589117.
  • 54. Shereen MA, Khan S, Kazmi A, Bashir N, Siddique R. COVID-19 infection: Origin, transmission, and characteristics of human coronaviruses. J Adv Res. 2020; 24:91–98 doi: 10.1016/j.jare.2020.03.005.
  • 55. Aronson JK, Ferner RE. Drugs and the renin-angiotensin system in covid-19. BMJ. 2020 ;369:m1313. doi: 10.1136/bmj.m1313
There are 55 citations in total.

Details

Primary Language Turkish
Subjects Health Care Administration
Journal Section Makaleler
Authors

Ayşe Şebnem İlhan

Publication Date September 6, 2020
Submission Date May 28, 2020
Published in Issue Year 2020

Cite

APA İlhan, A. Ş. (2020). SARS-COV-2 VE COVID-19 PATOGENEZİ. Gazi Sağlık Bilimleri Dergisi78-87.
AMA İlhan AŞ. SARS-COV-2 VE COVID-19 PATOGENEZİ. Gazi sağlık bilim. derg. Published online September 1, 2020:78-87.
Chicago İlhan, Ayşe Şebnem. “SARS-COV-2 VE COVID-19 PATOGENEZİ”. Gazi Sağlık Bilimleri Dergisi, September (September 2020), 78-87.
EndNote İlhan AŞ (September 1, 2020) SARS-COV-2 VE COVID-19 PATOGENEZİ. Gazi Sağlık Bilimleri Dergisi 78–87.
IEEE A. Ş. İlhan, “SARS-COV-2 VE COVID-19 PATOGENEZİ”, Gazi sağlık bilim. derg, pp. 78–87, September 2020.
ISNAD İlhan, Ayşe Şebnem. “SARS-COV-2 VE COVID-19 PATOGENEZİ”. Gazi Sağlık Bilimleri Dergisi. September 2020. 78-87.
JAMA İlhan AŞ. SARS-COV-2 VE COVID-19 PATOGENEZİ. Gazi sağlık bilim. derg. 2020;:78–87.
MLA İlhan, Ayşe Şebnem. “SARS-COV-2 VE COVID-19 PATOGENEZİ”. Gazi Sağlık Bilimleri Dergisi, 2020, pp. 78-87.
Vancouver İlhan AŞ. SARS-COV-2 VE COVID-19 PATOGENEZİ. Gazi sağlık bilim. derg. 2020:78-87.