Research Article
BibTex RIS Cite

MATHEMATICAL MODELING OF CONCENTRATIONS OF GRAPE, POMEGRANATE AND BLACK CARROT JUICES BY VARIOUS METHODS

Year 2019, Volume: 44 Issue: 6, 1092 - 1105, 06.10.2019
https://doi.org/10.15237/gida.GD19080

Abstract

In the present
study, grape, pomegranate and black carrot juices were concentrated to 65 °Brix
(Bx) from initial concentrations of 15.93, 13.91 and 11.23 °Bx respectively.
The concentration kinetics of the juices were investigated using a rotary
vacuum evaporator at 80°C, a microwave vacuum evaporator at 180 W and 300 W and
osmotic distillation (OD) at room temperature. Experimental data were compared
according to three statistical parameters: the correlation coefficient (R
2),
reduced chi-squared (χ2) value, and root mean-square error (RMSE), with values
predicted by 13 models. Midilli model exhibited a better fit for the
concentration kinetics (R
2 ≥ 0.9990; χ2 ≤ 0.4588; RMSE ≤
0.5350) than the other models, in general. This model was followed by the
logarithmic, Page and two-term exponential models. The logarithmic model
exhibited slightly better fitting for the thermal concentration method than
Midilli model. The lowest energy consumption (1.334-1.540 kWh) was determined
for the OD technique.

Supporting Institution

Akdeniz University

Project Number

FBA-2017-2810

Thanks

This work was partially supported by The Scientific Research Projects Coordination Unit of Akdeniz University (Antalya, Turkey) (Project Number: FBA-2017-2810)

References

  • 1. Jiao B, Cassano A, Drioli E. Recent advances on membrane processes for the concentration of fruit juices: a review. J. Food Eng. 2004; 63(3), 303-324. https://doi.org/10.1016/j.jfoodeng.2003.08.003
  • 2. Bánvölgyi S, Horváth S, Stefanovits-Bányai É, Békássy-Molnár E, Vatai G. Integrated membrane process for blackcurrant (Ribes nigrum L.) juice concentration. Desalination 2009; 241(1-3), 281-287. https://doi.org/10.1016/j.desal.2007.11.088
  • 3. Dincer C, Tontul I, Topuz A A comparative study of black mulberry juice concentrates by thermal evaporation and osmotic distillation as influenced by storage. Innovative Food Sci. Emerg. Technol. 2016; 38, 57-64. https://doi.org/10.1016/j.ifset.2016.09.012
  • 4. Bozkir H, Baysal T. Concentration of apple juice using a vacuum microwave evaporator as a novel technique: Determination of quality characteristics. J. Food Process Eng. 2017; 40(5), e12535. https://doi.org/10.1111/jfpe.12535
  • 5. Assawarachan R, Noomhorm A. Effect of operating condition on the kinetic of color change of concentrated pineapple juice by microwave vacuum evaporation. J. Food Agric. Environ, 2008; 6(3&4), 47-53.
  • 6. Assawarachan R, Noomhorm A. Mathematical models for vacuum‐microwave concentration behavior of pineapple juice. J. Food Process Eng, 2011; 34(5), 1485-1505. https://doi.org/10.1111/j.1745-4530.2009.00536.x
  • 7. Fazaeli M, Hojjatpanah G, Emam-Djomeh Z. Effects of heating method and conditions on the evaporation rate and quality attributes of black mulberry (Morus nigra) juice concentrate. J. Food Sci. Technol. 2013; 50(1), 35-43. https://doi.org/10.1007/s13197-011-0246-y
  • 8. Fazaeli M, Yousefi S, Emam-Djomeh Z. Investigation on the effects of microwave and conventional heating methods on the phytochemicals of pomegranate (Punica granatum L.) and black mulberry juices. Food Res. Int. 2013; 50(2), 568-573. https://doi.org/10.1016/j.foodres.2011.03.043
  • 9. Yousefi S, Emam-Djomeh Z, Mousavi S M A, Askari G R. Comparing the effects of microwave and conventional heating methods on the evaporation rate and quality attributes of pomegranate (Punica granatum L.) juice concentrate. Food Bioprocess Technol. 2012; 5(4), 1328-1339. https://doi.org/10.1007/s11947-011-0603-x
  • 10. Assawarachan R, Noomhorm A. Changes in color and rheological behavior of pineapple concentrate through various evaporation methods. Int. J. Agric. Biol. Eng. 2010; 3(1), 74-84.
  • 11. Yaldýz O, Ertekýn C. Thin layer solar drying of some vegetables. Drying Technol. 2001; 19(3-4), 583-597. https://doi.org/10.1081/DRT-100103936
  • 12. Delgado T, Pereira J A, Baptista P, Casal S, Ramalhosa E. Shell's influence on drying kinetics, color and volumetric shrinkage of Castanea sativa Mill. fruits. Food Res. Int. 2014; 55, 426-435. https://doi.org/10.1016/j.foodres.2013.11.043
  • 13. Demiray E, Tulek Y. Drying characteristics of garlic (Allium sativum L) slices in a convective hot air dryer. Heat Mass Transfer. 2014; 50(6), 779-786. https://doi.org/10.1007/s00231-013-1286-9
  • 14. Malekjani N, Emam-Djomeh Z, Hashemabadi S H, Askari G R. Modeling Thin Layer Drying Kinetics, Moisture Diffusivity and Activation Energy of Hazelnuts during Microwave-Convective Drying. Int. J. Food Eng. 2018;14(2). https://doi.org/10.1515/ijfe-2017-0100
  • 15. Karabacak, A. Ö., Suna, S., Tamer, C. E., Çopur, Ö. U. Effects of oven, microwave and vacuum drying on drying characteristics, colour, total phenolic content and antioxidant capacity of celery slices. Qual. Assur. Saf. Crops Food 2018; 10(2), 193-205. https://doi.org/10.3920/QAS2017.1197
  • 16. Goula A M, Tzika A, Adamopoulos K G. Kinetic Models of Evaporation and Total Phenolics Degradation during Pomegranate Juice Concentration. Int. J. Food Eng 20104; 10(3), 383-392. https://doi.org/10.1515/ijfe-2014-0016
  • 17. Kırca A, Özkan M, Cemeroglu B. Stability of black carrot anthocyanins in various fruit juices and nectars. Food Chem. 2006; 97(4), 598-605. https://doi.org/10.1016/j.foodchem.2005.05.036
  • 18. Tajchakavit S, Boye J I, Bélanger D, Couture R. Kinetics of haze formation and factors influencing the development of haze in clarified apple juice. Food Res. Int. 2001; 34(5), 431-440. https://doi.org/10.1016/S0963-9969(00)00188-5
  • 19. Cissé M, Vaillant F, Bouquet S, Pallet D, Lutin F, Reynes M, Dornier M. Athermal concentration by osmotic evaporation of roselle extract, apple and grape juices and impact on quality. Innovative Food Sci. Emerg. Technol. 2011; 12(3), 352-360. https://doi.org/10.1016/j.ifset.2011.02.009
  • 20. Onsekizoglu P. Production of high quality clarified pomegranate juice concentrate by membrane processes. J. Membr. Sci. 2013; 442, 264-271. https://doi.org/10.1016/j.memsci.2013.03.061
  • 21. Romero J, Rios G M, Sanchez J, Bocquet S, Savedra A. Modeling heat and mass transfer in osmotic evaporation process. AlChE J. 2003; 49(2), 300-308. https://doi.org/10.1002/aic.690490203
  • 22. Valdés H, Romero J, Saavedra A, Plaza A, Bubnovich V. Concentration of noni juice by means of osmotic distillation. J. Membr. Sci. 2009; 330(1-2), 205-213. https://doi.org/10.1016/j.memsci.2008.12.053
  • 23. Onsekizoglu Bagci P. Potential of membrane distillation for production of high quality fruit juice concentrate. Crit. Rev. Food Sci. Nutr. 2015; 55(8), 1098-1113. https://doi.org/10.1080/10408398.2012.685116
  • 24. Midilli A, Kucuk H, Yapar Z. A new model for single-layer drying. Drying Technol. 2002; 20(7), 1503-1513. https://doi.org/10.1081/DRT-120005864
  • 25. Swain S, Samuel D V K, Bal L M, Kar A, Sahoo G P. Modeling of microwave assisted drying of osmotically pretreated red sweet pepper (Capsicum annum L.). Food Sci. Biotechnol. 2012; 21(4), 969-978. https://doi.org/10.1007/s10068-012-0127-9
  • 26. Vega‐Gálvez A, Lemus‐Mondaca R, Bilbao‐Sainz C, Yagnam F, Rojas A. Mass transfer kinetics during convective drying of red pepper var. Hungarian (Capsicum annuum L.): mathematical modeling and evaluation of kinetic parameters. J. Food Process Eng. 2008; 31(1), 120-137. https://doi.org/10.1111/j.1745-4530.2007.00145.x

ÜZÜM, NAR VE KARA HAVUÇ SULARININ FARKLI YÖNTEMLERLE KONSANTRASYONUNUN MATEMATİKSEL MODELLENMESİ

Year 2019, Volume: 44 Issue: 6, 1092 - 1105, 06.10.2019
https://doi.org/10.15237/gida.GD19080

Abstract

Bu çalışmada
başlangıç °Briks değerleri sırasıyla 15.93, 13.91 ve 11.23 olan üzüm, nar ve
siyah havuç suları 65 °Briks değerine kadar konsantre edilmiştir. Meyve
sularının konsantrasyon kinetik değerleri rotary vakum evoparatörde 80 ˚C’de,
mikrodalga vakum evaporatörde 180 ve 300 W’da, ozmotik distilasyonda ise oda
sıcaklığında çalışılarak belirlenmiştir. Elde edilen deneysel verilerin 13
farklı modele uygunluğu, korelasyon katsayısı (R
2), azaltılmış
ki-kare (χ2) değeri ve hata kareler ortalamasının karekökü (RMSE) olmak üzere 3
istatistiksel parametreye göre karşılaştırılmıştır. Konsantrasyon kinetiği
açısından Midilli modeli (R
2 ≥ 0.9990; χ2 ≤ 0.4588; RMSE
≤ 0.5350) diğer modellerden genel olarak daha uyumlu bulunmuş olup, bu modeli
logaritmik, Page ve iki terimli eksponansiyel modelleri izlemiştir. Termal
konsantrasyon yöntemi için logaritmik modelin Midilli modeline göre daha uyumlu
olduğu görülmüştür. En düşük enerji tüketimi (1.334-1.540 kWh) ise ozmotik distilasyon
tekniğinde belirlenmiştir.
  

Project Number

FBA-2017-2810

References

  • 1. Jiao B, Cassano A, Drioli E. Recent advances on membrane processes for the concentration of fruit juices: a review. J. Food Eng. 2004; 63(3), 303-324. https://doi.org/10.1016/j.jfoodeng.2003.08.003
  • 2. Bánvölgyi S, Horváth S, Stefanovits-Bányai É, Békássy-Molnár E, Vatai G. Integrated membrane process for blackcurrant (Ribes nigrum L.) juice concentration. Desalination 2009; 241(1-3), 281-287. https://doi.org/10.1016/j.desal.2007.11.088
  • 3. Dincer C, Tontul I, Topuz A A comparative study of black mulberry juice concentrates by thermal evaporation and osmotic distillation as influenced by storage. Innovative Food Sci. Emerg. Technol. 2016; 38, 57-64. https://doi.org/10.1016/j.ifset.2016.09.012
  • 4. Bozkir H, Baysal T. Concentration of apple juice using a vacuum microwave evaporator as a novel technique: Determination of quality characteristics. J. Food Process Eng. 2017; 40(5), e12535. https://doi.org/10.1111/jfpe.12535
  • 5. Assawarachan R, Noomhorm A. Effect of operating condition on the kinetic of color change of concentrated pineapple juice by microwave vacuum evaporation. J. Food Agric. Environ, 2008; 6(3&4), 47-53.
  • 6. Assawarachan R, Noomhorm A. Mathematical models for vacuum‐microwave concentration behavior of pineapple juice. J. Food Process Eng, 2011; 34(5), 1485-1505. https://doi.org/10.1111/j.1745-4530.2009.00536.x
  • 7. Fazaeli M, Hojjatpanah G, Emam-Djomeh Z. Effects of heating method and conditions on the evaporation rate and quality attributes of black mulberry (Morus nigra) juice concentrate. J. Food Sci. Technol. 2013; 50(1), 35-43. https://doi.org/10.1007/s13197-011-0246-y
  • 8. Fazaeli M, Yousefi S, Emam-Djomeh Z. Investigation on the effects of microwave and conventional heating methods on the phytochemicals of pomegranate (Punica granatum L.) and black mulberry juices. Food Res. Int. 2013; 50(2), 568-573. https://doi.org/10.1016/j.foodres.2011.03.043
  • 9. Yousefi S, Emam-Djomeh Z, Mousavi S M A, Askari G R. Comparing the effects of microwave and conventional heating methods on the evaporation rate and quality attributes of pomegranate (Punica granatum L.) juice concentrate. Food Bioprocess Technol. 2012; 5(4), 1328-1339. https://doi.org/10.1007/s11947-011-0603-x
  • 10. Assawarachan R, Noomhorm A. Changes in color and rheological behavior of pineapple concentrate through various evaporation methods. Int. J. Agric. Biol. Eng. 2010; 3(1), 74-84.
  • 11. Yaldýz O, Ertekýn C. Thin layer solar drying of some vegetables. Drying Technol. 2001; 19(3-4), 583-597. https://doi.org/10.1081/DRT-100103936
  • 12. Delgado T, Pereira J A, Baptista P, Casal S, Ramalhosa E. Shell's influence on drying kinetics, color and volumetric shrinkage of Castanea sativa Mill. fruits. Food Res. Int. 2014; 55, 426-435. https://doi.org/10.1016/j.foodres.2013.11.043
  • 13. Demiray E, Tulek Y. Drying characteristics of garlic (Allium sativum L) slices in a convective hot air dryer. Heat Mass Transfer. 2014; 50(6), 779-786. https://doi.org/10.1007/s00231-013-1286-9
  • 14. Malekjani N, Emam-Djomeh Z, Hashemabadi S H, Askari G R. Modeling Thin Layer Drying Kinetics, Moisture Diffusivity and Activation Energy of Hazelnuts during Microwave-Convective Drying. Int. J. Food Eng. 2018;14(2). https://doi.org/10.1515/ijfe-2017-0100
  • 15. Karabacak, A. Ö., Suna, S., Tamer, C. E., Çopur, Ö. U. Effects of oven, microwave and vacuum drying on drying characteristics, colour, total phenolic content and antioxidant capacity of celery slices. Qual. Assur. Saf. Crops Food 2018; 10(2), 193-205. https://doi.org/10.3920/QAS2017.1197
  • 16. Goula A M, Tzika A, Adamopoulos K G. Kinetic Models of Evaporation and Total Phenolics Degradation during Pomegranate Juice Concentration. Int. J. Food Eng 20104; 10(3), 383-392. https://doi.org/10.1515/ijfe-2014-0016
  • 17. Kırca A, Özkan M, Cemeroglu B. Stability of black carrot anthocyanins in various fruit juices and nectars. Food Chem. 2006; 97(4), 598-605. https://doi.org/10.1016/j.foodchem.2005.05.036
  • 18. Tajchakavit S, Boye J I, Bélanger D, Couture R. Kinetics of haze formation and factors influencing the development of haze in clarified apple juice. Food Res. Int. 2001; 34(5), 431-440. https://doi.org/10.1016/S0963-9969(00)00188-5
  • 19. Cissé M, Vaillant F, Bouquet S, Pallet D, Lutin F, Reynes M, Dornier M. Athermal concentration by osmotic evaporation of roselle extract, apple and grape juices and impact on quality. Innovative Food Sci. Emerg. Technol. 2011; 12(3), 352-360. https://doi.org/10.1016/j.ifset.2011.02.009
  • 20. Onsekizoglu P. Production of high quality clarified pomegranate juice concentrate by membrane processes. J. Membr. Sci. 2013; 442, 264-271. https://doi.org/10.1016/j.memsci.2013.03.061
  • 21. Romero J, Rios G M, Sanchez J, Bocquet S, Savedra A. Modeling heat and mass transfer in osmotic evaporation process. AlChE J. 2003; 49(2), 300-308. https://doi.org/10.1002/aic.690490203
  • 22. Valdés H, Romero J, Saavedra A, Plaza A, Bubnovich V. Concentration of noni juice by means of osmotic distillation. J. Membr. Sci. 2009; 330(1-2), 205-213. https://doi.org/10.1016/j.memsci.2008.12.053
  • 23. Onsekizoglu Bagci P. Potential of membrane distillation for production of high quality fruit juice concentrate. Crit. Rev. Food Sci. Nutr. 2015; 55(8), 1098-1113. https://doi.org/10.1080/10408398.2012.685116
  • 24. Midilli A, Kucuk H, Yapar Z. A new model for single-layer drying. Drying Technol. 2002; 20(7), 1503-1513. https://doi.org/10.1081/DRT-120005864
  • 25. Swain S, Samuel D V K, Bal L M, Kar A, Sahoo G P. Modeling of microwave assisted drying of osmotically pretreated red sweet pepper (Capsicum annum L.). Food Sci. Biotechnol. 2012; 21(4), 969-978. https://doi.org/10.1007/s10068-012-0127-9
  • 26. Vega‐Gálvez A, Lemus‐Mondaca R, Bilbao‐Sainz C, Yagnam F, Rojas A. Mass transfer kinetics during convective drying of red pepper var. Hungarian (Capsicum annuum L.): mathematical modeling and evaluation of kinetic parameters. J. Food Process Eng. 2008; 31(1), 120-137. https://doi.org/10.1111/j.1745-4530.2007.00145.x
There are 26 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Cüneyt Dinçer 0000-0002-9160-4242

İhsan Burak Çam 0000-0002-0120-1096

Mehmet Torun 0000-0002-6287-2993

Handan Başünal Gülmez This is me 0000-0001-8473-9723

Ayhan Topuz 0000-0002-6610-9143

Project Number FBA-2017-2810
Publication Date October 6, 2019
Published in Issue Year 2019 Volume: 44 Issue: 6

Cite

APA Dinçer, C., Çam, İ. B., Torun, M., Başünal Gülmez, H., et al. (2019). MATHEMATICAL MODELING OF CONCENTRATIONS OF GRAPE, POMEGRANATE AND BLACK CARROT JUICES BY VARIOUS METHODS. Gıda, 44(6), 1092-1105. https://doi.org/10.15237/gida.GD19080
AMA Dinçer C, Çam İB, Torun M, Başünal Gülmez H, Topuz A. MATHEMATICAL MODELING OF CONCENTRATIONS OF GRAPE, POMEGRANATE AND BLACK CARROT JUICES BY VARIOUS METHODS. The Journal of Food. October 2019;44(6):1092-1105. doi:10.15237/gida.GD19080
Chicago Dinçer, Cüneyt, İhsan Burak Çam, Mehmet Torun, Handan Başünal Gülmez, and Ayhan Topuz. “MATHEMATICAL MODELING OF CONCENTRATIONS OF GRAPE, POMEGRANATE AND BLACK CARROT JUICES BY VARIOUS METHODS”. Gıda 44, no. 6 (October 2019): 1092-1105. https://doi.org/10.15237/gida.GD19080.
EndNote Dinçer C, Çam İB, Torun M, Başünal Gülmez H, Topuz A (October 1, 2019) MATHEMATICAL MODELING OF CONCENTRATIONS OF GRAPE, POMEGRANATE AND BLACK CARROT JUICES BY VARIOUS METHODS. Gıda 44 6 1092–1105.
IEEE C. Dinçer, İ. B. Çam, M. Torun, H. Başünal Gülmez, and A. Topuz, “MATHEMATICAL MODELING OF CONCENTRATIONS OF GRAPE, POMEGRANATE AND BLACK CARROT JUICES BY VARIOUS METHODS”, The Journal of Food, vol. 44, no. 6, pp. 1092–1105, 2019, doi: 10.15237/gida.GD19080.
ISNAD Dinçer, Cüneyt et al. “MATHEMATICAL MODELING OF CONCENTRATIONS OF GRAPE, POMEGRANATE AND BLACK CARROT JUICES BY VARIOUS METHODS”. Gıda 44/6 (October 2019), 1092-1105. https://doi.org/10.15237/gida.GD19080.
JAMA Dinçer C, Çam İB, Torun M, Başünal Gülmez H, Topuz A. MATHEMATICAL MODELING OF CONCENTRATIONS OF GRAPE, POMEGRANATE AND BLACK CARROT JUICES BY VARIOUS METHODS. The Journal of Food. 2019;44:1092–1105.
MLA Dinçer, Cüneyt et al. “MATHEMATICAL MODELING OF CONCENTRATIONS OF GRAPE, POMEGRANATE AND BLACK CARROT JUICES BY VARIOUS METHODS”. Gıda, vol. 44, no. 6, 2019, pp. 1092-05, doi:10.15237/gida.GD19080.
Vancouver Dinçer C, Çam İB, Torun M, Başünal Gülmez H, Topuz A. MATHEMATICAL MODELING OF CONCENTRATIONS OF GRAPE, POMEGRANATE AND BLACK CARROT JUICES BY VARIOUS METHODS. The Journal of Food. 2019;44(6):1092-105.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/