Research Article
BibTex RIS Cite

Fındık yağından elde edilen biyodizelin karakteristik özelliklerine ultrasonik banyo uygulamasının etkilerinin araştırılması

Year 2024, Volume: 39 Issue: 3, 1583 - 1596, 20.05.2024
https://doi.org/10.17341/gazimmfd.1230079

Abstract

Bu çalışmada bitkisel kökenli fındık yağına baz katalizle transesterifikasyon işlemi uygulanarak, gliserinle biyodizelin ayrışması sağlanmıştır. Çalışmada üretilen biyodizele, saflaştırılmak ve reaksiyon verimini artırmak amacıyla ultrasonik banyo muamelesi gerçekleştirilmiştir. Elde edilen biyodizel numunelerine farklı sürelerde ultrasonikasyon uygulanarak, biyodizelin yapısında meydana gelen kimyasal değişikliklerin, fiziksel özelliklere etkisi araştırılmıştır. Öncelikle, serbest yağ asitliği tespit edildikten sonra rafine fındık yağı, NaOH katalizörlüğünde 55°C'de metil alkol ile transesterifikasyon reaksiyonu gerçekleştirilmiştir. Akabinde, biyodizel örneklerine belirli sürelerde ultrasonik banyo işlemi uygulanarak biyodizelin yapısına ve karakteristik özelliklerine etkisi test edilmiştir. Sonuç olarak, ultrasonik banyo işlemi görmüş fındık yağı biyodizel numunelerinin FTIR analizleri, sonikasyon uygulama süresinin transesterifikasyonu doğrudan etkilediğini göstermiş, düşük uygulama sürelerinde reaksiyon verimi artarken yüksek uygulama sürelerinden biyodizel veriminin düştüğü belirlenmiştir. Bu yöntem, biyodizel eldesinde en önemli sorun olan uzun yağ zincirlerinin kısaltılmasında kimyasal yöntemler kadar iyi bir etki göstermiştir. Yöntemin yüksek verim ile daha kısa zincirli yağ asidi-metil esterlerinin oluşumunu sağladığı ve yardımcı kimyasalların uzaklaştırılması adımını içermemesi nedeniyle hızlı ve yüksek uygulama potansiyeline sahip olduğu görülmüştür.

Supporting Institution

Kastamonu Üniversitesi Bilimsel Araştırmalar Koordinatörlüğü

Project Number

KÜBAP01_2015-28

Thanks

Çalışma kapsamında analizlere verdikleri destekleri için Dr. Öğr. Üyesi Nuray EMİN’e, Uz. Kimyager Atike Özcan’a, Havva Yazar’a ve Ant Teknik Laboratuvar Cihazları Firmasına teşekkür ederim.

References

  • 1. Acaroglu M., Oguz, H., Energy farming and standardization of using biomass – biofuel. Proceedings of the 8th International Congress on Mechanization And Energy in Agriculture Congress Book, Kuşadası-Turkey, 168 – 174,15-17 October, 2002.
  • 2. Yaşar F., Comparision of fuel properties of biodiesel fuels produced from different oils to determine the most suitable feedstock type, Fuel, 264, 116817, 2020.
  • 3. Şimşek A., Aslantaş R., Fındığın bileşimi ve insan beslenmesi açısından önemi, Gıda, 24 (3), 1999.
  • 4. Zhang Y., Dub M.A., McLean D.D. and Kates M., Biodiesel production from waste cooking oil: 1. Process design and technological assessment, Bioresource Technology, 89, 1–16, 2003.
  • 5. Çelebi A.K., Uğur A., Biyoyakıtlara Yönelik Mali Teşvikler: Türkiye açısından bir değerlendirme, Hacettepe Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 33 (2), 25-45, 2015.
  • 6. https://www.mevzuat.gov.tr/File/GeneratePdf?mevzuatNo=23661&mevzuatTur=Teblig&mevzuatTertip=5 Erişim tarihi Aralık 12, 2022.
  • 7. https://www.mevzuat.gov.tr/File/GeneratePdf?mevzuatNo=16346&mevzuatTur=Teblig&mevzuatTertip=5 Erişim tarihi Aralık 12, 2022.
  • 8. Singh D., Sharma D., Soni S.L., Sharma S., Kumari D., Chemical compositions, properties and standards for different generation biodiesels: A review, Fuel, 253, 60–71, 2019.
  • 9. Paul A.K., Borugadda V.B., Reshad A.S., Bhalerao M.S., Tiwari P., Goud V.V., Comparative study of physicochemical and rheological property of waste cooking oil, castor oil, rubber seed oil, their methyl esters and blends with mineral diesel fuel, Materials Science for Energy Technologies, 4 (3) 148-155, 2021.
  • 10. Sürer E., Solmaz H., Yılmaz E., Alper C.A., İpci D., Investigation of the effect of carbon nanotube addition to diesel-biodiesel blend on engine performance and exhaust emissions, Journal of the Faculty of Engineering and Architecture of Gazi University, 38 (2), 1055-1064, 2023.
  • 11. Eryılmaz T., Şahin S., Ertuğrul M., Çelik S.A., Ketencik [camelina sativa (l.) crantz] yağı biyodizelinin ve karışım yakıtlarının fizikokimyasal özelliklerinin araştırılması, Konya Journal of Engineering Sciences, 10 (2), 287-300, 2022.
  • 12. Brahma S., Nath B., Basumatary B., Das B., Saikia P., Patir K., Basumatary S., Biodiesel production from mixed oils: A sustainable approach towards industrial biofuel production, Chemical Engineering Journal Advances,10, 100284, 2022.
  • 13. Alptekin E., Çanakcı M., Determınatıon of some propertıes of methyl ester and glycerın produced from dıfferent feedstocks, Journal of the Faculty of Engineering and Architecture of Gazi University, 23 (3), 549-556, 2008.
  • 14. Veza I., Zainuddin Z., Tamaldin N., Idris M., Irianto I., Rizwanul Fattah I.M., Effect of palm oil biodiesel blends (B10 and B20) on physical and mechanical properties of nitrile rubber elastomer, Results in Engineering, 16, 100787, 2022.
  • 15. Keskin A., The effect of cottonseed oil methyl ester-eurodiesel fuel blends on the combustion,performance and emission characteristics of a direct injection diesel engine, Journal of the Faculty of Engineering and Architecture of Gazi University, 34 (2), 915-927, 2019.
  • 16. Fırat M., Altun Ş., Okcu M., Varol Y., Investigation of the effect of gasoline premixed ratio and engine load on the combustion and exhaust emission characteristics of an RCCI Engine, Journal of the Faculty of Engineering and Architecture of Gazi University, 37 (1), 541-554, 2022.
  • 17. Xu Y.X., Hanna M.A., Synthesis and characterization of hazelnut oil-based Biodiesel, Industrial crops and products, 29, 473–479, 2009.
  • 18. FAO, 2020. Food and Agriculture Organization., www.fao.org. Erişim tarihi Aralık 17, 2022.
  • 19. Keskin A., Aydın K., Fındık yağı biyodizel üretimi ve dizel motorlarda alternatif yakıt olarak kullanımının araştırılması, Ç. Ü. J. Fac. Eng. Arch., 20 (1), 75-83, 2005.
  • 20. Koçak M. S., Ileri E. and Utlu Z., Experimental study of emission parameters of biodiesel fuels obtained from canola, hazelnut, and waste cooking oils. Energy&Fuels, 21 (6), 3622–3626, 2007.
  • 21. Moser, B.R., Preparation of fatty acid methyl esters from hazelnut, high-oleicpeanut and walnut oil sand evaluation as biodiesel, Fuel, 92, 231–238, 2012.
  • 22. Çetin M. and Yüksel F., Theuse of hazelnut oil as a fuel in pre chamber diesel engine. Applied Thermal Engineering, 27, 63–67, 2007.
  • 23. Xu Y.X., Hanna M.A., Josiah S.J., Hybrid hazelnut oil characteristics and its potential oleochemical application, Ind. Crops Prod., 26, 69–76, 2007.
  • 24. Gümüş M., Evaluation of hazelnut kernel oil of Turkish origin as alternative fuel in diesel engines, Renewable Energy, 33, 2448–2457, 2008.
  • 25. Keven A., Öner C., Altun Ş., Fındık yağı biyodizelinin alternatif yakıt olarak bir dizel motorunda kullanılması, Fırat Üniversitesi Doğu Araştırmaları Dergisi, 6 (2), 102-106, 2008.
  • 26. Eliçin A.K., Erdoğan D., Fındık yağı metil ve etil esteri ile diesel yakıtı karışımlarının küçük güçlü bir diesel motorda yakıt olarak kullanım olanaklarının belirlenmesi, Tarım Bilimleri Dergisi, 13 (2), 137-146, 2007.
  • 27. Bilgin A., Gulum, M., Effects of various transesterification parameters on the some fuel properties of hazelnut oil methyl ester, Energy Procedia, 147, 54–62, 2018.
  • 28. İçingür Y., Koçak M.S., Fındık yağı metil esterinin dizel yakıtı alternatifi olarak performans ve emisyon parametrelerinin incelenmesi, Journal of Polytechnic, 9 (2), 119-124, 2006.
  • 29. T.C. Tarım ve Orman Bakanlığı Fındık Araştırma Enstitüsü Müdürlüğü, Gıda olarak Fındığın Değeri. https://arastirma.tarimorman.gov.tr/findik/Sayfalar/Detay.aspx?SayfaId=29. Erişim tarihi Ocak 17, 2024.Turan A., Mincane fındık çeşidinde klon seleksiyonu: yağ asitleri bileşimi. Karadeniz Fen Bilimleri Dergisi, 11 (2), 600-612, 2021.
  • 30. Toprak Mahsulleri Ofisi Genel Müdürlüğü, 2020 Yılı Fındık Sektör Raporu, Ankara, 2021. URL: https://www.tmo.gov.tr/Upload/Document/sektorraporlari/findik2020.pdf, Erişim Tarihi Nisan 29, 2023.
  • 31. Bayramoğlu M.R., Korkut İ. and Ergan B.T., Reusability and regeneration of solid catalysts used in ultrasound assisted biodiesel production, Turkish Journal of Chemistry, 45 (2), 342-347, 2021.
  • 32. Sharma A., Kodgire P., and Kachhwaha S.S., Investigation of ultrasound-assisted KOH and CaO catalyzed transesterification for biodiesel production from waste cotton-seed cooking oil: Process optimization and conversion rate evaluation, Journal of Cleaner Production, 259, 1-20, 120982, 2020.
  • 33. Singh D., Sharma D., Soni S.L., Sharma S., Sharma P.K., Jhalani A., A review on feedstocks, production processes, and yield for different generations of biodiesel, Fuel, 262, 116553, 2020.
  • 34. Patil A., Dhankeb P., Kore V., Kanse N., Thumba methyl ester production using prepared novel TiO2 nano-catalyst in ultrasonic cavitation reactor, Materials Today: Proceedings, 18, 4322–4329, 2019.
  • 35. Bokhari A., Yusup S., Asif S., Chuah L.F., and Michelle L.Z.Y., Process intensification for the production of canola-based methyl ester via ultrasonic batch reactor: optimization and kinetic study, Bioreactors, 27–42, 2020.
  • 36. Kentish S., Wooster T.J., Ashokkumar M., Balachandran S., Mawson R., Simons L., Theuse of ultrasonics for nanoemulsion preparation, Innovati ve Food Science and Emerging Technologies, 9 (2), 170-175, 2008.
  • 37. Martinez-Guerra E., Gude V. G., Mondala A., Holmes W. and Hernandez R., Microwaveand ultrasound enhanced extractive-transesterification of algallipids, Applied Energy, 129, 354–363, 2014.
  • 38. Parida S., Sahu D. K. and Misra P. K., Preparation of biodiesel using ultrasonication energy and its performance in CI engine. International Journal of Green Energy, 9 (5), 430–440, 2012.
  • 39. Yu D., Tian L., Wu H., Wang S., Wang Y., Ma D. and Fang X., Ultrasonic irradiation with vibration for biodiesel production from soybeanoil by Novozym 435. Process Biochemistry, 45, 519–525, 2010.
  • 40. Fan X., Wang X. and Chen F., Ultrasonically assisted production of biodiesel from crude cotton seed oil. International Journal of Green Energy, 7 (2), 117–127, 2010.
  • 41. Jianbing J., Jianli W., Yongchao L., Yunliang Y. and Zhichao X., Preparation of biodiesel with the help of ultrasonic and hydrodynamic cavitation, Ultrasonics, 44, 411–414, 2006.
  • 42. Siatis N.G., Kimbaris A. C., Pappas C. S., Tarantilis P.A. and Polissiou M.G., Improvement of biodiesel production based on the application of ultrasound: Monitoring of the procedure by FTIR spectroscopy, Journal of the American Oil Chemists’ Society, 83, 53–57, 2006.
  • 43. Gholami A., Pourfayaz F., Maleki A., Techno-economic assessment of biodiesel production from canola oil through ultrasonic cavitation, Energy Reports, 7, 266-277, 2021.
  • 44. Knothe G., Dunn R. O. and Bagby M. O., Biodiesel: The Use of Vegetable Oils and Their Derivatives as Alternative Diesel Fuels ACS Symposium Series, 666, 10, 172-208, 1997.
  • 45. Miglio R., Palmery S., Salvalaggio M. et al. Microalgae triacylglycerols content by FT-IR spectroscopy, Journal of Applied Phycology, 25 (6), 1621–1631, 2013.
  • 46. Petibois C., Cazorla G., Déléris G., Triglycerides and glycerol concentration determinations using plasma ft-ır spectra, Applied Spectroscopy, 56 (1),10-16, 2002.
  • 47. Forfang K., Zimmermann B., Kosa G., Kohler A., Shapaval V., FTIR spectroscopy for evaluation and monitoring of lipid extraction efficiency for oleaginous fungi, Plos One 12 (1), 0170611, 2017.
  • 48. TS3082/EN590/Eylül2005/ https://www.resmigazete.gov.tr/eskiler/2009/08/20090807-7-1.pdf Erişim tarihi 3 Aralık 2021.
  • 49. TS EN14214/ https://www.resmigazete.gov.tr/eskiler/2009/11/20091121-7-1.pdf, Erişim tarihi, 3 Aralık 2021.
  • 50. ASTM D975/ https://kupdf.net/download/astm-d975_59a57118dc0d60ca1f568edb_pdf, Erişim tarihi, 3 Aralık 2021.
  • 51. ASTM D6751-08/ ASTM Biyodiesel Specs_Nov08. pdf Erişim tarihi: 5 Aralık 2021.
  • 52. Efe Ş., Ceviz M.A., Temur H., Comparative engine characteristics of biyodiesels from hazelnut, corn, soybean, canola and sun flower oils on DI diesel engine, Renewable Energy, 119, 142-151, 2018.
  • 53. Oğuz H., Tarım kesiminde yaygın olarak kullanılan dizel motorlarında fındık yağı biyodizelinin yakıt olarak kullanım imkanlarının incelenmesi, Doktora Tezi, Selçuk Üniversitesi, Fen Bilimleri Enstitüsü, Konya, 2005.
  • 54. Leung D.Y.C., Wu X., Leung M.K.H., A review on biyodiesel production using catalyzed transesterification, Applied Energy, 87 (4), 1083-1095, 2010.
  • 55. Gogate P.R., and Pandit A.B., A Review and assessment of hydrodynamic cavitation as a technology for the future, Ultrasonics Sonochemistry, 12, 21–27, 2005.
  • 56. Hanh H.D., Dong N.T., Okitsu K., Nishimura R. and Maeda Y., Biyodiesel production by esterification of oleic acid with short-chain alcohol sunder ultrasonic irradiation condition, Renewable Energy, 34, 780-783, 2009.
  • 57. Stavarache C., Vinatoru M., Nishimura R., Maeda Y., Fatty acids methyl esters from vegetable oil by means of ultrasonicenergy, Ultrasonic Sonochemistry, 12, 367–372, 2005.
  • 58. Kesgin C., Yücel S., Özçimen D., Terzioğlu P., Attar A., Transesterification of hazelnut oil by ultrasonic irradiation, International Journal Of Green Energy, 13, 328-333, 2016.
  • 59. Martinez-Guerra E., Gude V.G., Transesterification of waste vegetable oil under pulse sonication using ethanol, methanol and ethanol-methanol mixtures, Waste Management, 34 (12), 2611-2620, 2014.

Investigation of the effects of ultrasonic bath application on the characteristic properties of biodiesel obtained from hazelnut oil

Year 2024, Volume: 39 Issue: 3, 1583 - 1596, 20.05.2024
https://doi.org/10.17341/gazimmfd.1230079

Abstract

In this study, the decomposition of glycerin and biodiesel was achieved by applying a base-catalyzed transesterification process to hazelnut oil of vegetable origin. Ultrasonic bath treatment was carried out to purify the biodiesel produced in the study and to increase the reaction efficiency. The effects of chemical changes in the structure of biodiesel on physical properties were investigated by applying ultrasonication to the obtained biodiesel samples at different times. First of all, after the free fatty acidity was determined, the transesterification reaction of refined hazelnut oil was carried out with methyl alcohol at 55 °C under NaOH catalysis. Afterwards, ultrasonic bathing was applied to biodiesel samples for certain periods and its effect on the structure and characteristics of biodiesel was tested. As a result, FTIR analyzes of ultrasonically treated hazelnut oil biodiesel samples showed that sonication application time directly affected transesterification, it was determined that while reaction efficiency increased at low application times, biodiesel yield decreased at higher application times. This method showed as good an effect as chemical methods in shortening the long oil chains, which is the most important problem in biodiesel production. It has been seen that the method has a fast and high application potential because it provides the formation of shorter chain fatty acid-methyl esters with high efficiency and does not include the removal of auxiliary chemicals.

Project Number

KÜBAP01_2015-28

References

  • 1. Acaroglu M., Oguz, H., Energy farming and standardization of using biomass – biofuel. Proceedings of the 8th International Congress on Mechanization And Energy in Agriculture Congress Book, Kuşadası-Turkey, 168 – 174,15-17 October, 2002.
  • 2. Yaşar F., Comparision of fuel properties of biodiesel fuels produced from different oils to determine the most suitable feedstock type, Fuel, 264, 116817, 2020.
  • 3. Şimşek A., Aslantaş R., Fındığın bileşimi ve insan beslenmesi açısından önemi, Gıda, 24 (3), 1999.
  • 4. Zhang Y., Dub M.A., McLean D.D. and Kates M., Biodiesel production from waste cooking oil: 1. Process design and technological assessment, Bioresource Technology, 89, 1–16, 2003.
  • 5. Çelebi A.K., Uğur A., Biyoyakıtlara Yönelik Mali Teşvikler: Türkiye açısından bir değerlendirme, Hacettepe Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 33 (2), 25-45, 2015.
  • 6. https://www.mevzuat.gov.tr/File/GeneratePdf?mevzuatNo=23661&mevzuatTur=Teblig&mevzuatTertip=5 Erişim tarihi Aralık 12, 2022.
  • 7. https://www.mevzuat.gov.tr/File/GeneratePdf?mevzuatNo=16346&mevzuatTur=Teblig&mevzuatTertip=5 Erişim tarihi Aralık 12, 2022.
  • 8. Singh D., Sharma D., Soni S.L., Sharma S., Kumari D., Chemical compositions, properties and standards for different generation biodiesels: A review, Fuel, 253, 60–71, 2019.
  • 9. Paul A.K., Borugadda V.B., Reshad A.S., Bhalerao M.S., Tiwari P., Goud V.V., Comparative study of physicochemical and rheological property of waste cooking oil, castor oil, rubber seed oil, their methyl esters and blends with mineral diesel fuel, Materials Science for Energy Technologies, 4 (3) 148-155, 2021.
  • 10. Sürer E., Solmaz H., Yılmaz E., Alper C.A., İpci D., Investigation of the effect of carbon nanotube addition to diesel-biodiesel blend on engine performance and exhaust emissions, Journal of the Faculty of Engineering and Architecture of Gazi University, 38 (2), 1055-1064, 2023.
  • 11. Eryılmaz T., Şahin S., Ertuğrul M., Çelik S.A., Ketencik [camelina sativa (l.) crantz] yağı biyodizelinin ve karışım yakıtlarının fizikokimyasal özelliklerinin araştırılması, Konya Journal of Engineering Sciences, 10 (2), 287-300, 2022.
  • 12. Brahma S., Nath B., Basumatary B., Das B., Saikia P., Patir K., Basumatary S., Biodiesel production from mixed oils: A sustainable approach towards industrial biofuel production, Chemical Engineering Journal Advances,10, 100284, 2022.
  • 13. Alptekin E., Çanakcı M., Determınatıon of some propertıes of methyl ester and glycerın produced from dıfferent feedstocks, Journal of the Faculty of Engineering and Architecture of Gazi University, 23 (3), 549-556, 2008.
  • 14. Veza I., Zainuddin Z., Tamaldin N., Idris M., Irianto I., Rizwanul Fattah I.M., Effect of palm oil biodiesel blends (B10 and B20) on physical and mechanical properties of nitrile rubber elastomer, Results in Engineering, 16, 100787, 2022.
  • 15. Keskin A., The effect of cottonseed oil methyl ester-eurodiesel fuel blends on the combustion,performance and emission characteristics of a direct injection diesel engine, Journal of the Faculty of Engineering and Architecture of Gazi University, 34 (2), 915-927, 2019.
  • 16. Fırat M., Altun Ş., Okcu M., Varol Y., Investigation of the effect of gasoline premixed ratio and engine load on the combustion and exhaust emission characteristics of an RCCI Engine, Journal of the Faculty of Engineering and Architecture of Gazi University, 37 (1), 541-554, 2022.
  • 17. Xu Y.X., Hanna M.A., Synthesis and characterization of hazelnut oil-based Biodiesel, Industrial crops and products, 29, 473–479, 2009.
  • 18. FAO, 2020. Food and Agriculture Organization., www.fao.org. Erişim tarihi Aralık 17, 2022.
  • 19. Keskin A., Aydın K., Fındık yağı biyodizel üretimi ve dizel motorlarda alternatif yakıt olarak kullanımının araştırılması, Ç. Ü. J. Fac. Eng. Arch., 20 (1), 75-83, 2005.
  • 20. Koçak M. S., Ileri E. and Utlu Z., Experimental study of emission parameters of biodiesel fuels obtained from canola, hazelnut, and waste cooking oils. Energy&Fuels, 21 (6), 3622–3626, 2007.
  • 21. Moser, B.R., Preparation of fatty acid methyl esters from hazelnut, high-oleicpeanut and walnut oil sand evaluation as biodiesel, Fuel, 92, 231–238, 2012.
  • 22. Çetin M. and Yüksel F., Theuse of hazelnut oil as a fuel in pre chamber diesel engine. Applied Thermal Engineering, 27, 63–67, 2007.
  • 23. Xu Y.X., Hanna M.A., Josiah S.J., Hybrid hazelnut oil characteristics and its potential oleochemical application, Ind. Crops Prod., 26, 69–76, 2007.
  • 24. Gümüş M., Evaluation of hazelnut kernel oil of Turkish origin as alternative fuel in diesel engines, Renewable Energy, 33, 2448–2457, 2008.
  • 25. Keven A., Öner C., Altun Ş., Fındık yağı biyodizelinin alternatif yakıt olarak bir dizel motorunda kullanılması, Fırat Üniversitesi Doğu Araştırmaları Dergisi, 6 (2), 102-106, 2008.
  • 26. Eliçin A.K., Erdoğan D., Fındık yağı metil ve etil esteri ile diesel yakıtı karışımlarının küçük güçlü bir diesel motorda yakıt olarak kullanım olanaklarının belirlenmesi, Tarım Bilimleri Dergisi, 13 (2), 137-146, 2007.
  • 27. Bilgin A., Gulum, M., Effects of various transesterification parameters on the some fuel properties of hazelnut oil methyl ester, Energy Procedia, 147, 54–62, 2018.
  • 28. İçingür Y., Koçak M.S., Fındık yağı metil esterinin dizel yakıtı alternatifi olarak performans ve emisyon parametrelerinin incelenmesi, Journal of Polytechnic, 9 (2), 119-124, 2006.
  • 29. T.C. Tarım ve Orman Bakanlığı Fındık Araştırma Enstitüsü Müdürlüğü, Gıda olarak Fındığın Değeri. https://arastirma.tarimorman.gov.tr/findik/Sayfalar/Detay.aspx?SayfaId=29. Erişim tarihi Ocak 17, 2024.Turan A., Mincane fındık çeşidinde klon seleksiyonu: yağ asitleri bileşimi. Karadeniz Fen Bilimleri Dergisi, 11 (2), 600-612, 2021.
  • 30. Toprak Mahsulleri Ofisi Genel Müdürlüğü, 2020 Yılı Fındık Sektör Raporu, Ankara, 2021. URL: https://www.tmo.gov.tr/Upload/Document/sektorraporlari/findik2020.pdf, Erişim Tarihi Nisan 29, 2023.
  • 31. Bayramoğlu M.R., Korkut İ. and Ergan B.T., Reusability and regeneration of solid catalysts used in ultrasound assisted biodiesel production, Turkish Journal of Chemistry, 45 (2), 342-347, 2021.
  • 32. Sharma A., Kodgire P., and Kachhwaha S.S., Investigation of ultrasound-assisted KOH and CaO catalyzed transesterification for biodiesel production from waste cotton-seed cooking oil: Process optimization and conversion rate evaluation, Journal of Cleaner Production, 259, 1-20, 120982, 2020.
  • 33. Singh D., Sharma D., Soni S.L., Sharma S., Sharma P.K., Jhalani A., A review on feedstocks, production processes, and yield for different generations of biodiesel, Fuel, 262, 116553, 2020.
  • 34. Patil A., Dhankeb P., Kore V., Kanse N., Thumba methyl ester production using prepared novel TiO2 nano-catalyst in ultrasonic cavitation reactor, Materials Today: Proceedings, 18, 4322–4329, 2019.
  • 35. Bokhari A., Yusup S., Asif S., Chuah L.F., and Michelle L.Z.Y., Process intensification for the production of canola-based methyl ester via ultrasonic batch reactor: optimization and kinetic study, Bioreactors, 27–42, 2020.
  • 36. Kentish S., Wooster T.J., Ashokkumar M., Balachandran S., Mawson R., Simons L., Theuse of ultrasonics for nanoemulsion preparation, Innovati ve Food Science and Emerging Technologies, 9 (2), 170-175, 2008.
  • 37. Martinez-Guerra E., Gude V. G., Mondala A., Holmes W. and Hernandez R., Microwaveand ultrasound enhanced extractive-transesterification of algallipids, Applied Energy, 129, 354–363, 2014.
  • 38. Parida S., Sahu D. K. and Misra P. K., Preparation of biodiesel using ultrasonication energy and its performance in CI engine. International Journal of Green Energy, 9 (5), 430–440, 2012.
  • 39. Yu D., Tian L., Wu H., Wang S., Wang Y., Ma D. and Fang X., Ultrasonic irradiation with vibration for biodiesel production from soybeanoil by Novozym 435. Process Biochemistry, 45, 519–525, 2010.
  • 40. Fan X., Wang X. and Chen F., Ultrasonically assisted production of biodiesel from crude cotton seed oil. International Journal of Green Energy, 7 (2), 117–127, 2010.
  • 41. Jianbing J., Jianli W., Yongchao L., Yunliang Y. and Zhichao X., Preparation of biodiesel with the help of ultrasonic and hydrodynamic cavitation, Ultrasonics, 44, 411–414, 2006.
  • 42. Siatis N.G., Kimbaris A. C., Pappas C. S., Tarantilis P.A. and Polissiou M.G., Improvement of biodiesel production based on the application of ultrasound: Monitoring of the procedure by FTIR spectroscopy, Journal of the American Oil Chemists’ Society, 83, 53–57, 2006.
  • 43. Gholami A., Pourfayaz F., Maleki A., Techno-economic assessment of biodiesel production from canola oil through ultrasonic cavitation, Energy Reports, 7, 266-277, 2021.
  • 44. Knothe G., Dunn R. O. and Bagby M. O., Biodiesel: The Use of Vegetable Oils and Their Derivatives as Alternative Diesel Fuels ACS Symposium Series, 666, 10, 172-208, 1997.
  • 45. Miglio R., Palmery S., Salvalaggio M. et al. Microalgae triacylglycerols content by FT-IR spectroscopy, Journal of Applied Phycology, 25 (6), 1621–1631, 2013.
  • 46. Petibois C., Cazorla G., Déléris G., Triglycerides and glycerol concentration determinations using plasma ft-ır spectra, Applied Spectroscopy, 56 (1),10-16, 2002.
  • 47. Forfang K., Zimmermann B., Kosa G., Kohler A., Shapaval V., FTIR spectroscopy for evaluation and monitoring of lipid extraction efficiency for oleaginous fungi, Plos One 12 (1), 0170611, 2017.
  • 48. TS3082/EN590/Eylül2005/ https://www.resmigazete.gov.tr/eskiler/2009/08/20090807-7-1.pdf Erişim tarihi 3 Aralık 2021.
  • 49. TS EN14214/ https://www.resmigazete.gov.tr/eskiler/2009/11/20091121-7-1.pdf, Erişim tarihi, 3 Aralık 2021.
  • 50. ASTM D975/ https://kupdf.net/download/astm-d975_59a57118dc0d60ca1f568edb_pdf, Erişim tarihi, 3 Aralık 2021.
  • 51. ASTM D6751-08/ ASTM Biyodiesel Specs_Nov08. pdf Erişim tarihi: 5 Aralık 2021.
  • 52. Efe Ş., Ceviz M.A., Temur H., Comparative engine characteristics of biyodiesels from hazelnut, corn, soybean, canola and sun flower oils on DI diesel engine, Renewable Energy, 119, 142-151, 2018.
  • 53. Oğuz H., Tarım kesiminde yaygın olarak kullanılan dizel motorlarında fındık yağı biyodizelinin yakıt olarak kullanım imkanlarının incelenmesi, Doktora Tezi, Selçuk Üniversitesi, Fen Bilimleri Enstitüsü, Konya, 2005.
  • 54. Leung D.Y.C., Wu X., Leung M.K.H., A review on biyodiesel production using catalyzed transesterification, Applied Energy, 87 (4), 1083-1095, 2010.
  • 55. Gogate P.R., and Pandit A.B., A Review and assessment of hydrodynamic cavitation as a technology for the future, Ultrasonics Sonochemistry, 12, 21–27, 2005.
  • 56. Hanh H.D., Dong N.T., Okitsu K., Nishimura R. and Maeda Y., Biyodiesel production by esterification of oleic acid with short-chain alcohol sunder ultrasonic irradiation condition, Renewable Energy, 34, 780-783, 2009.
  • 57. Stavarache C., Vinatoru M., Nishimura R., Maeda Y., Fatty acids methyl esters from vegetable oil by means of ultrasonicenergy, Ultrasonic Sonochemistry, 12, 367–372, 2005.
  • 58. Kesgin C., Yücel S., Özçimen D., Terzioğlu P., Attar A., Transesterification of hazelnut oil by ultrasonic irradiation, International Journal Of Green Energy, 13, 328-333, 2016.
  • 59. Martinez-Guerra E., Gude V.G., Transesterification of waste vegetable oil under pulse sonication using ethanol, methanol and ethanol-methanol mixtures, Waste Management, 34 (12), 2611-2620, 2014.
There are 59 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Makaleler
Authors

Fadime Şimşek 0000-0002-1440-7480

Project Number KÜBAP01_2015-28
Early Pub Date January 19, 2024
Publication Date May 20, 2024
Submission Date January 5, 2023
Acceptance Date August 24, 2023
Published in Issue Year 2024 Volume: 39 Issue: 3

Cite

APA Şimşek, F. (2024). Fındık yağından elde edilen biyodizelin karakteristik özelliklerine ultrasonik banyo uygulamasının etkilerinin araştırılması. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 39(3), 1583-1596. https://doi.org/10.17341/gazimmfd.1230079
AMA Şimşek F. Fındık yağından elde edilen biyodizelin karakteristik özelliklerine ultrasonik banyo uygulamasının etkilerinin araştırılması. GUMMFD. May 2024;39(3):1583-1596. doi:10.17341/gazimmfd.1230079
Chicago Şimşek, Fadime. “Fındık yağından Elde Edilen Biyodizelin Karakteristik özelliklerine Ultrasonik Banyo uygulamasının Etkilerinin araştırılması”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 39, no. 3 (May 2024): 1583-96. https://doi.org/10.17341/gazimmfd.1230079.
EndNote Şimşek F (May 1, 2024) Fındık yağından elde edilen biyodizelin karakteristik özelliklerine ultrasonik banyo uygulamasının etkilerinin araştırılması. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 39 3 1583–1596.
IEEE F. Şimşek, “Fındık yağından elde edilen biyodizelin karakteristik özelliklerine ultrasonik banyo uygulamasının etkilerinin araştırılması”, GUMMFD, vol. 39, no. 3, pp. 1583–1596, 2024, doi: 10.17341/gazimmfd.1230079.
ISNAD Şimşek, Fadime. “Fındık yağından Elde Edilen Biyodizelin Karakteristik özelliklerine Ultrasonik Banyo uygulamasının Etkilerinin araştırılması”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 39/3 (May 2024), 1583-1596. https://doi.org/10.17341/gazimmfd.1230079.
JAMA Şimşek F. Fındık yağından elde edilen biyodizelin karakteristik özelliklerine ultrasonik banyo uygulamasının etkilerinin araştırılması. GUMMFD. 2024;39:1583–1596.
MLA Şimşek, Fadime. “Fındık yağından Elde Edilen Biyodizelin Karakteristik özelliklerine Ultrasonik Banyo uygulamasının Etkilerinin araştırılması”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol. 39, no. 3, 2024, pp. 1583-96, doi:10.17341/gazimmfd.1230079.
Vancouver Şimşek F. Fındık yağından elde edilen biyodizelin karakteristik özelliklerine ultrasonik banyo uygulamasının etkilerinin araştırılması. GUMMFD. 2024;39(3):1583-96.