Research Article
BibTex RIS Cite

ULTRASES DESTEKLİ OZMOTİK DEHİDRASYON ÖN İŞLEMİNİN BALKABAĞI (Cucurbita moschata) KURUTMA KİNETİĞİ VE BAZI FONKSİYONEL ÖZELLİKLERİ ÜZERİNE ETKİSİ

Year 2022, Volume: 47 Issue: 5, 874 - 888, 30.10.2022
https://doi.org/10.15237/gida.GD22065

Abstract

Bu çalışmada balkabağının (Cucurbita moschata) kurutma kinetiği ve bazı fonksiyonel özellikleri üzerine ultrases destekli ozmotik dehidrasyon (US-OD) ön işleminin etkisi araştırılmıştır. Örnekler 3 farklı konsantrasyonda (%12.5, %25 ve %50) şeker çözeltisi içeren ultrasonik banyo içerisinde kavitasyon işlemi ile (45 kHz, 90 dakika) dehidre edilmiş ve ardından sıcak havada kurutma yöntemi kullanılarak 60oC sıcaklıkta kurutulmuştur. US-OD işlemi ile birlikte en yüksek su kaybı ve katı madde kazanımı %50’lik ozmotik çözelti kullanılarak dehidre edilen örnekte tespit edilmiştir. US-OD işlemi şeker çözeltisi konsantrasyonuna bağlı olarak kurutma süresini kontrol örneğine göre yaklaşık 180 dakika kısaltmıştır. Bununla birlikte ozmotik çözeltinin şeker konsantrasyonuna bağlı olarak rehidrasyon oranında azalma gözlenmiştir. En yüksek toplam fenolik madde miktarı (120.08 mg GAE/100 g kuru ağırlık) ve antioksidan kapasite (%38.21) %50’lik ozmotik çözeltide dehidre edilen ve kurutulan örnekte belirlenmiştir. Elde edilen çıktılar matematiksel modellere uyarlandığında US-OD ön işlemi uygulanmış balkabağının kurutulmasını en iyi tanımlayan modelin Page modeli olduğu sonucuna varılmıştır.

References

  • Abraão, A. S., Lemos, A. M., Vilela, A., Sousa, J. M., Nunes, F. M. (2013). Influence of osmotic dehydration process parameters on the quality of candied pumpkins. Food and Bioproducts Processing, 91(4), 481-494, doi:10.1016/j.fbp.2013.04.006.
  • Ahmad, F., Zaidi, S. (2020). Osmotic Dehydration and Ultrasound Assisted Osmotic Dehydration of Fruits and Vegetables: A Review. International Journal of Tropical Agriculture, 38(4), 417-421.
  • Amami, E., Khezami, W., Mezrigui, S., Badwaik, L. S., Bejar, A. K., Perez, C. T., Kechaou, N. (2017). Effect of ultrasound-assisted osmotic dehydration pretreatment on the convective drying of strawberry. Ultrasonics Sonochemistry, 36, 286-300, doi:10.1016/j.ultsonch.2016.12.007.
  • Aral, S., Bese, A. V. (2016). Convective drying of hawthorn fruit (Crataegus spp.): Effect of experimental parameters on drying kinetics, color, shrinkage, and rehydration capacity. Food Chemistry, 210, 577-584, doi:10.1016/j.foodchem.2016.04.128.
  • Atiqure Rahman, S. M., Enamul Hoque, M., Rahman, S., Hasanuzzaman, M. (2015). Osmotic Dehydration of Pumpkin Using Response Surface Methodology - Influences of Operating Conditions on Water Loss and Solute Gain. Journal of Bioprocessing & Biotechniques, 5(5).
  • Azarpazhooh, E., Sharayei, P., Ramaswamy, H. S. (2020). Optimization of ultrasound-assisted osmotic treatment of Aleo vera gel impregnated with grape pomace phenolic compounds using response surface methodology. Agricultural Engineering International: CIGR Journal, 22(3), 202-212.
  • Bchir, B., Bouaziz, M. A., Ettaib, R., Sebii, H., Danthine, S., Blecker, C., Besbes, S., Attia, H. (2020). Optimization of ultrasound‐assisted osmotic dehydration of pomegranate seeds (Punica granatum L.) using response surface methodology. Journal of Food Processing and Preservation, 44(9), doi:10.1111/jfpp.14657.
  • Bozkir, H., Ergün, A. R. (2020). Effect of sonication and osmotic dehydration applications on the hot air drying kinetics and quality of persimmon. Lwt, 131, 109704, doi:10.1016/j.lwt.2020.109704.
  • Bozkir, H., Rayman Ergun, A., Serdar, E., Metin, G., Baysal, T. (2019). Influence of ultrasound and osmotic dehydration pretreatments on drying and quality properties of persimmon fruit. Ultrason Sonochem, 54, 135-141, doi:10.1016/j.ultsonch.2019.02.006.
  • Carvalho, G. R., Rojas, M. L., Silveira, I., Augusto, P. E. D. (2020). Drying Accelerators to Enhance Processing and Properties: Ethanol, Isopropanol, Acetone and Acetic Acid as Pre-treatments to Convective Drying of Pumpkin. Food and Bioprocess Technology, 13(11), 1984-1996, doi:10.1007/s11947-020-02542-6.
  • Corrêa, J. L. G., Justus, A., de Oliveira, L. F., Alves, G. E. (2015). Osmotic Dehydration of Tomato Assisted by Ultrasound: Evaluation of the Liquid Media on Mass Transfer and Product Quality. International Journal of Food Engineering, 11(4), 505-516, doi:10.1515/ijfe-2015-0083.
  • Elhussein, E. A. A., Şahin, S. (2018). Drying behaviour, effective diffusivity and energy of activation of olive leaves dried by microwave, vacuum and oven drying methods. Heat and Mass Transfer, 54, 1901-1911, doi:10.1007/s00231-018-2278-6.
  • Fan, K., Zhang, M., Bhandari, B. (2019). Osmotic-ultrasound dehydration pretreatment improves moisture adsorption isotherms and water state of microwave-assisted vacuum fried purple-fleshed sweet potato slices. Food and Bioproducts Processing, 115, 154-164, doi:10.1016/j.fbp.2019.03.011.
  • Fernandes, F. A. N., Linhares, F. E., Rodrigues, S. (2008). Ultrasound as pre-treatment for drying of pineapple. Ultrasonics Sonochemistry, 15(6), 1049-1054, doi:10.1016/j.ultsonch.2008.03.009.
  • Garcia-Noguera, J., Oliveira, F. I. P., Gallão, M. I., Weller, C. L., Rodrigues, S., Fernandes, F. A. N. (2010). Ultrasound-Assisted Osmotic Dehydration of Strawberries: Effect of Pretreatment Time and Ultrasonic Frequency. Drying Technology, 28(2), 294-303, doi:10.1080/07373930903530402.
  • Gliemmo, M. F., Latorre, M. E., Gerschenson, L. N., Campos, C. A. (2009). Color stability of pumpkin (Cucurbita moschata, Duchesne ex Poiret) puree during storage at room temperature: effect of pH, potassium sorbate, ascorbic acid and packaging material. LWT - Food Science and Technology, 42, 196-201.
  • Goula, A. M., Kokolaki, M., Daftsiou, E. (2017). Use of ultrasound for osmotic dehydration. The case of potatoes. Food and Bioproducts Processing, 105, 157-170, doi:10.1016/j.fbp.2017.07.008.
  • Hashemi, S. M. B., Jafarpour, D. (2021). Antimicrobial and antioxidant properties of Saturn peach subjected to ultrasound-assisted osmotic dehydration. Journal of Food Measurement and Characterization, 15(3), 2516-2523, doi:10.1007/s11694-021-00842-9.
  • Horuz, E., Maskan, M. (2013). Hot air and microwave drying of pomegranate (Punica granatum L.) arils. Journal of Food Science and Technology, 52(1), 285-293, doi:10.1007/s13197-013-1032-9.
  • Hosseinzadeh Samani, B., Khodadadi, A., Rostami, S., Lorigooini, Z. (2021). Investigation and optimization of the effect of osmotic‐ultrasound drying pretreatment on qualitative properties and process energy consumption of Cornus mas. Journal of Food Processing and Preservation, 45(5), doi:10.1111/jfpp.15377.
  • İlter, I., Akyıl, S., Devseren, E., Okut, D., Koç, M., Kaymak Ertekin, F. (2018). Microwave and hot air drying of garlic puree: drying kinetics and quality characteristics. Heat and Mass Transfer, 54(7), 2101-2112, doi:10.1007/s00231-018-2294-6.
  • Jansrimanee, S., Lertworasirikul, S. (2020). Synergetic effects of ultrasound and sodium alginate coating on mass transfer and qualities of osmotic dehydrated pumpkin. Ultrason Sonochem, 69, 105256, doi:10.1016/j.ultsonch.2020.105256.
  • Jia, Y., Khalifa, I., Hu, L., Zhu, W., Li, J., Li, K., Li, C. (2019). Influence of three different drying techniques on persimmon chips’ characteristics: A comparison study among hot-air, combined hot-air-microwave, and vacuum-freeze drying techniques. Food and Bioproducts Processing, 118, 67-76, doi:10.1016/j.fbp.2019.08.018.
  • Kek, S. P., Chin, N. L., Yusof, Y. A. (2013). Direct and indirect power ultrasound assisted pre-osmotic treatments in convective drying of guava slices. Food and Bioproducts Processing, 91, 495-506, doi:10.1016/j.fbp.2013.05.003.
  • Li, Y., Wang, X., Wu, Z., Wan, N., Ming, Y. (2020). Dehydration of hawthorn fruit juices using ultrasound-assisted vacuum drying. Ultrasonics Sonochemistry, 68, doi:10.1016/j.ultsonch.2020.105219.
  • Liu, Y., Wu, J., Chong, C., Miao, S. (2014). Ultrasound Assisted Osmotic Dehydration as Pretreatment for Hot-air Drying of Carrot. Food Science and Technology Research, 20(1), 31-41, doi:10.3136/fstr.20.31.
  • Mokhtarian, M., Heydari Majd, M., Koushki, F., Bakhshabadi, H., Daraei Garmakhany, A., Rashidzadeh, S. (2014). Optimisation of pumpkin mass transfer kinetic during osmotic dehydration using artificial neural network and response surface methodology modelling. Quality Assurance and Safety of Crops & Foods, 6(2), 201-214, doi:10.3920/qas2012.0121.
  • Nawirska, A., Figiel, A., Kucharska, A. Z., Sokół-Łetowska, A., Biesiada, A. (2009). Drying kinetics and quality parameters of pumpkin slices dehydrated using different methods. Journal of Food Engineering, 94, 14-20.
  • Nowacka, M., Dadan, M., Tylewicz, U. (2021). Current Applications of Ultrasound in Fruit and Vegetables Osmotic Dehydration Processes. Applied Sciences, 11(3), 1269, doi:10.3390/app11031269.
  • Pantelidou, D., Gerogiannis, K., Goula, A. M., Gonas, C. (2021). Ultrasound-Assisted Osmotic Dehydration as a Method for Supplementing Potato with Unused Chokeberries Phenolics. Food and Bioprocess Technology, 14(12), 2231-2247, doi:10.1007/s11947-021-02720-0.
  • Peleg, M. (1988). An empirical model for the description of moisture sorption curves. Journal of Food Science, 53(4), 1216-1217.
  • Prithani, R., Dash, K. K. (2020). Mass transfer modelling in ultrasound assisted osmotic dehydration of kiwi fruit. Innovative Food Science & Emerging Technologies, 64, 102407, doi:10.1016/j.ifset.2020.102407.
  • Rahaman, A., Zeng, X. A., Kumari, A., Rafiq, M., Siddeeg, A., Manzoor, M. F., Baloch, Z., Ahmed, Z. (2019). Influence of ultrasound-assisted osmotic dehydration on texture, bioactive compounds and metabolites analysis of plum. Ultrason Sonochem, 58, 104643, doi:10.1016/j.ultsonch.2019.104643.
  • Rodrigues, S., Oliveira, F. I. P., Gallão, M. I., Fernandes, F. A. N. (2009). Effect of Immersion Time in Osmosis and Ultrasound on Papaya Cell Structure during Dehydration. Drying Technology, 27(2), 220-225, doi:10.1080/07373930802605883.
  • Sakooei-Vayghan, R., Peighambardoust, S. H., Hesari, J., Soltanzadeh, M., Peressini, D. (2020). Properties of Dried Apricots Pretreated by Ultrasound-Assisted Osmotic Dehydration and Application of Active Coatings. Food Technol Biotechnol, 58(3), 249-259, doi:10.17113/ftb.58.03.20.6471.
  • Santos, K. C., Guedes, J. S., Rojas, M. L., Carvalho, G. R., Augusto, P. E. D. (2021). Enhancing carrot convective drying by combining ethanol and ultrasound as pre-treatments: Effect on product structure, quality, energy consumption, drying and rehydration kinetics. Ultrasonics Sonochemistry, 70, 105304, doi:10.1016/j.ultsonch.2020.105304.
  • Shekar, F., Javadi, A. (2019). The Effect of Ultrasound-Assisted Osmotic Dehydration Pretreatment on the Convective Drying of Apple Slices (var.Golab). Journal of Food Biosciences and Technology, 9(2), 83-94.
  • Simpson, R., Ramírez, C., Nuñez, H., Jaques, A., Almonacid, S. (2017). Understanding the success of Page's model and related empirical equations in fitting experimental data of diffusion phenomena in food matrices. Trends in Food Science & Technology, 62, 194-201, doi:10.1016/j.tifs.2017.01.003.
  • Singh, R. P., Chidambara Murthy, K. N., Jayaprakasha, G. K. (2002). Studies on the antioxidant activity of pomegranate (Punica granatum) peel and seed extracts using in vitro models. Journal of Agricultural and Food Chemistry, 50(1), 81-86.
  • Tayyab Rashid, M., Ahmed Jatoi, M., Safdar, B., Wali, A., Muhammad Aadil, R., Sarpong, F., Ma, H. (2020). Modeling the drying of ultrasound and glucose pretreated sweet potatoes: The impact on phytochemical and functional groups. Ultrason Sonochem, 68, 105226, doi:10.1016/j.ultsonch.2020.105226.
  • Tekin, Z. H., Baslar, M. (2018). The effect of ultrasound-assisted vacuum drying on the drying rate and quality of red peppers. Journal of Thermal Analysis and Calorimetry, 132(2), 1131-1143, doi:10.1007/s10973-018-6991-7.
  • Wang, J., Xiao, H.-W., Ye, J.-H., Wang, J., Raghavan, V. (2019). Ultrasound Pretreatment to Enhance Drying Kinetics of Kiwifruit (Actinidia deliciosa) Slices: Pros and Cons. Food and Bioprocess Technology, 12(5), 865-876, doi:10.1007/s11947-019-02256-4.
  • Wang, Y., Li, X., Chen, X., Li, B., Mao, X., Miao, J., Zhao, C., Huang, L., Gao, W. (2018). Effects of hot air and microwave-assisted drying on drying kinetics, physicochemical properties, and energy consumption of chrysanthemum. Chemical Engineering and Processing - Process Intensification, 129, 84-94, doi:10.1016/j.cep.2018.03.020.
  • Wojdyło, A., Figiel, A., Oszmianski, J. (2009). Effect of Drying Methods with the Application of Vacuum Microwaves on the Bioactive Compounds, Color, and Antioxidant Activity of Strawberry Fruits. Journal of Agricultural and Food Chemistry, 57, 1337-1343.
  • Zhu, A., Shen, X. (2014). The model and mass transfer characteristics of convection drying of peach slices. International Journal of Heat and Mass Transfer, 72, 345-351, doi:10.1016/j.ijheatmasstransfer.2014.01.001.

EFFECT OF ULTRASOUND ASSISTED OSMOTIC DEHYDRATION PRE-TREATMENT ON DRYING KINETICS AND SOME FUNCTIONAL PROPERTIES OF PUMPKIN (Cucurbita moschata)

Year 2022, Volume: 47 Issue: 5, 874 - 888, 30.10.2022
https://doi.org/10.15237/gida.GD22065

Abstract

In this study, the effect of ultrasound assisted osmotic dehydration (US-OD) pretreatment on drying kinetics and some functional properties of pumpkin (Cucurbita moschata) were investigated. The samples were dehydrated by cavitation (45 kHz, 90 minutes) in an ultrasonic bath containing sugar solution with three different concentrations (12.5%, 25% and 50%) and then dried with oven at 60oC. With the US-OD process, the highest water loss and solid gain were detected in the sample dehydrated using osmotic solution with 50% concentration. Depending on the sugar solution concentration of the US-OD process, the drying time was shortened by approximately 180 min compared to the control sample. However, a decrease in the rehydration rate was observed depending on the sugar concentration of osmotic solution. The highest total phenolic content (120.08 mg GAE/100 g dry weight) and antioxidant capacity (38.21%) were determined in the sample dehydrated in osmotic solution with 50% concentration and dried. When the outputs obtained from the study were adapted to the mathematical models, it was concluded that the best describing model drying of the US-OD pre-treated pumpkin was the Page model.

References

  • Abraão, A. S., Lemos, A. M., Vilela, A., Sousa, J. M., Nunes, F. M. (2013). Influence of osmotic dehydration process parameters on the quality of candied pumpkins. Food and Bioproducts Processing, 91(4), 481-494, doi:10.1016/j.fbp.2013.04.006.
  • Ahmad, F., Zaidi, S. (2020). Osmotic Dehydration and Ultrasound Assisted Osmotic Dehydration of Fruits and Vegetables: A Review. International Journal of Tropical Agriculture, 38(4), 417-421.
  • Amami, E., Khezami, W., Mezrigui, S., Badwaik, L. S., Bejar, A. K., Perez, C. T., Kechaou, N. (2017). Effect of ultrasound-assisted osmotic dehydration pretreatment on the convective drying of strawberry. Ultrasonics Sonochemistry, 36, 286-300, doi:10.1016/j.ultsonch.2016.12.007.
  • Aral, S., Bese, A. V. (2016). Convective drying of hawthorn fruit (Crataegus spp.): Effect of experimental parameters on drying kinetics, color, shrinkage, and rehydration capacity. Food Chemistry, 210, 577-584, doi:10.1016/j.foodchem.2016.04.128.
  • Atiqure Rahman, S. M., Enamul Hoque, M., Rahman, S., Hasanuzzaman, M. (2015). Osmotic Dehydration of Pumpkin Using Response Surface Methodology - Influences of Operating Conditions on Water Loss and Solute Gain. Journal of Bioprocessing & Biotechniques, 5(5).
  • Azarpazhooh, E., Sharayei, P., Ramaswamy, H. S. (2020). Optimization of ultrasound-assisted osmotic treatment of Aleo vera gel impregnated with grape pomace phenolic compounds using response surface methodology. Agricultural Engineering International: CIGR Journal, 22(3), 202-212.
  • Bchir, B., Bouaziz, M. A., Ettaib, R., Sebii, H., Danthine, S., Blecker, C., Besbes, S., Attia, H. (2020). Optimization of ultrasound‐assisted osmotic dehydration of pomegranate seeds (Punica granatum L.) using response surface methodology. Journal of Food Processing and Preservation, 44(9), doi:10.1111/jfpp.14657.
  • Bozkir, H., Ergün, A. R. (2020). Effect of sonication and osmotic dehydration applications on the hot air drying kinetics and quality of persimmon. Lwt, 131, 109704, doi:10.1016/j.lwt.2020.109704.
  • Bozkir, H., Rayman Ergun, A., Serdar, E., Metin, G., Baysal, T. (2019). Influence of ultrasound and osmotic dehydration pretreatments on drying and quality properties of persimmon fruit. Ultrason Sonochem, 54, 135-141, doi:10.1016/j.ultsonch.2019.02.006.
  • Carvalho, G. R., Rojas, M. L., Silveira, I., Augusto, P. E. D. (2020). Drying Accelerators to Enhance Processing and Properties: Ethanol, Isopropanol, Acetone and Acetic Acid as Pre-treatments to Convective Drying of Pumpkin. Food and Bioprocess Technology, 13(11), 1984-1996, doi:10.1007/s11947-020-02542-6.
  • Corrêa, J. L. G., Justus, A., de Oliveira, L. F., Alves, G. E. (2015). Osmotic Dehydration of Tomato Assisted by Ultrasound: Evaluation of the Liquid Media on Mass Transfer and Product Quality. International Journal of Food Engineering, 11(4), 505-516, doi:10.1515/ijfe-2015-0083.
  • Elhussein, E. A. A., Şahin, S. (2018). Drying behaviour, effective diffusivity and energy of activation of olive leaves dried by microwave, vacuum and oven drying methods. Heat and Mass Transfer, 54, 1901-1911, doi:10.1007/s00231-018-2278-6.
  • Fan, K., Zhang, M., Bhandari, B. (2019). Osmotic-ultrasound dehydration pretreatment improves moisture adsorption isotherms and water state of microwave-assisted vacuum fried purple-fleshed sweet potato slices. Food and Bioproducts Processing, 115, 154-164, doi:10.1016/j.fbp.2019.03.011.
  • Fernandes, F. A. N., Linhares, F. E., Rodrigues, S. (2008). Ultrasound as pre-treatment for drying of pineapple. Ultrasonics Sonochemistry, 15(6), 1049-1054, doi:10.1016/j.ultsonch.2008.03.009.
  • Garcia-Noguera, J., Oliveira, F. I. P., Gallão, M. I., Weller, C. L., Rodrigues, S., Fernandes, F. A. N. (2010). Ultrasound-Assisted Osmotic Dehydration of Strawberries: Effect of Pretreatment Time and Ultrasonic Frequency. Drying Technology, 28(2), 294-303, doi:10.1080/07373930903530402.
  • Gliemmo, M. F., Latorre, M. E., Gerschenson, L. N., Campos, C. A. (2009). Color stability of pumpkin (Cucurbita moschata, Duchesne ex Poiret) puree during storage at room temperature: effect of pH, potassium sorbate, ascorbic acid and packaging material. LWT - Food Science and Technology, 42, 196-201.
  • Goula, A. M., Kokolaki, M., Daftsiou, E. (2017). Use of ultrasound for osmotic dehydration. The case of potatoes. Food and Bioproducts Processing, 105, 157-170, doi:10.1016/j.fbp.2017.07.008.
  • Hashemi, S. M. B., Jafarpour, D. (2021). Antimicrobial and antioxidant properties of Saturn peach subjected to ultrasound-assisted osmotic dehydration. Journal of Food Measurement and Characterization, 15(3), 2516-2523, doi:10.1007/s11694-021-00842-9.
  • Horuz, E., Maskan, M. (2013). Hot air and microwave drying of pomegranate (Punica granatum L.) arils. Journal of Food Science and Technology, 52(1), 285-293, doi:10.1007/s13197-013-1032-9.
  • Hosseinzadeh Samani, B., Khodadadi, A., Rostami, S., Lorigooini, Z. (2021). Investigation and optimization of the effect of osmotic‐ultrasound drying pretreatment on qualitative properties and process energy consumption of Cornus mas. Journal of Food Processing and Preservation, 45(5), doi:10.1111/jfpp.15377.
  • İlter, I., Akyıl, S., Devseren, E., Okut, D., Koç, M., Kaymak Ertekin, F. (2018). Microwave and hot air drying of garlic puree: drying kinetics and quality characteristics. Heat and Mass Transfer, 54(7), 2101-2112, doi:10.1007/s00231-018-2294-6.
  • Jansrimanee, S., Lertworasirikul, S. (2020). Synergetic effects of ultrasound and sodium alginate coating on mass transfer and qualities of osmotic dehydrated pumpkin. Ultrason Sonochem, 69, 105256, doi:10.1016/j.ultsonch.2020.105256.
  • Jia, Y., Khalifa, I., Hu, L., Zhu, W., Li, J., Li, K., Li, C. (2019). Influence of three different drying techniques on persimmon chips’ characteristics: A comparison study among hot-air, combined hot-air-microwave, and vacuum-freeze drying techniques. Food and Bioproducts Processing, 118, 67-76, doi:10.1016/j.fbp.2019.08.018.
  • Kek, S. P., Chin, N. L., Yusof, Y. A. (2013). Direct and indirect power ultrasound assisted pre-osmotic treatments in convective drying of guava slices. Food and Bioproducts Processing, 91, 495-506, doi:10.1016/j.fbp.2013.05.003.
  • Li, Y., Wang, X., Wu, Z., Wan, N., Ming, Y. (2020). Dehydration of hawthorn fruit juices using ultrasound-assisted vacuum drying. Ultrasonics Sonochemistry, 68, doi:10.1016/j.ultsonch.2020.105219.
  • Liu, Y., Wu, J., Chong, C., Miao, S. (2014). Ultrasound Assisted Osmotic Dehydration as Pretreatment for Hot-air Drying of Carrot. Food Science and Technology Research, 20(1), 31-41, doi:10.3136/fstr.20.31.
  • Mokhtarian, M., Heydari Majd, M., Koushki, F., Bakhshabadi, H., Daraei Garmakhany, A., Rashidzadeh, S. (2014). Optimisation of pumpkin mass transfer kinetic during osmotic dehydration using artificial neural network and response surface methodology modelling. Quality Assurance and Safety of Crops & Foods, 6(2), 201-214, doi:10.3920/qas2012.0121.
  • Nawirska, A., Figiel, A., Kucharska, A. Z., Sokół-Łetowska, A., Biesiada, A. (2009). Drying kinetics and quality parameters of pumpkin slices dehydrated using different methods. Journal of Food Engineering, 94, 14-20.
  • Nowacka, M., Dadan, M., Tylewicz, U. (2021). Current Applications of Ultrasound in Fruit and Vegetables Osmotic Dehydration Processes. Applied Sciences, 11(3), 1269, doi:10.3390/app11031269.
  • Pantelidou, D., Gerogiannis, K., Goula, A. M., Gonas, C. (2021). Ultrasound-Assisted Osmotic Dehydration as a Method for Supplementing Potato with Unused Chokeberries Phenolics. Food and Bioprocess Technology, 14(12), 2231-2247, doi:10.1007/s11947-021-02720-0.
  • Peleg, M. (1988). An empirical model for the description of moisture sorption curves. Journal of Food Science, 53(4), 1216-1217.
  • Prithani, R., Dash, K. K. (2020). Mass transfer modelling in ultrasound assisted osmotic dehydration of kiwi fruit. Innovative Food Science & Emerging Technologies, 64, 102407, doi:10.1016/j.ifset.2020.102407.
  • Rahaman, A., Zeng, X. A., Kumari, A., Rafiq, M., Siddeeg, A., Manzoor, M. F., Baloch, Z., Ahmed, Z. (2019). Influence of ultrasound-assisted osmotic dehydration on texture, bioactive compounds and metabolites analysis of plum. Ultrason Sonochem, 58, 104643, doi:10.1016/j.ultsonch.2019.104643.
  • Rodrigues, S., Oliveira, F. I. P., Gallão, M. I., Fernandes, F. A. N. (2009). Effect of Immersion Time in Osmosis and Ultrasound on Papaya Cell Structure during Dehydration. Drying Technology, 27(2), 220-225, doi:10.1080/07373930802605883.
  • Sakooei-Vayghan, R., Peighambardoust, S. H., Hesari, J., Soltanzadeh, M., Peressini, D. (2020). Properties of Dried Apricots Pretreated by Ultrasound-Assisted Osmotic Dehydration and Application of Active Coatings. Food Technol Biotechnol, 58(3), 249-259, doi:10.17113/ftb.58.03.20.6471.
  • Santos, K. C., Guedes, J. S., Rojas, M. L., Carvalho, G. R., Augusto, P. E. D. (2021). Enhancing carrot convective drying by combining ethanol and ultrasound as pre-treatments: Effect on product structure, quality, energy consumption, drying and rehydration kinetics. Ultrasonics Sonochemistry, 70, 105304, doi:10.1016/j.ultsonch.2020.105304.
  • Shekar, F., Javadi, A. (2019). The Effect of Ultrasound-Assisted Osmotic Dehydration Pretreatment on the Convective Drying of Apple Slices (var.Golab). Journal of Food Biosciences and Technology, 9(2), 83-94.
  • Simpson, R., Ramírez, C., Nuñez, H., Jaques, A., Almonacid, S. (2017). Understanding the success of Page's model and related empirical equations in fitting experimental data of diffusion phenomena in food matrices. Trends in Food Science & Technology, 62, 194-201, doi:10.1016/j.tifs.2017.01.003.
  • Singh, R. P., Chidambara Murthy, K. N., Jayaprakasha, G. K. (2002). Studies on the antioxidant activity of pomegranate (Punica granatum) peel and seed extracts using in vitro models. Journal of Agricultural and Food Chemistry, 50(1), 81-86.
  • Tayyab Rashid, M., Ahmed Jatoi, M., Safdar, B., Wali, A., Muhammad Aadil, R., Sarpong, F., Ma, H. (2020). Modeling the drying of ultrasound and glucose pretreated sweet potatoes: The impact on phytochemical and functional groups. Ultrason Sonochem, 68, 105226, doi:10.1016/j.ultsonch.2020.105226.
  • Tekin, Z. H., Baslar, M. (2018). The effect of ultrasound-assisted vacuum drying on the drying rate and quality of red peppers. Journal of Thermal Analysis and Calorimetry, 132(2), 1131-1143, doi:10.1007/s10973-018-6991-7.
  • Wang, J., Xiao, H.-W., Ye, J.-H., Wang, J., Raghavan, V. (2019). Ultrasound Pretreatment to Enhance Drying Kinetics of Kiwifruit (Actinidia deliciosa) Slices: Pros and Cons. Food and Bioprocess Technology, 12(5), 865-876, doi:10.1007/s11947-019-02256-4.
  • Wang, Y., Li, X., Chen, X., Li, B., Mao, X., Miao, J., Zhao, C., Huang, L., Gao, W. (2018). Effects of hot air and microwave-assisted drying on drying kinetics, physicochemical properties, and energy consumption of chrysanthemum. Chemical Engineering and Processing - Process Intensification, 129, 84-94, doi:10.1016/j.cep.2018.03.020.
  • Wojdyło, A., Figiel, A., Oszmianski, J. (2009). Effect of Drying Methods with the Application of Vacuum Microwaves on the Bioactive Compounds, Color, and Antioxidant Activity of Strawberry Fruits. Journal of Agricultural and Food Chemistry, 57, 1337-1343.
  • Zhu, A., Shen, X. (2014). The model and mass transfer characteristics of convection drying of peach slices. International Journal of Heat and Mass Transfer, 72, 345-351, doi:10.1016/j.ijheatmasstransfer.2014.01.001.
There are 45 citations in total.

Details

Primary Language Turkish
Subjects Food Engineering
Journal Section Articles
Authors

Osman Gül 0000-0003-1620-4246

Nilüfer Açıkgöz 0000-0002-8473-9560

Latife Betül Gül 0000-0002-4732-7727

Publication Date October 30, 2022
Published in Issue Year 2022 Volume: 47 Issue: 5

Cite

APA Gül, O., Açıkgöz, N., & Gül, L. B. (2022). ULTRASES DESTEKLİ OZMOTİK DEHİDRASYON ÖN İŞLEMİNİN BALKABAĞI (Cucurbita moschata) KURUTMA KİNETİĞİ VE BAZI FONKSİYONEL ÖZELLİKLERİ ÜZERİNE ETKİSİ. Gıda, 47(5), 874-888. https://doi.org/10.15237/gida.GD22065
AMA Gül O, Açıkgöz N, Gül LB. ULTRASES DESTEKLİ OZMOTİK DEHİDRASYON ÖN İŞLEMİNİN BALKABAĞI (Cucurbita moschata) KURUTMA KİNETİĞİ VE BAZI FONKSİYONEL ÖZELLİKLERİ ÜZERİNE ETKİSİ. The Journal of Food. October 2022;47(5):874-888. doi:10.15237/gida.GD22065
Chicago Gül, Osman, Nilüfer Açıkgöz, and Latife Betül Gül. “ULTRASES DESTEKLİ OZMOTİK DEHİDRASYON ÖN İŞLEMİNİN BALKABAĞI (Cucurbita Moschata) KURUTMA KİNETİĞİ VE BAZI FONKSİYONEL ÖZELLİKLERİ ÜZERİNE ETKİSİ”. Gıda 47, no. 5 (October 2022): 874-88. https://doi.org/10.15237/gida.GD22065.
EndNote Gül O, Açıkgöz N, Gül LB (October 1, 2022) ULTRASES DESTEKLİ OZMOTİK DEHİDRASYON ÖN İŞLEMİNİN BALKABAĞI (Cucurbita moschata) KURUTMA KİNETİĞİ VE BAZI FONKSİYONEL ÖZELLİKLERİ ÜZERİNE ETKİSİ. Gıda 47 5 874–888.
IEEE O. Gül, N. Açıkgöz, and L. B. Gül, “ULTRASES DESTEKLİ OZMOTİK DEHİDRASYON ÖN İŞLEMİNİN BALKABAĞI (Cucurbita moschata) KURUTMA KİNETİĞİ VE BAZI FONKSİYONEL ÖZELLİKLERİ ÜZERİNE ETKİSİ”, The Journal of Food, vol. 47, no. 5, pp. 874–888, 2022, doi: 10.15237/gida.GD22065.
ISNAD Gül, Osman et al. “ULTRASES DESTEKLİ OZMOTİK DEHİDRASYON ÖN İŞLEMİNİN BALKABAĞI (Cucurbita Moschata) KURUTMA KİNETİĞİ VE BAZI FONKSİYONEL ÖZELLİKLERİ ÜZERİNE ETKİSİ”. Gıda 47/5 (October 2022), 874-888. https://doi.org/10.15237/gida.GD22065.
JAMA Gül O, Açıkgöz N, Gül LB. ULTRASES DESTEKLİ OZMOTİK DEHİDRASYON ÖN İŞLEMİNİN BALKABAĞI (Cucurbita moschata) KURUTMA KİNETİĞİ VE BAZI FONKSİYONEL ÖZELLİKLERİ ÜZERİNE ETKİSİ. The Journal of Food. 2022;47:874–888.
MLA Gül, Osman et al. “ULTRASES DESTEKLİ OZMOTİK DEHİDRASYON ÖN İŞLEMİNİN BALKABAĞI (Cucurbita Moschata) KURUTMA KİNETİĞİ VE BAZI FONKSİYONEL ÖZELLİKLERİ ÜZERİNE ETKİSİ”. Gıda, vol. 47, no. 5, 2022, pp. 874-88, doi:10.15237/gida.GD22065.
Vancouver Gül O, Açıkgöz N, Gül LB. ULTRASES DESTEKLİ OZMOTİK DEHİDRASYON ÖN İŞLEMİNİN BALKABAĞI (Cucurbita moschata) KURUTMA KİNETİĞİ VE BAZI FONKSİYONEL ÖZELLİKLERİ ÜZERİNE ETKİSİ. The Journal of Food. 2022;47(5):874-88.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/