Review
BibTex RIS Cite

Sarcopenia and Nutritional Approach

Year 2020, Volume: 3 Issue: 1, 27 - 36, 30.04.2020

Abstract

Sarcopenia is characterized by decline skeletal muscle plus low muscle strength and/or physical performance. Sarcopenia was first defined as loss of muscle mass due to aging, but today chronic diseases, poor physical activity and malnutrition are among the known causes of sarcopenia. Although the exact mechanism of sarcopenia is still uncertain, it is possible that some mechanisms can be mentioned. These mechanisms are; protein synthesis, proteolysis, neuromuscular integrity, and content of muscle fat. The prevalence of sarcopenia varies between 8% and 40% according to the using diagnostic criterias. The diagnosis of sarcopenia is based on muscle mass measurements and functional tests that evaluate muscle strength or physical performance (walking or balance tests). No specific biomarker has been identified to date. Today, struggle with sarcopenia, exercise and physical activity, nutritional supportive therapy, hormonal approaches and new pharmacological agents are the most accepted and studied approaches. There are growing evidences that associating nutritional therapy with muscle mass, strength and function in the elderly and suggesting that it plays an important role in the prevention and management of sarcopenia. The aim of this review is evaluate the relationship between nutrition and sarcopenia.


References

  • 1. Nicolson TJ, Bellomo EA, Wijesekara N, et al. Insulin storage and glucose homeostasis in mice null for the granule zinc transporter ZnT8 and studies of the type 2 diabetes-associated variants. Diabetes. 2009;58(9):2070-2083.
  • 2. Hwang B, Lim J-Y, Lee J. Prevalence rate and associated factors of sarcopenic obesity in Korean elderly population. 2012;27(7):748-755.
  • 3. Baumgartner RN, Koehler KM, Gallagher D, et al. Epidemiology of sarcopenia among the elderly in New Mexico. American journal of epidemiology. 1998;147(8):755-763.
  • 4. Cruz-Jentoft AJ, Baeyens JP, Bauer JM, et al. Sarcopenia: European consensus on definition and diagnosisReport of the European Working Group on Sarcopenia in Older People. Age and ageing. 2010;39(4):412-423.
  • 5. Halil M, Ülger Z, Arıoğlu S. Sarkopeniye Yaklaşım. Hacettepe Tıp Dergisi. 2011;42:123-132.
  • 6. Walston JD. Sarcopenia in older adults. Curr Opin Rheumatol. 2012;24(6):623-627.
  • 7. Sökmen ÜN, Dişçigil G. Yaşlılıkta sarkopeni. Jour Turk Fam Phy. 2017; 8(2):49-54.
  • 8. Shafiee G, Keshtkar A, Soltani A, et al. Prevalence of sarcopenia in the world: a systematic review and meta-analysis of general population studies. J Diabetes Metab Disord. 2017;16(1):21-31.
  • 9. Halil M, Ulger Z, Varlı M, et al. Sarcopenia assessment project in the nursing homes in Turkey. Eur J Clin Nutr. 2014;68(6):690-694.
  • 10. Kuyumcu ME. Sarkopenik Yaşlı Hastalarda Ultrasonografik Olarak Kas Mimarisinin Değerlendirilmesi. T.C. HACETTEPE ÜNİVERSİTESİ TIP FAKÜLTESİ İÇ HASTALIKLARI ANABİLİM DALI GERİATRİ BİLİM DALI Tezi, Ankara, 2014.
  • 11. Muscaritoli M, Anker S, Argiles J, et al. Consensus definition of sarcopenia, cachexia and pre-cachexia: joint document elaborated by Special Interest Groups (SIG)“cachexia-anorexia in chronic wasting diseases” and “nutrition in geriatrics”. Clin Nutr. 2010;29(2):154-159.
  • 12. Frankel JE, Bean JF, Frontera WR. Exercise in the elderly: research and clinical practice. Clin Geriatr Med. 2006;22(2):239-256.
  • 13. Misic MM, Rosengren KS, Woods JA, Evans EM. Muscle quality, aerobic fitness and fat mass predict lower-extremity physical function in community-dwelling older adults. Gerontology.2007;53(5):260-266.
  • 14. Sasako T, Ueki K. Aging-related frailty and sarcopenia. Frailty/sarcopenia and insulin/IGF-1 signaling. Clin Calcium. 2018;28(9):1221-1228.
  • 15. Fan J, Kou X, Yi Yang Y, Chen N. MicroRNA-regulated proinflammatory cytokines in sarcopenia. Mediators Inflamm. 2016;2016:1-9.
  • 16. Michaud M, Balardy L, Moulis G, et al. Proinflammatory cytokines, aging, and age-related diseases. J Am Med Dir Assoc. 2013;14(12):877-882.
  • 17. Benton MJ, Whyte MD, Dyal BW. Sarcopenic obesity: strategies for management. Am J Nurs. 2011;111(12):38-44.
  • 18. Morley JE. Aging. Sarcopenia: diagnosis and treatment. J Nutr Health Aging. 2008;12(7):452-456.
  • 19. Wolfe RR, Miller SL, Miller KB. Optimal protein intake in the elderly. Clin Nutr. 2008;27(5):675-684.
  • 20. Liu CJ, Latham NK. Progressive resistance strength training for improving physical function in older adults. Cochrane Database Syst Rev. 2009(3):CD002759.
  • 21. Morley JE. Sarcopenia in the elderly. Family Practice. 2012;29(suppl_1):44-48.
  • 22. Burton LA, Sumukadas D. Optimal management of sarcopenia. Clin Interv Aging. 2010;7(5):217-228.
  • 23. Gruenewald DA, Matsumoto AM. Testosterone supplementation therapy for older men: potential benefits and risks. J Am Geriatr Soc. 2003;51(1):101-115.
  • 24. Haren MT, Siddiqui A, Armbrecht H, et al. Testosterone modulates gene expression pathways regulating nutrient accumulation, glucose metabolism and protein turnover in mouse skeletal muscle. Int J Androl. 2011;34(1):55-68.
  • 25. Kovacheva EL, Hikim AP, Shen R, et al. Testosterone supplementation reverses sarcopenia in aging through regulation of myostatin, c-Jun NH2-terminal kinase, Notch, and Akt signaling pathways. Endocrinology. 2010;151(2):628-638.
  • 26. Liguori I, Russo G, Aran L, et al. Sarcopenia: assessment of disease burden and strategies to improve outcomes. Clin Interv Aging. 2018;13:913-927.
  • 27. Keller K. Sarcopenia. Wien Med Wochenschr. 2019: 169(7-8):157-172.
  • 28. Biolo G, De Cicco M, Dal Mas V, et al. Response of muscle protein and glutamine kinetics to branched-chain–enriched amino acids in intensive care patients after radical cancer surgery. Nutrtion. 2006;22(5):475-482.
  • 29. Robinson SM, Reginster JY, Rizzoli R, et al. Does nutrition play a role in the prevention and management of sarcopenia? Clin Nutr. 2018;37(4):1121-1132.
  • 30. Houston DK, Nicklas BJ, Ding J, et al. Dietary protein intake is associated with lean mass change in older, community-dwelling adults: the Health, Aging, and Body Composition (Health ABC) Study. Am J Clin Nutr. 2008;87(1):150-155.
  • 31. Morley JE. Pharmacologic options for the treatment of sarcopenia. Calcif Tissue Int. 2016;98(4):319-333.
  • 32. Gaffney‐Stomberg E, Insogna KL, Rodriguez NR, Kerstetter JE. Increasing dietary protein requirements in elderly people for optimal muscle and bone health. J Am Geriatr Soc. 2009;57(6):1073-1079.
  • 33. Mitchell WK, Williams J, Atherton PJ, et al. Sarcopenia, dynapenia, and the impact of advancing age on human skeletal muscle size and strength; a quantitative review. Front Physiol. 2012;3:260-278.
  • 34. Wackerhage H. Sarcopenia: causes and treatments. German Journal of Sports Medicine. 2017;68(7-8):178-183.
  • 35. Lord C, Chaput J, Aubertin-Leheudre M, et al. Dietary animal protein intake: association with muscle mass index in older women. J Nutr Health Aging. 2007;11(5):383-387.
  • 36. Walrand S, Short KR, Bigelow ML, et al. Functional impact of high protein intake on healthy elderly people. Am J Physiol Endocrinol Metab. 2008;295(4):921-928.
  • 37. Bauer JM. Nutrition in older persons. Basis for functionality and quality of life. Internist( (Berl). 2011;52(8):946-954.
  • 38. Xu ZR, Tan ZJ, Zhang Q, et al. The effectiveness of leucine on muscle protein synthesis, lean body mass and leg lean mass accretion in older people: a systematic review and meta-analysis. Br J Nutr. 2015;113(1):25-34.
  • 39. Katsanos CS, Kobayashi H, Sheffield-Moore M, et al. A high proportion of leucine is required for optimal stimulation of the rate of muscle protein synthesis by essential amino acids in the elderly. Am J Physiol Endocrinol Metab. 2006;291(2):381-387.
  • 40. Rieu I, Balage M, Sornet C, et al. Leucine supplementation improves muscle protein synthesis in elderly men independently of hyperaminoacidaemia. J Physiol. 2006;575(1):305-315.
  • 41. Kim HK, Suzuki T, Saito K, et al. Effects of exercise and amino acid supplementation on body composition and physical function in community‐dwelling elderly Japanese sarcopenic women: a randomized controlled trial. J Am Geriatr Soc. 2012;60(1):16-23.
  • 42. Bischoff-Ferrari HA, Dawson-Hughes B, Staehelin HB, et al. Fall prevention with supplemental and active forms of vitamin D: a meta-analysis of randomised controlled trials. BMJ. 2009;339:3692-3713.
  • 43. Bischoff-Ferrari HA. Validated treatments and therapeutic perspectives regarding nutritherapy. J Nutr Healht Aging. 2009;13(8):737-741.
  • 44. Kalyani RR, Stein B, Valiyil R, et al. Vitamin D treatment for the prevention of falls in older adults: systematic review and meta‐analysis. J Am Geriatr Soc. 2010;58(7):1299-1310.
  • 45. Park S, Ham JO, Lee BK. A positive association of vitamin D deficiency and sarcopenia in 50 year old women, but not men. Clin Nutr. 2014;33(5):900-905.
  • 46. Beaudart C, Buckinx F, Rabenda V, et al. The effects of vitamin D on skeletal muscle strength, muscle mass, and muscle power: a systematic review and meta-analysis of randomized controlled trials. J Clin Endocrinol Metab. 2014;99(11):4336-4345.
  • 47. Takeuchi I, Yoshimura Y, Shimazu S, et al. Effects of branched-chain amino acids and vitamin D supplementation on physical function, muscle mass and strength, and nutritional status in sarcopenic older adults undergoing hospital-based rehabilitation: A multicenter randomized controlled trial. Geriatr Gerontol Int. 2019;19(1):12-17.
  • 48. Verlaan S, Maier AB, Bauer JM, et al. Sufficient levels of 25-hydroxyvitamin D and protein intake required to increase muscle mass in sarcopenic older adults–The PROVIDE study.Clin Nutr. 2018;37(2):551-557.
  • 49. Bauer JM, Verlaan S, Bautmans I, et al. Effects of a vitamin D and leucine-enriched whey protein nutritional supplement on measures of sarcopenia in older adults, the PROVIDE study: a randomized, double-blind, placebo-controlled trial. J Am Med Dir Assoc. 2015;16(9):740-747.
  • 50. Cramer JT, Cruz-Jentoft AJ, Landi F, et al. Impacts of high-protein oral nutritional supplements among malnourished men and women with sarcopenia: a multicenter, randomized, double-blinded, controlled trial. J Am Med Dir Assoc. 2016;17(11):1044-1055.
  • 51. Di Girolamo FG, Situlin R, Mazzucco S, et al. Omega-3 fatty acids and protein metabolism: enhancement of anabolic interventions for sarcopenia. Curr Opin Clin Nutr Metab Care. 2014;17(2):145-150.
  • 52. Smith GI, Atherton P, Reeds DN, et al. Dietary omega-3 fatty acid supplementation increases the rate of muscle protein synthesis in older adults: a randomized controlled trial. Am J Clin Nutr. 2010;93(2):402-412.
  • 53. Rousseau JH, Kleppinger A, Kenny AM. Self‐reported dietary intake of omega‐3 fatty acids and association with bone and lower extremity function. J Am Geriatr Soc. 2009;57(10):1781-1788.
  • 54. Abbatecola AM, Cherubini A, Guralnik JM, et al. Plasma polyunsaturated fatty acids and age-related physical performance decline. Rejuvenation Res. 2009;12(1):25-32.
  • 55. Calvani R, Miccheli A, Landi F, et al. Current nutritional recommendations and novel dietary strategies to manage sarcopenia. J Frailty Aging. 2013;2(1):38-53.
  • 56. Semba RD, Lauretani F, Ferrucci L. Carotenoids as protection against sarcopenia in older adults. Arch Biochem Biophys. 2007;458(2):141-145.
  • 57. van Dronkelaar C, van Velzen A, Abdelrazek M, et al. Minerals and sarcopenia; the role of calcium, iron, magnesium, phosphorus, potassium, selenium, sodium, and zinc on muscle mass, muscle strength, and physical performance in older adults: a systematic review. J Am Med Dir Assoc. 2018;19(1):6-11.
  • 58. Alway SE. Antioxidants and Polyphenols Mediate Mitochondrial Mediated Muscle Death Signaling in Sarcopenia. Editor; Walrand S, Nutrition and Skeletal Muscle. Academic Press, 2019, 439-94.
  • 59. Ticinesi A, Lauretani F, Milani C, et al. Aging Gut Microbiota at the Cross-Road between Nutrition, Physical Frailty, and Sarcopenia: Is There a Gut–Muscle Axis? Nutrients, 2017;9(12):1303-1337
  • 60. Buigues C, Fernández-Garrido J, Pruimboom L, et al. Effect of a prebiotic formulation on frailty syndrome: a randomized, double-blind clinical trial. Int J Mol Sci. 2016;17(6):932-953.

Sarkopeni ve Beslenme Yaklaşımı

Year 2020, Volume: 3 Issue: 1, 27 - 36, 30.04.2020

Abstract

Sarkopeni, azalan iskelet kası, azalmış kas gücü ve / veya fiziksel performans ile karakterizedir. Sarkopeni ilk olarak yaşlanmaya bağlı kas kütlesi kaybı olarak tanımlasa da günümüzde sarkopeninin bilinen nedenleri arasında kronik hastalıklar, zayıf fiziksel aktivite ve yetersiz beslenmede yer almaktadır. Sarkopeninin hala tam olarak mekanizması kesin olmamasına rağmen bazı mekanizmalardan söz edilebilmesi olasıdır. Bu mekanizmalar; protein sentezi, proteoliz, nöromuskuler bütünlük ve kas yağ içeriği ile ilgilidir. Sarkopeni prevalansı kullanılan tanı kriterlerine göre %8 ile %40 arasında değişmektedir. Sarkopeni tanısı, kas kütle ölçümlerine ve kas gücünü veya fiziksel performansı (yürüme ve denge testleri) değerlendiren fonksiyonel testlere dayanır. Bugüne kadar belirli bir biyobelirteç tanımlanmamıştır. Günümüzde sarkopeni etkileri ile mücadelede, egzersiz ve fiziksel aktivite, beslenme destek tedavisi, hormonal yaklaşımlar ve yeni farmakolojik ajanlar en çok kabul gören ve üzerinde çalışılan yaklaşımlardır. Yaşlılarda beslenme tedavisinin kas kütlesiyle, gücüyle ve fonksiyonuyla ilişkilendiren ve sarkopeninin önlenmesinde ve yönetiminde önemli bir rol oynadığını öne süren kanıtlar giderek artmaktadır. Bu derlemenin amacı beslenmenin sarkopeni üzerindeki etkisini değerlendirmektir.


References

  • 1. Nicolson TJ, Bellomo EA, Wijesekara N, et al. Insulin storage and glucose homeostasis in mice null for the granule zinc transporter ZnT8 and studies of the type 2 diabetes-associated variants. Diabetes. 2009;58(9):2070-2083.
  • 2. Hwang B, Lim J-Y, Lee J. Prevalence rate and associated factors of sarcopenic obesity in Korean elderly population. 2012;27(7):748-755.
  • 3. Baumgartner RN, Koehler KM, Gallagher D, et al. Epidemiology of sarcopenia among the elderly in New Mexico. American journal of epidemiology. 1998;147(8):755-763.
  • 4. Cruz-Jentoft AJ, Baeyens JP, Bauer JM, et al. Sarcopenia: European consensus on definition and diagnosisReport of the European Working Group on Sarcopenia in Older People. Age and ageing. 2010;39(4):412-423.
  • 5. Halil M, Ülger Z, Arıoğlu S. Sarkopeniye Yaklaşım. Hacettepe Tıp Dergisi. 2011;42:123-132.
  • 6. Walston JD. Sarcopenia in older adults. Curr Opin Rheumatol. 2012;24(6):623-627.
  • 7. Sökmen ÜN, Dişçigil G. Yaşlılıkta sarkopeni. Jour Turk Fam Phy. 2017; 8(2):49-54.
  • 8. Shafiee G, Keshtkar A, Soltani A, et al. Prevalence of sarcopenia in the world: a systematic review and meta-analysis of general population studies. J Diabetes Metab Disord. 2017;16(1):21-31.
  • 9. Halil M, Ulger Z, Varlı M, et al. Sarcopenia assessment project in the nursing homes in Turkey. Eur J Clin Nutr. 2014;68(6):690-694.
  • 10. Kuyumcu ME. Sarkopenik Yaşlı Hastalarda Ultrasonografik Olarak Kas Mimarisinin Değerlendirilmesi. T.C. HACETTEPE ÜNİVERSİTESİ TIP FAKÜLTESİ İÇ HASTALIKLARI ANABİLİM DALI GERİATRİ BİLİM DALI Tezi, Ankara, 2014.
  • 11. Muscaritoli M, Anker S, Argiles J, et al. Consensus definition of sarcopenia, cachexia and pre-cachexia: joint document elaborated by Special Interest Groups (SIG)“cachexia-anorexia in chronic wasting diseases” and “nutrition in geriatrics”. Clin Nutr. 2010;29(2):154-159.
  • 12. Frankel JE, Bean JF, Frontera WR. Exercise in the elderly: research and clinical practice. Clin Geriatr Med. 2006;22(2):239-256.
  • 13. Misic MM, Rosengren KS, Woods JA, Evans EM. Muscle quality, aerobic fitness and fat mass predict lower-extremity physical function in community-dwelling older adults. Gerontology.2007;53(5):260-266.
  • 14. Sasako T, Ueki K. Aging-related frailty and sarcopenia. Frailty/sarcopenia and insulin/IGF-1 signaling. Clin Calcium. 2018;28(9):1221-1228.
  • 15. Fan J, Kou X, Yi Yang Y, Chen N. MicroRNA-regulated proinflammatory cytokines in sarcopenia. Mediators Inflamm. 2016;2016:1-9.
  • 16. Michaud M, Balardy L, Moulis G, et al. Proinflammatory cytokines, aging, and age-related diseases. J Am Med Dir Assoc. 2013;14(12):877-882.
  • 17. Benton MJ, Whyte MD, Dyal BW. Sarcopenic obesity: strategies for management. Am J Nurs. 2011;111(12):38-44.
  • 18. Morley JE. Aging. Sarcopenia: diagnosis and treatment. J Nutr Health Aging. 2008;12(7):452-456.
  • 19. Wolfe RR, Miller SL, Miller KB. Optimal protein intake in the elderly. Clin Nutr. 2008;27(5):675-684.
  • 20. Liu CJ, Latham NK. Progressive resistance strength training for improving physical function in older adults. Cochrane Database Syst Rev. 2009(3):CD002759.
  • 21. Morley JE. Sarcopenia in the elderly. Family Practice. 2012;29(suppl_1):44-48.
  • 22. Burton LA, Sumukadas D. Optimal management of sarcopenia. Clin Interv Aging. 2010;7(5):217-228.
  • 23. Gruenewald DA, Matsumoto AM. Testosterone supplementation therapy for older men: potential benefits and risks. J Am Geriatr Soc. 2003;51(1):101-115.
  • 24. Haren MT, Siddiqui A, Armbrecht H, et al. Testosterone modulates gene expression pathways regulating nutrient accumulation, glucose metabolism and protein turnover in mouse skeletal muscle. Int J Androl. 2011;34(1):55-68.
  • 25. Kovacheva EL, Hikim AP, Shen R, et al. Testosterone supplementation reverses sarcopenia in aging through regulation of myostatin, c-Jun NH2-terminal kinase, Notch, and Akt signaling pathways. Endocrinology. 2010;151(2):628-638.
  • 26. Liguori I, Russo G, Aran L, et al. Sarcopenia: assessment of disease burden and strategies to improve outcomes. Clin Interv Aging. 2018;13:913-927.
  • 27. Keller K. Sarcopenia. Wien Med Wochenschr. 2019: 169(7-8):157-172.
  • 28. Biolo G, De Cicco M, Dal Mas V, et al. Response of muscle protein and glutamine kinetics to branched-chain–enriched amino acids in intensive care patients after radical cancer surgery. Nutrtion. 2006;22(5):475-482.
  • 29. Robinson SM, Reginster JY, Rizzoli R, et al. Does nutrition play a role in the prevention and management of sarcopenia? Clin Nutr. 2018;37(4):1121-1132.
  • 30. Houston DK, Nicklas BJ, Ding J, et al. Dietary protein intake is associated with lean mass change in older, community-dwelling adults: the Health, Aging, and Body Composition (Health ABC) Study. Am J Clin Nutr. 2008;87(1):150-155.
  • 31. Morley JE. Pharmacologic options for the treatment of sarcopenia. Calcif Tissue Int. 2016;98(4):319-333.
  • 32. Gaffney‐Stomberg E, Insogna KL, Rodriguez NR, Kerstetter JE. Increasing dietary protein requirements in elderly people for optimal muscle and bone health. J Am Geriatr Soc. 2009;57(6):1073-1079.
  • 33. Mitchell WK, Williams J, Atherton PJ, et al. Sarcopenia, dynapenia, and the impact of advancing age on human skeletal muscle size and strength; a quantitative review. Front Physiol. 2012;3:260-278.
  • 34. Wackerhage H. Sarcopenia: causes and treatments. German Journal of Sports Medicine. 2017;68(7-8):178-183.
  • 35. Lord C, Chaput J, Aubertin-Leheudre M, et al. Dietary animal protein intake: association with muscle mass index in older women. J Nutr Health Aging. 2007;11(5):383-387.
  • 36. Walrand S, Short KR, Bigelow ML, et al. Functional impact of high protein intake on healthy elderly people. Am J Physiol Endocrinol Metab. 2008;295(4):921-928.
  • 37. Bauer JM. Nutrition in older persons. Basis for functionality and quality of life. Internist( (Berl). 2011;52(8):946-954.
  • 38. Xu ZR, Tan ZJ, Zhang Q, et al. The effectiveness of leucine on muscle protein synthesis, lean body mass and leg lean mass accretion in older people: a systematic review and meta-analysis. Br J Nutr. 2015;113(1):25-34.
  • 39. Katsanos CS, Kobayashi H, Sheffield-Moore M, et al. A high proportion of leucine is required for optimal stimulation of the rate of muscle protein synthesis by essential amino acids in the elderly. Am J Physiol Endocrinol Metab. 2006;291(2):381-387.
  • 40. Rieu I, Balage M, Sornet C, et al. Leucine supplementation improves muscle protein synthesis in elderly men independently of hyperaminoacidaemia. J Physiol. 2006;575(1):305-315.
  • 41. Kim HK, Suzuki T, Saito K, et al. Effects of exercise and amino acid supplementation on body composition and physical function in community‐dwelling elderly Japanese sarcopenic women: a randomized controlled trial. J Am Geriatr Soc. 2012;60(1):16-23.
  • 42. Bischoff-Ferrari HA, Dawson-Hughes B, Staehelin HB, et al. Fall prevention with supplemental and active forms of vitamin D: a meta-analysis of randomised controlled trials. BMJ. 2009;339:3692-3713.
  • 43. Bischoff-Ferrari HA. Validated treatments and therapeutic perspectives regarding nutritherapy. J Nutr Healht Aging. 2009;13(8):737-741.
  • 44. Kalyani RR, Stein B, Valiyil R, et al. Vitamin D treatment for the prevention of falls in older adults: systematic review and meta‐analysis. J Am Geriatr Soc. 2010;58(7):1299-1310.
  • 45. Park S, Ham JO, Lee BK. A positive association of vitamin D deficiency and sarcopenia in 50 year old women, but not men. Clin Nutr. 2014;33(5):900-905.
  • 46. Beaudart C, Buckinx F, Rabenda V, et al. The effects of vitamin D on skeletal muscle strength, muscle mass, and muscle power: a systematic review and meta-analysis of randomized controlled trials. J Clin Endocrinol Metab. 2014;99(11):4336-4345.
  • 47. Takeuchi I, Yoshimura Y, Shimazu S, et al. Effects of branched-chain amino acids and vitamin D supplementation on physical function, muscle mass and strength, and nutritional status in sarcopenic older adults undergoing hospital-based rehabilitation: A multicenter randomized controlled trial. Geriatr Gerontol Int. 2019;19(1):12-17.
  • 48. Verlaan S, Maier AB, Bauer JM, et al. Sufficient levels of 25-hydroxyvitamin D and protein intake required to increase muscle mass in sarcopenic older adults–The PROVIDE study.Clin Nutr. 2018;37(2):551-557.
  • 49. Bauer JM, Verlaan S, Bautmans I, et al. Effects of a vitamin D and leucine-enriched whey protein nutritional supplement on measures of sarcopenia in older adults, the PROVIDE study: a randomized, double-blind, placebo-controlled trial. J Am Med Dir Assoc. 2015;16(9):740-747.
  • 50. Cramer JT, Cruz-Jentoft AJ, Landi F, et al. Impacts of high-protein oral nutritional supplements among malnourished men and women with sarcopenia: a multicenter, randomized, double-blinded, controlled trial. J Am Med Dir Assoc. 2016;17(11):1044-1055.
  • 51. Di Girolamo FG, Situlin R, Mazzucco S, et al. Omega-3 fatty acids and protein metabolism: enhancement of anabolic interventions for sarcopenia. Curr Opin Clin Nutr Metab Care. 2014;17(2):145-150.
  • 52. Smith GI, Atherton P, Reeds DN, et al. Dietary omega-3 fatty acid supplementation increases the rate of muscle protein synthesis in older adults: a randomized controlled trial. Am J Clin Nutr. 2010;93(2):402-412.
  • 53. Rousseau JH, Kleppinger A, Kenny AM. Self‐reported dietary intake of omega‐3 fatty acids and association with bone and lower extremity function. J Am Geriatr Soc. 2009;57(10):1781-1788.
  • 54. Abbatecola AM, Cherubini A, Guralnik JM, et al. Plasma polyunsaturated fatty acids and age-related physical performance decline. Rejuvenation Res. 2009;12(1):25-32.
  • 55. Calvani R, Miccheli A, Landi F, et al. Current nutritional recommendations and novel dietary strategies to manage sarcopenia. J Frailty Aging. 2013;2(1):38-53.
  • 56. Semba RD, Lauretani F, Ferrucci L. Carotenoids as protection against sarcopenia in older adults. Arch Biochem Biophys. 2007;458(2):141-145.
  • 57. van Dronkelaar C, van Velzen A, Abdelrazek M, et al. Minerals and sarcopenia; the role of calcium, iron, magnesium, phosphorus, potassium, selenium, sodium, and zinc on muscle mass, muscle strength, and physical performance in older adults: a systematic review. J Am Med Dir Assoc. 2018;19(1):6-11.
  • 58. Alway SE. Antioxidants and Polyphenols Mediate Mitochondrial Mediated Muscle Death Signaling in Sarcopenia. Editor; Walrand S, Nutrition and Skeletal Muscle. Academic Press, 2019, 439-94.
  • 59. Ticinesi A, Lauretani F, Milani C, et al. Aging Gut Microbiota at the Cross-Road between Nutrition, Physical Frailty, and Sarcopenia: Is There a Gut–Muscle Axis? Nutrients, 2017;9(12):1303-1337
  • 60. Buigues C, Fernández-Garrido J, Pruimboom L, et al. Effect of a prebiotic formulation on frailty syndrome: a randomized, double-blind clinical trial. Int J Mol Sci. 2016;17(6):932-953.
There are 60 citations in total.

Details

Primary Language Turkish
Subjects Clinical Sciences
Journal Section Review
Authors

Hatice Merve Bayram

Fatma Güneş

Publication Date April 30, 2020
Submission Date March 5, 2020
Acceptance Date April 30, 2020
Published in Issue Year 2020 Volume: 3 Issue: 1

Cite

APA Bayram, H. M., & Güneş, F. (2020). Sarkopeni ve Beslenme Yaklaşımı. Geriatrik Bilimler Dergisi, 3(1), 27-36.
AMA Bayram HM, Güneş F. Sarkopeni ve Beslenme Yaklaşımı. JoGS. April 2020;3(1):27-36.
Chicago Bayram, Hatice Merve, and Fatma Güneş. “Sarkopeni Ve Beslenme Yaklaşımı”. Geriatrik Bilimler Dergisi 3, no. 1 (April 2020): 27-36.
EndNote Bayram HM, Güneş F (April 1, 2020) Sarkopeni ve Beslenme Yaklaşımı. Geriatrik Bilimler Dergisi 3 1 27–36.
IEEE H. M. Bayram and F. Güneş, “Sarkopeni ve Beslenme Yaklaşımı”, JoGS, vol. 3, no. 1, pp. 27–36, 2020.
ISNAD Bayram, Hatice Merve - Güneş, Fatma. “Sarkopeni Ve Beslenme Yaklaşımı”. Geriatrik Bilimler Dergisi 3/1 (April 2020), 27-36.
JAMA Bayram HM, Güneş F. Sarkopeni ve Beslenme Yaklaşımı. JoGS. 2020;3:27–36.
MLA Bayram, Hatice Merve and Fatma Güneş. “Sarkopeni Ve Beslenme Yaklaşımı”. Geriatrik Bilimler Dergisi, vol. 3, no. 1, 2020, pp. 27-36.
Vancouver Bayram HM, Güneş F. Sarkopeni ve Beslenme Yaklaşımı. JoGS. 2020;3(1):27-36.

Creative Commons Lisansı

Articles published in this journal are licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.


The Journal of Geriatric Science is indexed in Turkey Citation Index, Turkish MEDLINE, Asos Indeks, Scilit, EuroPub, and Index Copernicus International - Journals Master List since September 2022.

download    | download   | 24435    |        |    24370   

24026    |    17423    |    scholar_logo_64dp.png