Research Article
BibTex RIS Cite

Additive manufacturing in sensor and biomaterials production

Year 2023, Volume: 38 Issue: 4, 2191 - 2204, 12.04.2023
https://doi.org/10.17341/gazimmfd.1075312

Abstract

With the developing technology, Additive manufacturing technique has become one of the manufacturing fields, the importance of which is increasing day by day in different fields. In the additive manufacturing , the object to be produced is produced/spread out layer by layer. This method has many different abilities, some of these advantage are; complex parts can be produced, low cost, relatively high speed of production. Additive manufacturing technology is widely used in different industries such as aviation, automotive and biomedical due to its superior properties. Because of these advantages, additive manufacturing method is expected to replace subtractive manufacturing methods in the near future. Due to its widespread use in different fields, the examination of review studies is important in order to up to date the current progress of the title.. In this study, it is aimed to convey the current developments in the field of wearable technology (especially sensors and biomaterials).

References

  • 1. Perelaer J, Smith PJ, Mager D, Soltman D, Volkman SK, Subramanian V, et al. Printed electronics: the challenges involved in printing devices, interconnects, and contacts based on inorganic materials. Journal of Materials Chemistry. 2010 June 25;: p. 8446-8453.
  • 2. Gamota D, Brazis P, Kalyanasund K, Zhang J. Printed organic and molecular electronics Berlin: Springer; 2004.
  • 3. Karabulut Y., Eklemeli imalat yöntemiyle üretilen farklı cidar kalınlıklarında üretilen inconel 718 alaşım malzemesine uygulanan ikincil işlemlerin malzemenin mekanik özelliklerine etkisinin incelenmesi. Marmara Üniversitesi, fen bilimleri Enstitüsü, 2020.
  • 4. Kantola V, Kulovesi J, Lahti L, Lin R, Zavodchikova M, Coatanea E. Printed electronics, Now and Future. Bit Bang. 2009;: p. 63-105.
  • 5. Gebel M., (2018). Polimer matrisli sürekli fiber takviyeli kompozit parça üretimi için bir eklemeli imalat yönteminin geliştirilmesi. Yüksek lisans tezi. Kahramanmaraş Sütçü İmam Üniversitesi Fen Bilimleri Enstitüsü, Kahramanmaraş.
  • 6. Özdoğan S., (2021). Eklemeli imalat yöntemleriyle üretilen parçaların baskı parametrelerinin üç-nokta-eğilme davranişlarina etkisinin incelenmesi. Yüksek lisans tezi. Necmettin Erbakan Üniversitesi Fen Bilimleri Enstitüsü, Konya.
  • 7. Song, P., Wang, G., & Zhang, Y. (2021). Preparation and performance of graphene/carbon black silicone rubber composites used for highly sensitive and flexible strain sensors. Sensors and Actuators, A: Physical, 323, 112659. https://doi.org/10.1016/j.sna.2021.112659
  • 8. İnternet: https://3d3teknoloji.com/blog/3d-baski-organ-en-umut-verici-projeler/
  • 9. İnternet: https://teknolojiprojeleri.com/3d-yazici/biyo-yazici-nedir-organ-uretimi
  • 10. Fu, H. (2018). Rotational Energy Harvesting for Low Power Electronics. Thesis, February.
  • 11. Internet:https://www.google.com/search?q=ak%C4%B1ll%C4%B1+saat&sxsrf=ALeKk00lqiD3xPg9xp4ihLwfP5jkfBIPEA:1629193563143&source=lnms&tbm=isch&sa=X&ved=2ahUKEwi2vOf84rfyAhVD_rsIHb4ADVsQ_AUoAnoECAEQBA&biw=1366&bih=625#imgrc=2Xs82z2l53s-fM
  • 12. Zhou, Z., He, Z., Yin, S., Xie, X., & Yuan, W. (2021). Adhesive, stretchable and antibacterial hydrogel with external/self-power for flexible sensitive sensor used as human motion detection. Composites Part B: Engineering, 220(April), 108984. https://doi.org/10.1016/j.compositesb.2021.108984
  • 13. Shen, X., Zhao, S., & Wan, A. (2021). A sensitive and flexible sensor enhanced by constructing graphene-based polyaniline conductive networks. Sensors and Actuators, A: Physical, 330, 112862. https://doi.org/10.1016/j.sna.2021.112862
  • 14. Zhang, Y., & Cui, Y. (2019). A flexible calligraphy-integrated in situ humidity sensor. Measurement: Journal of the International Measurement Confederation, 147, 106853. https://doi.org/10.1016/j.measurement.2019.106853
  • 15. Annabestani, M., Esmaili-dokht, P., Olianasab, S. A., Orouji, N., & Alipour, Z. (n.d.). A novel fully 3D , microfluidic-oriented , gel-based and low cost stretchable soft sensor. 1–11.
  • 16. Zhang, R., Lv, A., Ying, C., Hu, Z., Hu, H., Chen, H., Liu, Q., Fu, X., Hu, S., & Wong, C. P. (2020). Facile one-step preparation of laminated PDMS based flexible strain sensors with high conductivity and sensitivity via filler sedimentation. Composites Science and Technology, 186(October 2019), 1–7. https://doi.org/10.1016/j.compscitech.2019.107933
  • 17. Xiong y., Shen Y. Tian L., Hu Y., Zhu P., Sun. R., Wong C. P.(2020). A flexible, ultra-highly sensitive and stable capacitive pressure sensor with convex microarrays for motion and health monitoring. Nano energy. 70 (October 2020), 104436.
  • 18. Sobolewski P.,, Goszczyńska A.,, Aleksandrzak M., Urbaś K., Derkowska J., Bartoszewska A., Podolski J., Mijowska E. and El Fray M., ‘’ A biofunctionalizable ink platform composed of catechol-modified chitosan and reduced graphene oxide/platinum nanocomposite’’
  • 19. Van Driessche, I., Feys, J., Hopkins, S. C., Lommens, P., Granados, X., Glowacki, B. A., Ricart, S., Holzapfel, B., Vilardell, M., Kirchner, A., & Bäcker, M. (2012). Chemical solution deposition using ink-jet printing for YBCO coated conductors. Superconductor Science and Technology, 25(6). https://doi.org/10.1088/0953-2048/25/6/065017
  • 20. Jabari, E., & Toyserkani, E. (2015). Micro-scale aerosol-jet printing of graphene interconnects. Carbon, 91, 321–329. https://doi.org/10.1016/j.carbon.2015.04.094
  • 21. Sukeshini A., M., Meisenkothen, F., Gardner, P., & Reitz, T. L. (2013). Aerosol Jet® Printing of functionally graded SOFC anode interlayer and microstructural investigation by low voltage scanning electron microscopy. Journal of Power Sources, 224, 295–303. https://doi.org/10.1016/j.jpowsour.2012.09.094
  • 22. Zhang, H., Choi, J. P., Moon, S. K., & Ngo, T. H. (2020). A hybrid multi-objective optimization of aerosol jet printing process via response surface methodology. Additive Manufacturing, 33(December 2019), 101096. https://doi.org/10.1016/j.addma.2020.10109
  • 23. Allanurov, A. M., Zdrok, A. Y., Loschilov, A. G., & Malyutin, N. D. (2014). Problem of Ink Evaporation while Using Plotter Systems to Manufacture Printed Electronic Products. Procedia Technology, 18(September), 19–24. https://doi.org/10.1016/j.protcy.2014.11.006
  • 24. Zang, Z., Tang, X., Liu, X., Lei, X., & Chen, W. (2014). Fabrication of high quality and low cost microlenses on a glass substrate by direct printing technique. Applied Optics, 53(33), 7868. https://doi.org/10.1364/ao.53.007868
  • 25. Larson, B. J., Gillmor, S. D., & Lagally, M. G. (2004). Controlled deposition of picoliter amounts of fluid using an ultrasonically driven micropipette. Review of Scientific Instruments, 75(4), 832–836. https://doi.org/10.1063/1.1688436
  • 26. Demiröz Ö. B., (2021). Eklemeli imalat ile yüzeyi güçlendirilen termoelektrik modül yüzeyindeki ısı dağılım etkisinin analizi. Yüksek lisans tezi. İstanbul Gedik Üniversitesi. İstanbul.
  • 27. Aktürk M., (2021). Eklemeli imalat yöntemi ile üretilmiş AlSi10Mg malzemesinin malzeme yapısal parametrelerinin belirlenmesi ve sonlu elemanlar yöntemiyle doğrulanması. Yüksek Lisans Tezi. Karabük Üniversitesi Fen Bilimleri Enstitüsü, Karabük.
  • 28. Wang, H., Du, W., Zhao, Y., Wang, Y., Hao, R., & Yang, M. (2021). Joints for treelike column structures based on generative design and additive manufacturing. Journal of Constructional Steel Research, 184, 106794. https://doi.org/10.1016/j.jcsr.2021.106794
  • 29. Top N., (2019). Doku mühendisliği için eklemeli imalat kullanılarak yeni bir kemik iskelesi tasarımı ve üretimi. Yüksek lisans tezi. Gazi Üniversitesi Fen Bilimleri Enstitüsü, Ankara.
  • 30. Claudia, E., Fischer, D., & Nickel, D. (2021). Challenges in electroplating of additive manufactured ABS plastics. 68(June), 1378–1386. https://doi.org/10.1016/j.jmapro.2021.06.037
  • 31. Tsushima, N., Tamayama, M., Arizono, H., & Makihara, K. (2021). Geometrically nonlinear aeroelastic characteristics of highly flexible wing fabricated by additive manufacturing. Aerospace Science and Technology, 117, 106923. https://doi.org/10.1016/j.ast.2021.106923
  • 32. ATALAY Y., (2020). Hybrid additive manufacturing by shaped metal deposition. Yüksek lisans tezi. Gaziantep Üniversitesi Fen Bilimleri Enstitüsü, Gaziantep.
  • 33. Mohanavel, V., Ali, K. S. A., Ranganathan, K., Jeffrey, J. A., Ravikumar, M. M., & Rajkumar, S. (2021). Materials Today : Proceedings The roles and applications of additive manufacturing in the aerospace and automobile sector. Materials Today: Proceedings, xxxx. https://doi.org/10.1016/j.matpr.2021.04.596
  • 34. Bhatia, A., & Sehgal, A. K. (2021). Materials Today : Proceedings Additive manufacturing materials , methods and applications : A review. Materials Today: Proceedings, xxxx. https://doi.org/10.1016/j.matpr.2021.04.379
  • 35. Hashmi, A. W., & Meena, A. (2021). Materials Today : Proceedings Improving the surface characteristics of additively manufactured parts : A review. Materials Today: Proceedings, xxxx. https://doi.org/10.1016/j.matpr.2021.04.223
  • 36. Izadifar, M., Chapman, D., Babyn, P., Chen, X., & Kelly, M. E. (2018). UV-Assisted 3D Bioprinting of Nanoreinforced Hybrid Cardiac Patch for Myocardial Tissue Engineering. Tissue Engineering - Part C: Methods, 24(2), 74–88. https://doi.org/10.1089/ten.tec.2017.0346.
  • 37. Invernizzi, M., Natale, G., Levi, M., Turri, S., & Griffini, G. (2016). UV-assisted 3D printing of glass and carbon fiber-reinforced dual-cure polymer composites. Materials, 9(7). https://doi.org/10.3390/MA9070583.
  • 38. Mantelli, A., Romani, A., Suriano, R., Diani, M., Colledani, M., Sarlin, E., Turri, S., & Levi, M. (2021). Uv-assisted 3d printing of polymer composites from thermally and mechanically recycled carbon fibers. Polymers, 13(5), 1–15. https://doi.org/10.3390/polym13050726.
  • 39. Postiglione G. (2021). Uv-assisted 3d printing of polymer composites from thermally and mechanically recycled carbon fibers. Polymers, 13(5), 1–15.
  • 40. Barkane, A., Platnieks, O., Jurinovs, M., & Gaidukovs, S. (2020). Thermal stability of UV-cured vegetable oil epoxidized acrylate-based polymer system for 3D printing application. Polymer Degradation and Stability, 181, 109347. https://doi.org/10.1016/j.polymdegradstab.2020.109347
  • 41. Kim, Y. C., Hong, S., Sun, H., Kim, M. G., Choi, K., Cho, J., Choi, H. R., Koo, J. C., Moon, H., Byun, D., Kim, K. J., Suhr, J., Kim, S. H., & Nam, J. Do. (2017). UV-curing kinetics and performance development of in situ curable 3D printing materials. European Polymer Journal, 93(February), 140–147. https://doi.org/10.1016/j.eurpolymj.2017.05.041
  • 42. Hong, S. Y., Kim, Y. C., Wang, M., Kim, H. I., Byun, D. Y., Nam, J. Do, Chou, T. W., Ajayan, P. M., Ci, L., & Suhr, J. (2018). Experimental investigation of mechanical properties of UV-Curable 3D printing materials. Polymer, 145, 88–94. https://doi.org/10.1016/j.polymer.2018.04.067
  • 43. Lee, S., Kim, Y., Park, D., & Kim, J. (2021). The thermal properties of a UV curable acrylate composite prepared by digital light processing 3D printing. Composites Communications, 26(May), 100796. https://doi.org/10.1016/j.coco.2021.100796
  • 44. Li, Y., Zhong, J., Wu, L., Weng, Z., Zheng, L., Peng, S., & Zhang, X. (2019). High performance POSS filled nanocomposites prepared via UV-curing based on 3D stereolithography printing. Composites Part A: Applied Science and Manufacturing, 117(July 2018), 276–286. https://doi.org/10.1016/j.compositesa.2018.11.024
  • 45. Putra, N. E., Leeflang, M. A., Taheri, P., Fratila-Apachitei, L. E., Mol, J. M. C., Zhou, J., & Zadpoor, A. A. (2021). Extrusion-based 3D printing of ex situ-alloyed highly biodegradable MRI-friendly porous iron-manganese scaffolds. Acta Biomaterialia, 134(xxxx), 774–790. https://doi.org/10.1016/j.actbio.2021.07.042
  • 46. Lin, Z., Jiang, T., Kinsella, J. M., Shang, J., & Luo, Z. (2021). Assessing roughness of extrusion printed soft materials using a semi-quantitative method. Materials Letters, 303(July), 130480. https://doi.org/10.1016/j.matlet.2021.130480
  • 47. Diba, M., Koons, G. L., Bedell, M. L., & Mikos, A. G. (2021). 3D printed colloidal biomaterials based on photo-reactive gelatin nanoparticles. Biomaterials, 274(April), 120871. https://doi.org/10.1016/j.biomaterials.2021.120871
  • 48. Kim, M. H., & Nam, S. Y. (2020). Assessment of coaxial printability for extrusion-based bioprinting of alginate-based tubular constructs. Bioprinting, 20(July), e00092. https://doi.org/10.1016/j.bprint.2020.e00092
  • 49. ong, K., Zhang, D., Yin, J., & Huang, Y. (2021). Computational study of extrusion bioprinting with jammed gelatin microgel-based composite ink. Additive Manufacturing, 41(January), 101963. https://doi.org/10.1016/j.addma.2021.101963
  • 50. Gospodinova, A., Nankov, V., Tomov, S., Redzheb, M., & Petrov, P. D. (2021). Extrusion bioprinting of hydroxyethylcellulose-based bioink for cervical tumor model. Carbohydrate Polymers, 260(January), 117793. https://doi.org/10.1016/j.carbpol.2021.117793
  • 51. Sakai, S., Yoshii, A., Sakurai, S., Horii, K., & Nagasuna, O. (2020). Silk fibroin nanofibers: a promising ink additive for extrusion three-dimensional bioprinting. Materials Today Bio, 8(July). https://doi.org/10.1016/j.mtbio.2020.100078
  • 52. Ginestra, P. S., Rovetta, R., Fiorentino, A., & Ceretti, E. (2020). Bioprinting process optimization: Evaluation of parameters influence on the extrusion of inorganic polymers. Procedia CIRP, 89, 104–109. https://doi.org/10.1016/j.procir.2020.05.125
  • 53. Kim, M. H., Lee, Y. W., Jung, W. K., Oh, J., & Nam, S. Y. (2019). Enhanced rheological behaviors of alginate hydrogels with carrageenan for extrusion-based bioprinting. Journal of the Mechanical Behavior of Biomedical Materials, 98(February), 187–194. https://doi.org/10.1016/j.jmbbm.2019.06.014
  • 54. Liu, S., Mo, L., Bi, G., Chen, S., Yan, D., Yang, J., Jia, Y. G., & Ren, L. (2021). DLP 3D printing porous β-tricalcium phosphate scaffold by the use of acrylate/ceramic composite slurry. Ceramics International, 47(15), 21108–21116. https://doi.org/10.1016/j.ceramint.2021.04.114
  • 55. Zhang, J., Huang, D., Liu, S., Dong, X., Li, Y., Zhang, H., Yang, Z., Su, Q., Huang, W., Zheng, W., & Zhou, W. (2019). Zirconia toughened hydroxyapatite biocomposite formed by a DLP 3D printing process for potential bone tissue engineering. Materials Science and Engineering C, 105(July), 110054. https://doi.org/10.1016/j.msec.2019.110054
  • 56. Preobrazhenskiy, I. I., Tikhonov, A. A., Evdokimov, P. V., Shibaev, A. V., & Putlyaev, V. I. (2021). DLP printing of hydrogel/calcium phosphate composites for the treatment of bone defects. Open Ceramics, 6(April), 100115. https://doi.org/10.1016/j.oceram.2021.100115
  • 57. Foerster, A., Annarasa, V., Terry, A., Wildman, R., Hague, R., Irvine, D., De Focatiis, D. S. A., & Tuck, C. (2021). UV-curable silicone materials with tuneable mechanical properties for 3D printing. Materials and Design, 205, 109681. https://doi.org/10.1016/j.matdes.2021.109681
  • 58. Xing, H., Zou, B., Lai, Q., Huang, C., Chen, Q., Fu, X., & Shi, Z. (2018). Preparation and characterization of UV curable Al2O3 suspensions applying for stereolithography 3D printing ceramic microcomponent. Powder Technology, 338, 153–161. https://doi.org/10.1016/j.powtec.2018.07.023
  • 59. Jones, C. S., Lu, X., Renn, M., Stroder, M., & Shih, W. S. (2010). Aerosol-jet-printed, high-speed, flexible thin-film transistor made using single-walled carbon nanotube solution. Microelectronic Engineering, 87(3), 434–437. https://doi.org/10.1016/j.mee.2009.05.034
  • 60. Zhao, D., Liu, T., Park, J. G., Zhang, M., Chen, J. M., & Wang, B. (2012). Conductivity enhancement of aerosol-jet printed electronics by using silver nanoparticles ink with carbon nanotubes. Microelectronic Engineering, 96, 71–75. https://doi.org/10.1016/j.mee.2012.03.004
  • 61. Sukeshini A., M., Meisenkothen, F., Gardner, P., & Reitz, T. L. (2013). Aerosol Jet® Printing of functionally graded SOFC anode interlayer and microstructural investigation by low voltage scanning electron microscopy. Journal of Power Sources, 224, 295–303. https://doi.org/10.1016/j.jpowsour.2012.09.094
  • 62. Eckstein, R., Hernandez-Sosa, G., Lemmer, U., & Mechau, N. (2014). Aerosol jet printed top grids for organic optoelectronic devices. Organic Electronics, 15(9), 2135–2140. https://doi.org/10.1016/j.orgel.2014.05.031
  • 63. Seifert, T., Baum, M., Roscher, F., Wiemer, M., & Gessner, T. (2015). Aerosol Jet Printing of Nano Particle Based Electrical Chip Interconnects. Materials Today: Proceedings, 2(8), 4262–4271. https://doi.org/10.1016/j.matpr.2015.09.012
  • 64. Tait, J. G., Witkowska, E., Hirade, M., Ke, T. H., Malinowski, P. E., Steudel, S., Adachi, C., & Heremans, P. (2015). Uniform Aerosol Jet printed polymer lines with 30 μm width for 140 ppi resolution RGB organic light emitting diodes. Organic Electronics, 22, 40–43. https://doi.org/10.1016/j.orgel.2015.03.034
  • 65. Jabari, E., & Toyserkani, E. (2016). Aerosol-Jet printing of highly flexible and conductive graphene/silver patterns. Materials Letters, 174, 40–43. https://doi.org/10.1016/j.matlet.2016.03.082
  • 66. Wang, K., Chang, Y. H., Zhang, C., & Wang, B. (2016). Conductive-on-demand: Tailorable polyimide/carbon nanotube nanocomposite thin film by dual-material aerosol jet printing. Carbon, 98, 397–403. https://doi.org/10.1016/j.carbon.2015.11.032
  • 67. Goh, G. L., Agarwala, S., Tan, Y. J., & Yeong, W. Y. (2018). A low cost and flexible carbon nanotube pH sensor fabricated using aerosol jet technology for live cell applications. Sensors and Actuators, B: Chemical, 260, 227–235. https://doi.org/10.1016/j.snb.2017.12.127
  • 68. Laurent, P., Stoukatch, S., Dupont, F., & Kraft, M. (2018). Electrical characterization of Aerosol Jet Printing (AJP) deposited conductive silver tracks on organic materials. Microelectronic Engineering, 197(April), 67–75. https://doi.org/10.1016/j.mee.2018.06.002
  • 69. Khan, S., Nguyen, T. P., Lubej, M., Thiery, L., Vairac, P., & Briand, D. (2018). Low-power printed micro-hotplates through aerosol jetting of gold on thin polyimide membranes. Microelectronic Engineering, 194(March), 71–78. https://doi.org/10.1016/j.mee.2018.03.013
  • 70. He, C., Jin, N., Yu, H., Lin, J., & Ma, C. Q. (2019). The electrical sintering and fusing effects of Aerosol-Jet printed silver conductive line. Materials Letters, 246, 5–8. https://doi.org/10.1016/j.matlet.2019.03.016
  • 71. Zhang, H., Choi, J. P., Moon, S. K., & Ngo, T. H. (2020). A hybrid multi-objective optimization of aerosol jet printing process via response surface methodology. Additive Manufacturing, 33(December 2019), 101096. https://doi.org/10.1016/j.addma.2020.101096
  • 72. Chen, Y. D., Nagarajan, V., Rosen, D. W., Yu, W., & Huang, S. Y. (2020). Aerosol jet printing on paper substrate with conductive silver nano material. Journal of Manufacturing Processes, 58(January), 55–66. https://doi.org/10.1016/j.jmapro.2020.07.064
  • 73. Ćatić, N., Wells, L., Al Nahas, K., Smith, M., Jing, Q., Keyser, U. F., Cama, J., & Kar-Narayan, S. (2020). Aerosol-jet printing facilitates the rapid prototyping of microfluidic devices with versatile geometries and precise channel functionalization. Applied Materials Today, 19. https://doi.org/10.1016/j.apmt.2020.100618
  • 74. Deneault, J. R., Bartsch, C., Cook, A., Grabowski, C., Berrigan, J. D., Glavin, N., & Buskohl, P. R. (2020). Conductivity and radio frequency performance data for silver nanoparticle inks deposited via aerosol jet deposition and processed under varying conditions. Data in Brief, 33, 106331. https://doi.org/10.1016/j.dib.2020.106331
  • 75. Phuah, E. W. C., Hart, W. L., Sumer, H., & Stoddart, P. R. (2020). Patterning of biomaterials by aerosol jet printing: A parametric study. Bioprinting, 18(August 2019), e00081. https://doi.org/10.1016/j.bprint.2020.e00081
  • 76. Zhu, Y., Yu, L., Wu, D., Lv, W., & Wang, L. (2021). A high-sensitivity graphene ammonia sensor via aerosol jet printing. Sensors and Actuators, A: Physical, 318, 112434. https://doi.org/10.1016/j.sna.2020.112434
  • 77. Rahman, M. T., & Panat, R. (2021). Aerosol jet 3D printing and high temperature characterization of nickel nanoparticle films. Manufacturing Letters, 29, 5–10. https://doi.org/10.1016/j.mfglet.2021.04.006
  • 78. Jing, Q., Pace, A., Ives, L., Husmann, A., Ćatić, N., Khanduja, V., Cama, J., & Kar-Narayan, S. (2021). Aerosol-jet-printed, conformable microfluidic force sensors. Cell Reports Physical Science, 2(4). https://doi.org/10.1016/j.xcrp.2021.100386
  • 79. Secor, E. B. (2021). Light scattering measurements to support real-time monitoring and closed-loop control of aerosol jet printing. Additive Manufacturing, 44(April), 102028. https://doi.org/10.1016/j.addma.2021.102028
  • 80. Baù, M., Ferrari, M., Tonoli, E., & Ferrari, V. (2011). Sensors and energy harvesters based on piezoelectric thick films. Procedia Engineering, 25, 737–744. https://doi.org/10.1016/j.proeng.2011.12.182
  • 81. Aminayi P. (2016). Development and evaluation of matrix material formulations for potentıal ıntegratıon ınto ımmunodıagnostıc bıosensorswestern Michigan University, Doctoral thesis.
  • 82. Shancheng Y. (2016), Wavelength tuning of the soft approached whispering gallery mode microlasers for display and sensing, Nanyang Technologıcal Unıversıty, Doctoral thesis.
  • 83. Sobolewski, P., Goszczynska, A., Aleksandrzak, M., Urbas, K., Derkowska, J., Bartoszewska, A., Podolski, J., Mijowska, E., & Fray, M. El. (2017). A biofunctionalizable ink platform composed of catechol-modified chitosan and reduced graphene oxide/platinum nanocomposite. Beilstein Journal of Nanotechnology, 8(1), 1508–1514. https://doi.org/10.3762/bjnano.8.151
  • 84. Rohit A.(2017). Optimization and characterization of a capillary contact micro-plotter for printed electronic devices, Master of Science,
  • 85. Molazemhosseini, A., Magagnin, L., Vena, P., & Liu, C. C. (2017). Single-use nonenzymatic glucose biosensor based on CuO nanoparticles ink printed on thin film gold electrode by micro-plotter technology. Journal of Electroanalytical Chemistry, 789, 50–57. https://doi.org/10.1016/j.jelechem.2017.01.041
  • 86. Wang, Y., Zhao, C., Wang, C., Cerica, D., Baijot, M., Xiao, Q., Stoukatch, S., & Kraft, M. (2018). A mass sensor based on 3-DOF mode localized coupled resonator under atmospheric pressure. Sensors and Actuators, A: Physical, 279, 254–262. https://doi.org/10.1016/j.sna.2018.06.028
  • 87. Holeman T. 2018. The systematic approach to microplotter printing of perovskite precursors, Master of Science, Ohio University.
  • 88. Kwon, K. S., Rahman, M. K., Phung, T. H., Hoath, S. D., Jeong, S., & Kim, J. S. (2020). Review of digital printing technologies for electronic materials. Flexible and Printed Electronics, 5(4). https://doi.org/10.1088/2058-8585/abc8ca
  • 89. Zymelka, D., Yamashita, T., Sun, X., & Kobayashi, T. (2020). Printed strain sensors based on an intermittent conductive pattern filled with resistive ink droplets. Sensors (Switzerland), 20(15), 1–14. https://doi.org/10.3390/s20154181
  • 90. Li, Q., & Liu, J. (2020). Combined Printing of Highly Aligned Single-Walled Carbon Nanotube Thin Films with Liquid Metal for Direct Fabrication of Functional Electronic Devices. Advanced Electronic Materials, 6(9). https://doi.org/10.1002/aelm.202000537

Algılayıcı ve biyomalzeme üretiminde eklemeli imalat

Year 2023, Volume: 38 Issue: 4, 2191 - 2204, 12.04.2023
https://doi.org/10.17341/gazimmfd.1075312

Abstract

Gelişen teknolojiyle beraber, Eklemeli imalat tekniği önemi her geçen gün daha farklı alanlarda kullanımı artan imalat alanlarından birisi konumuna gelmiştir. Eklemeli imalat üretilecek olan nesnenin tabaka tabaka üretilmesi/serilmesi prensibine dayanan yöntemdir. Eklemeli imalat yöntemi karmaşık şekilli parçaların üretilebilmesi, maliyet, üretim hızı gibi üstün özellikleri nedeniyle havacılık, otomotiv ve biyomedikal olmak üzere farklı endüstrilerde yaygın olarak kullanılmaktadır. Sahip olduğu bu avantajlar nedeniyle yakın gelecekte çıkarımlı imalat yöntemlerinin yerini alması beklenmektedir. Farklı alanlardaki yaygın kullanımı nedeniyle tarama çalışmalarının incelenmesi başlığın güncel ilerlemesini izleyebilmek adına önem göstermektedir. Bu çalışmada, giyilebilir teknoloji alanında özellikle algılayıcılar ve biyomalzemelerin eklemeli imalat yöntemiyle üretimi üzerine mevcut gelişmelerinin aktarılması amaçlanmıştır.

References

  • 1. Perelaer J, Smith PJ, Mager D, Soltman D, Volkman SK, Subramanian V, et al. Printed electronics: the challenges involved in printing devices, interconnects, and contacts based on inorganic materials. Journal of Materials Chemistry. 2010 June 25;: p. 8446-8453.
  • 2. Gamota D, Brazis P, Kalyanasund K, Zhang J. Printed organic and molecular electronics Berlin: Springer; 2004.
  • 3. Karabulut Y., Eklemeli imalat yöntemiyle üretilen farklı cidar kalınlıklarında üretilen inconel 718 alaşım malzemesine uygulanan ikincil işlemlerin malzemenin mekanik özelliklerine etkisinin incelenmesi. Marmara Üniversitesi, fen bilimleri Enstitüsü, 2020.
  • 4. Kantola V, Kulovesi J, Lahti L, Lin R, Zavodchikova M, Coatanea E. Printed electronics, Now and Future. Bit Bang. 2009;: p. 63-105.
  • 5. Gebel M., (2018). Polimer matrisli sürekli fiber takviyeli kompozit parça üretimi için bir eklemeli imalat yönteminin geliştirilmesi. Yüksek lisans tezi. Kahramanmaraş Sütçü İmam Üniversitesi Fen Bilimleri Enstitüsü, Kahramanmaraş.
  • 6. Özdoğan S., (2021). Eklemeli imalat yöntemleriyle üretilen parçaların baskı parametrelerinin üç-nokta-eğilme davranişlarina etkisinin incelenmesi. Yüksek lisans tezi. Necmettin Erbakan Üniversitesi Fen Bilimleri Enstitüsü, Konya.
  • 7. Song, P., Wang, G., & Zhang, Y. (2021). Preparation and performance of graphene/carbon black silicone rubber composites used for highly sensitive and flexible strain sensors. Sensors and Actuators, A: Physical, 323, 112659. https://doi.org/10.1016/j.sna.2021.112659
  • 8. İnternet: https://3d3teknoloji.com/blog/3d-baski-organ-en-umut-verici-projeler/
  • 9. İnternet: https://teknolojiprojeleri.com/3d-yazici/biyo-yazici-nedir-organ-uretimi
  • 10. Fu, H. (2018). Rotational Energy Harvesting for Low Power Electronics. Thesis, February.
  • 11. Internet:https://www.google.com/search?q=ak%C4%B1ll%C4%B1+saat&sxsrf=ALeKk00lqiD3xPg9xp4ihLwfP5jkfBIPEA:1629193563143&source=lnms&tbm=isch&sa=X&ved=2ahUKEwi2vOf84rfyAhVD_rsIHb4ADVsQ_AUoAnoECAEQBA&biw=1366&bih=625#imgrc=2Xs82z2l53s-fM
  • 12. Zhou, Z., He, Z., Yin, S., Xie, X., & Yuan, W. (2021). Adhesive, stretchable and antibacterial hydrogel with external/self-power for flexible sensitive sensor used as human motion detection. Composites Part B: Engineering, 220(April), 108984. https://doi.org/10.1016/j.compositesb.2021.108984
  • 13. Shen, X., Zhao, S., & Wan, A. (2021). A sensitive and flexible sensor enhanced by constructing graphene-based polyaniline conductive networks. Sensors and Actuators, A: Physical, 330, 112862. https://doi.org/10.1016/j.sna.2021.112862
  • 14. Zhang, Y., & Cui, Y. (2019). A flexible calligraphy-integrated in situ humidity sensor. Measurement: Journal of the International Measurement Confederation, 147, 106853. https://doi.org/10.1016/j.measurement.2019.106853
  • 15. Annabestani, M., Esmaili-dokht, P., Olianasab, S. A., Orouji, N., & Alipour, Z. (n.d.). A novel fully 3D , microfluidic-oriented , gel-based and low cost stretchable soft sensor. 1–11.
  • 16. Zhang, R., Lv, A., Ying, C., Hu, Z., Hu, H., Chen, H., Liu, Q., Fu, X., Hu, S., & Wong, C. P. (2020). Facile one-step preparation of laminated PDMS based flexible strain sensors with high conductivity and sensitivity via filler sedimentation. Composites Science and Technology, 186(October 2019), 1–7. https://doi.org/10.1016/j.compscitech.2019.107933
  • 17. Xiong y., Shen Y. Tian L., Hu Y., Zhu P., Sun. R., Wong C. P.(2020). A flexible, ultra-highly sensitive and stable capacitive pressure sensor with convex microarrays for motion and health monitoring. Nano energy. 70 (October 2020), 104436.
  • 18. Sobolewski P.,, Goszczyńska A.,, Aleksandrzak M., Urbaś K., Derkowska J., Bartoszewska A., Podolski J., Mijowska E. and El Fray M., ‘’ A biofunctionalizable ink platform composed of catechol-modified chitosan and reduced graphene oxide/platinum nanocomposite’’
  • 19. Van Driessche, I., Feys, J., Hopkins, S. C., Lommens, P., Granados, X., Glowacki, B. A., Ricart, S., Holzapfel, B., Vilardell, M., Kirchner, A., & Bäcker, M. (2012). Chemical solution deposition using ink-jet printing for YBCO coated conductors. Superconductor Science and Technology, 25(6). https://doi.org/10.1088/0953-2048/25/6/065017
  • 20. Jabari, E., & Toyserkani, E. (2015). Micro-scale aerosol-jet printing of graphene interconnects. Carbon, 91, 321–329. https://doi.org/10.1016/j.carbon.2015.04.094
  • 21. Sukeshini A., M., Meisenkothen, F., Gardner, P., & Reitz, T. L. (2013). Aerosol Jet® Printing of functionally graded SOFC anode interlayer and microstructural investigation by low voltage scanning electron microscopy. Journal of Power Sources, 224, 295–303. https://doi.org/10.1016/j.jpowsour.2012.09.094
  • 22. Zhang, H., Choi, J. P., Moon, S. K., & Ngo, T. H. (2020). A hybrid multi-objective optimization of aerosol jet printing process via response surface methodology. Additive Manufacturing, 33(December 2019), 101096. https://doi.org/10.1016/j.addma.2020.10109
  • 23. Allanurov, A. M., Zdrok, A. Y., Loschilov, A. G., & Malyutin, N. D. (2014). Problem of Ink Evaporation while Using Plotter Systems to Manufacture Printed Electronic Products. Procedia Technology, 18(September), 19–24. https://doi.org/10.1016/j.protcy.2014.11.006
  • 24. Zang, Z., Tang, X., Liu, X., Lei, X., & Chen, W. (2014). Fabrication of high quality and low cost microlenses on a glass substrate by direct printing technique. Applied Optics, 53(33), 7868. https://doi.org/10.1364/ao.53.007868
  • 25. Larson, B. J., Gillmor, S. D., & Lagally, M. G. (2004). Controlled deposition of picoliter amounts of fluid using an ultrasonically driven micropipette. Review of Scientific Instruments, 75(4), 832–836. https://doi.org/10.1063/1.1688436
  • 26. Demiröz Ö. B., (2021). Eklemeli imalat ile yüzeyi güçlendirilen termoelektrik modül yüzeyindeki ısı dağılım etkisinin analizi. Yüksek lisans tezi. İstanbul Gedik Üniversitesi. İstanbul.
  • 27. Aktürk M., (2021). Eklemeli imalat yöntemi ile üretilmiş AlSi10Mg malzemesinin malzeme yapısal parametrelerinin belirlenmesi ve sonlu elemanlar yöntemiyle doğrulanması. Yüksek Lisans Tezi. Karabük Üniversitesi Fen Bilimleri Enstitüsü, Karabük.
  • 28. Wang, H., Du, W., Zhao, Y., Wang, Y., Hao, R., & Yang, M. (2021). Joints for treelike column structures based on generative design and additive manufacturing. Journal of Constructional Steel Research, 184, 106794. https://doi.org/10.1016/j.jcsr.2021.106794
  • 29. Top N., (2019). Doku mühendisliği için eklemeli imalat kullanılarak yeni bir kemik iskelesi tasarımı ve üretimi. Yüksek lisans tezi. Gazi Üniversitesi Fen Bilimleri Enstitüsü, Ankara.
  • 30. Claudia, E., Fischer, D., & Nickel, D. (2021). Challenges in electroplating of additive manufactured ABS plastics. 68(June), 1378–1386. https://doi.org/10.1016/j.jmapro.2021.06.037
  • 31. Tsushima, N., Tamayama, M., Arizono, H., & Makihara, K. (2021). Geometrically nonlinear aeroelastic characteristics of highly flexible wing fabricated by additive manufacturing. Aerospace Science and Technology, 117, 106923. https://doi.org/10.1016/j.ast.2021.106923
  • 32. ATALAY Y., (2020). Hybrid additive manufacturing by shaped metal deposition. Yüksek lisans tezi. Gaziantep Üniversitesi Fen Bilimleri Enstitüsü, Gaziantep.
  • 33. Mohanavel, V., Ali, K. S. A., Ranganathan, K., Jeffrey, J. A., Ravikumar, M. M., & Rajkumar, S. (2021). Materials Today : Proceedings The roles and applications of additive manufacturing in the aerospace and automobile sector. Materials Today: Proceedings, xxxx. https://doi.org/10.1016/j.matpr.2021.04.596
  • 34. Bhatia, A., & Sehgal, A. K. (2021). Materials Today : Proceedings Additive manufacturing materials , methods and applications : A review. Materials Today: Proceedings, xxxx. https://doi.org/10.1016/j.matpr.2021.04.379
  • 35. Hashmi, A. W., & Meena, A. (2021). Materials Today : Proceedings Improving the surface characteristics of additively manufactured parts : A review. Materials Today: Proceedings, xxxx. https://doi.org/10.1016/j.matpr.2021.04.223
  • 36. Izadifar, M., Chapman, D., Babyn, P., Chen, X., & Kelly, M. E. (2018). UV-Assisted 3D Bioprinting of Nanoreinforced Hybrid Cardiac Patch for Myocardial Tissue Engineering. Tissue Engineering - Part C: Methods, 24(2), 74–88. https://doi.org/10.1089/ten.tec.2017.0346.
  • 37. Invernizzi, M., Natale, G., Levi, M., Turri, S., & Griffini, G. (2016). UV-assisted 3D printing of glass and carbon fiber-reinforced dual-cure polymer composites. Materials, 9(7). https://doi.org/10.3390/MA9070583.
  • 38. Mantelli, A., Romani, A., Suriano, R., Diani, M., Colledani, M., Sarlin, E., Turri, S., & Levi, M. (2021). Uv-assisted 3d printing of polymer composites from thermally and mechanically recycled carbon fibers. Polymers, 13(5), 1–15. https://doi.org/10.3390/polym13050726.
  • 39. Postiglione G. (2021). Uv-assisted 3d printing of polymer composites from thermally and mechanically recycled carbon fibers. Polymers, 13(5), 1–15.
  • 40. Barkane, A., Platnieks, O., Jurinovs, M., & Gaidukovs, S. (2020). Thermal stability of UV-cured vegetable oil epoxidized acrylate-based polymer system for 3D printing application. Polymer Degradation and Stability, 181, 109347. https://doi.org/10.1016/j.polymdegradstab.2020.109347
  • 41. Kim, Y. C., Hong, S., Sun, H., Kim, M. G., Choi, K., Cho, J., Choi, H. R., Koo, J. C., Moon, H., Byun, D., Kim, K. J., Suhr, J., Kim, S. H., & Nam, J. Do. (2017). UV-curing kinetics and performance development of in situ curable 3D printing materials. European Polymer Journal, 93(February), 140–147. https://doi.org/10.1016/j.eurpolymj.2017.05.041
  • 42. Hong, S. Y., Kim, Y. C., Wang, M., Kim, H. I., Byun, D. Y., Nam, J. Do, Chou, T. W., Ajayan, P. M., Ci, L., & Suhr, J. (2018). Experimental investigation of mechanical properties of UV-Curable 3D printing materials. Polymer, 145, 88–94. https://doi.org/10.1016/j.polymer.2018.04.067
  • 43. Lee, S., Kim, Y., Park, D., & Kim, J. (2021). The thermal properties of a UV curable acrylate composite prepared by digital light processing 3D printing. Composites Communications, 26(May), 100796. https://doi.org/10.1016/j.coco.2021.100796
  • 44. Li, Y., Zhong, J., Wu, L., Weng, Z., Zheng, L., Peng, S., & Zhang, X. (2019). High performance POSS filled nanocomposites prepared via UV-curing based on 3D stereolithography printing. Composites Part A: Applied Science and Manufacturing, 117(July 2018), 276–286. https://doi.org/10.1016/j.compositesa.2018.11.024
  • 45. Putra, N. E., Leeflang, M. A., Taheri, P., Fratila-Apachitei, L. E., Mol, J. M. C., Zhou, J., & Zadpoor, A. A. (2021). Extrusion-based 3D printing of ex situ-alloyed highly biodegradable MRI-friendly porous iron-manganese scaffolds. Acta Biomaterialia, 134(xxxx), 774–790. https://doi.org/10.1016/j.actbio.2021.07.042
  • 46. Lin, Z., Jiang, T., Kinsella, J. M., Shang, J., & Luo, Z. (2021). Assessing roughness of extrusion printed soft materials using a semi-quantitative method. Materials Letters, 303(July), 130480. https://doi.org/10.1016/j.matlet.2021.130480
  • 47. Diba, M., Koons, G. L., Bedell, M. L., & Mikos, A. G. (2021). 3D printed colloidal biomaterials based on photo-reactive gelatin nanoparticles. Biomaterials, 274(April), 120871. https://doi.org/10.1016/j.biomaterials.2021.120871
  • 48. Kim, M. H., & Nam, S. Y. (2020). Assessment of coaxial printability for extrusion-based bioprinting of alginate-based tubular constructs. Bioprinting, 20(July), e00092. https://doi.org/10.1016/j.bprint.2020.e00092
  • 49. ong, K., Zhang, D., Yin, J., & Huang, Y. (2021). Computational study of extrusion bioprinting with jammed gelatin microgel-based composite ink. Additive Manufacturing, 41(January), 101963. https://doi.org/10.1016/j.addma.2021.101963
  • 50. Gospodinova, A., Nankov, V., Tomov, S., Redzheb, M., & Petrov, P. D. (2021). Extrusion bioprinting of hydroxyethylcellulose-based bioink for cervical tumor model. Carbohydrate Polymers, 260(January), 117793. https://doi.org/10.1016/j.carbpol.2021.117793
  • 51. Sakai, S., Yoshii, A., Sakurai, S., Horii, K., & Nagasuna, O. (2020). Silk fibroin nanofibers: a promising ink additive for extrusion three-dimensional bioprinting. Materials Today Bio, 8(July). https://doi.org/10.1016/j.mtbio.2020.100078
  • 52. Ginestra, P. S., Rovetta, R., Fiorentino, A., & Ceretti, E. (2020). Bioprinting process optimization: Evaluation of parameters influence on the extrusion of inorganic polymers. Procedia CIRP, 89, 104–109. https://doi.org/10.1016/j.procir.2020.05.125
  • 53. Kim, M. H., Lee, Y. W., Jung, W. K., Oh, J., & Nam, S. Y. (2019). Enhanced rheological behaviors of alginate hydrogels with carrageenan for extrusion-based bioprinting. Journal of the Mechanical Behavior of Biomedical Materials, 98(February), 187–194. https://doi.org/10.1016/j.jmbbm.2019.06.014
  • 54. Liu, S., Mo, L., Bi, G., Chen, S., Yan, D., Yang, J., Jia, Y. G., & Ren, L. (2021). DLP 3D printing porous β-tricalcium phosphate scaffold by the use of acrylate/ceramic composite slurry. Ceramics International, 47(15), 21108–21116. https://doi.org/10.1016/j.ceramint.2021.04.114
  • 55. Zhang, J., Huang, D., Liu, S., Dong, X., Li, Y., Zhang, H., Yang, Z., Su, Q., Huang, W., Zheng, W., & Zhou, W. (2019). Zirconia toughened hydroxyapatite biocomposite formed by a DLP 3D printing process for potential bone tissue engineering. Materials Science and Engineering C, 105(July), 110054. https://doi.org/10.1016/j.msec.2019.110054
  • 56. Preobrazhenskiy, I. I., Tikhonov, A. A., Evdokimov, P. V., Shibaev, A. V., & Putlyaev, V. I. (2021). DLP printing of hydrogel/calcium phosphate composites for the treatment of bone defects. Open Ceramics, 6(April), 100115. https://doi.org/10.1016/j.oceram.2021.100115
  • 57. Foerster, A., Annarasa, V., Terry, A., Wildman, R., Hague, R., Irvine, D., De Focatiis, D. S. A., & Tuck, C. (2021). UV-curable silicone materials with tuneable mechanical properties for 3D printing. Materials and Design, 205, 109681. https://doi.org/10.1016/j.matdes.2021.109681
  • 58. Xing, H., Zou, B., Lai, Q., Huang, C., Chen, Q., Fu, X., & Shi, Z. (2018). Preparation and characterization of UV curable Al2O3 suspensions applying for stereolithography 3D printing ceramic microcomponent. Powder Technology, 338, 153–161. https://doi.org/10.1016/j.powtec.2018.07.023
  • 59. Jones, C. S., Lu, X., Renn, M., Stroder, M., & Shih, W. S. (2010). Aerosol-jet-printed, high-speed, flexible thin-film transistor made using single-walled carbon nanotube solution. Microelectronic Engineering, 87(3), 434–437. https://doi.org/10.1016/j.mee.2009.05.034
  • 60. Zhao, D., Liu, T., Park, J. G., Zhang, M., Chen, J. M., & Wang, B. (2012). Conductivity enhancement of aerosol-jet printed electronics by using silver nanoparticles ink with carbon nanotubes. Microelectronic Engineering, 96, 71–75. https://doi.org/10.1016/j.mee.2012.03.004
  • 61. Sukeshini A., M., Meisenkothen, F., Gardner, P., & Reitz, T. L. (2013). Aerosol Jet® Printing of functionally graded SOFC anode interlayer and microstructural investigation by low voltage scanning electron microscopy. Journal of Power Sources, 224, 295–303. https://doi.org/10.1016/j.jpowsour.2012.09.094
  • 62. Eckstein, R., Hernandez-Sosa, G., Lemmer, U., & Mechau, N. (2014). Aerosol jet printed top grids for organic optoelectronic devices. Organic Electronics, 15(9), 2135–2140. https://doi.org/10.1016/j.orgel.2014.05.031
  • 63. Seifert, T., Baum, M., Roscher, F., Wiemer, M., & Gessner, T. (2015). Aerosol Jet Printing of Nano Particle Based Electrical Chip Interconnects. Materials Today: Proceedings, 2(8), 4262–4271. https://doi.org/10.1016/j.matpr.2015.09.012
  • 64. Tait, J. G., Witkowska, E., Hirade, M., Ke, T. H., Malinowski, P. E., Steudel, S., Adachi, C., & Heremans, P. (2015). Uniform Aerosol Jet printed polymer lines with 30 μm width for 140 ppi resolution RGB organic light emitting diodes. Organic Electronics, 22, 40–43. https://doi.org/10.1016/j.orgel.2015.03.034
  • 65. Jabari, E., & Toyserkani, E. (2016). Aerosol-Jet printing of highly flexible and conductive graphene/silver patterns. Materials Letters, 174, 40–43. https://doi.org/10.1016/j.matlet.2016.03.082
  • 66. Wang, K., Chang, Y. H., Zhang, C., & Wang, B. (2016). Conductive-on-demand: Tailorable polyimide/carbon nanotube nanocomposite thin film by dual-material aerosol jet printing. Carbon, 98, 397–403. https://doi.org/10.1016/j.carbon.2015.11.032
  • 67. Goh, G. L., Agarwala, S., Tan, Y. J., & Yeong, W. Y. (2018). A low cost and flexible carbon nanotube pH sensor fabricated using aerosol jet technology for live cell applications. Sensors and Actuators, B: Chemical, 260, 227–235. https://doi.org/10.1016/j.snb.2017.12.127
  • 68. Laurent, P., Stoukatch, S., Dupont, F., & Kraft, M. (2018). Electrical characterization of Aerosol Jet Printing (AJP) deposited conductive silver tracks on organic materials. Microelectronic Engineering, 197(April), 67–75. https://doi.org/10.1016/j.mee.2018.06.002
  • 69. Khan, S., Nguyen, T. P., Lubej, M., Thiery, L., Vairac, P., & Briand, D. (2018). Low-power printed micro-hotplates through aerosol jetting of gold on thin polyimide membranes. Microelectronic Engineering, 194(March), 71–78. https://doi.org/10.1016/j.mee.2018.03.013
  • 70. He, C., Jin, N., Yu, H., Lin, J., & Ma, C. Q. (2019). The electrical sintering and fusing effects of Aerosol-Jet printed silver conductive line. Materials Letters, 246, 5–8. https://doi.org/10.1016/j.matlet.2019.03.016
  • 71. Zhang, H., Choi, J. P., Moon, S. K., & Ngo, T. H. (2020). A hybrid multi-objective optimization of aerosol jet printing process via response surface methodology. Additive Manufacturing, 33(December 2019), 101096. https://doi.org/10.1016/j.addma.2020.101096
  • 72. Chen, Y. D., Nagarajan, V., Rosen, D. W., Yu, W., & Huang, S. Y. (2020). Aerosol jet printing on paper substrate with conductive silver nano material. Journal of Manufacturing Processes, 58(January), 55–66. https://doi.org/10.1016/j.jmapro.2020.07.064
  • 73. Ćatić, N., Wells, L., Al Nahas, K., Smith, M., Jing, Q., Keyser, U. F., Cama, J., & Kar-Narayan, S. (2020). Aerosol-jet printing facilitates the rapid prototyping of microfluidic devices with versatile geometries and precise channel functionalization. Applied Materials Today, 19. https://doi.org/10.1016/j.apmt.2020.100618
  • 74. Deneault, J. R., Bartsch, C., Cook, A., Grabowski, C., Berrigan, J. D., Glavin, N., & Buskohl, P. R. (2020). Conductivity and radio frequency performance data for silver nanoparticle inks deposited via aerosol jet deposition and processed under varying conditions. Data in Brief, 33, 106331. https://doi.org/10.1016/j.dib.2020.106331
  • 75. Phuah, E. W. C., Hart, W. L., Sumer, H., & Stoddart, P. R. (2020). Patterning of biomaterials by aerosol jet printing: A parametric study. Bioprinting, 18(August 2019), e00081. https://doi.org/10.1016/j.bprint.2020.e00081
  • 76. Zhu, Y., Yu, L., Wu, D., Lv, W., & Wang, L. (2021). A high-sensitivity graphene ammonia sensor via aerosol jet printing. Sensors and Actuators, A: Physical, 318, 112434. https://doi.org/10.1016/j.sna.2020.112434
  • 77. Rahman, M. T., & Panat, R. (2021). Aerosol jet 3D printing and high temperature characterization of nickel nanoparticle films. Manufacturing Letters, 29, 5–10. https://doi.org/10.1016/j.mfglet.2021.04.006
  • 78. Jing, Q., Pace, A., Ives, L., Husmann, A., Ćatić, N., Khanduja, V., Cama, J., & Kar-Narayan, S. (2021). Aerosol-jet-printed, conformable microfluidic force sensors. Cell Reports Physical Science, 2(4). https://doi.org/10.1016/j.xcrp.2021.100386
  • 79. Secor, E. B. (2021). Light scattering measurements to support real-time monitoring and closed-loop control of aerosol jet printing. Additive Manufacturing, 44(April), 102028. https://doi.org/10.1016/j.addma.2021.102028
  • 80. Baù, M., Ferrari, M., Tonoli, E., & Ferrari, V. (2011). Sensors and energy harvesters based on piezoelectric thick films. Procedia Engineering, 25, 737–744. https://doi.org/10.1016/j.proeng.2011.12.182
  • 81. Aminayi P. (2016). Development and evaluation of matrix material formulations for potentıal ıntegratıon ınto ımmunodıagnostıc bıosensorswestern Michigan University, Doctoral thesis.
  • 82. Shancheng Y. (2016), Wavelength tuning of the soft approached whispering gallery mode microlasers for display and sensing, Nanyang Technologıcal Unıversıty, Doctoral thesis.
  • 83. Sobolewski, P., Goszczynska, A., Aleksandrzak, M., Urbas, K., Derkowska, J., Bartoszewska, A., Podolski, J., Mijowska, E., & Fray, M. El. (2017). A biofunctionalizable ink platform composed of catechol-modified chitosan and reduced graphene oxide/platinum nanocomposite. Beilstein Journal of Nanotechnology, 8(1), 1508–1514. https://doi.org/10.3762/bjnano.8.151
  • 84. Rohit A.(2017). Optimization and characterization of a capillary contact micro-plotter for printed electronic devices, Master of Science,
  • 85. Molazemhosseini, A., Magagnin, L., Vena, P., & Liu, C. C. (2017). Single-use nonenzymatic glucose biosensor based on CuO nanoparticles ink printed on thin film gold electrode by micro-plotter technology. Journal of Electroanalytical Chemistry, 789, 50–57. https://doi.org/10.1016/j.jelechem.2017.01.041
  • 86. Wang, Y., Zhao, C., Wang, C., Cerica, D., Baijot, M., Xiao, Q., Stoukatch, S., & Kraft, M. (2018). A mass sensor based on 3-DOF mode localized coupled resonator under atmospheric pressure. Sensors and Actuators, A: Physical, 279, 254–262. https://doi.org/10.1016/j.sna.2018.06.028
  • 87. Holeman T. 2018. The systematic approach to microplotter printing of perovskite precursors, Master of Science, Ohio University.
  • 88. Kwon, K. S., Rahman, M. K., Phung, T. H., Hoath, S. D., Jeong, S., & Kim, J. S. (2020). Review of digital printing technologies for electronic materials. Flexible and Printed Electronics, 5(4). https://doi.org/10.1088/2058-8585/abc8ca
  • 89. Zymelka, D., Yamashita, T., Sun, X., & Kobayashi, T. (2020). Printed strain sensors based on an intermittent conductive pattern filled with resistive ink droplets. Sensors (Switzerland), 20(15), 1–14. https://doi.org/10.3390/s20154181
  • 90. Li, Q., & Liu, J. (2020). Combined Printing of Highly Aligned Single-Walled Carbon Nanotube Thin Films with Liquid Metal for Direct Fabrication of Functional Electronic Devices. Advanced Electronic Materials, 6(9). https://doi.org/10.1002/aelm.202000537
There are 90 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Makaleler
Authors

Yunus Kartal 0000-0002-5102-7655

Memik Taylan Daş 0000-0002-9872-8977

Publication Date April 12, 2023
Submission Date February 17, 2022
Acceptance Date October 13, 2022
Published in Issue Year 2023 Volume: 38 Issue: 4

Cite

APA Kartal, Y., & Daş, M. T. (2023). Algılayıcı ve biyomalzeme üretiminde eklemeli imalat. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 38(4), 2191-2204. https://doi.org/10.17341/gazimmfd.1075312
AMA Kartal Y, Daş MT. Algılayıcı ve biyomalzeme üretiminde eklemeli imalat. GUMMFD. April 2023;38(4):2191-2204. doi:10.17341/gazimmfd.1075312
Chicago Kartal, Yunus, and Memik Taylan Daş. “Algılayıcı Ve Biyomalzeme üretiminde Eklemeli Imalat”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 38, no. 4 (April 2023): 2191-2204. https://doi.org/10.17341/gazimmfd.1075312.
EndNote Kartal Y, Daş MT (April 1, 2023) Algılayıcı ve biyomalzeme üretiminde eklemeli imalat. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 38 4 2191–2204.
IEEE Y. Kartal and M. T. Daş, “Algılayıcı ve biyomalzeme üretiminde eklemeli imalat”, GUMMFD, vol. 38, no. 4, pp. 2191–2204, 2023, doi: 10.17341/gazimmfd.1075312.
ISNAD Kartal, Yunus - Daş, Memik Taylan. “Algılayıcı Ve Biyomalzeme üretiminde Eklemeli Imalat”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 38/4 (April 2023), 2191-2204. https://doi.org/10.17341/gazimmfd.1075312.
JAMA Kartal Y, Daş MT. Algılayıcı ve biyomalzeme üretiminde eklemeli imalat. GUMMFD. 2023;38:2191–2204.
MLA Kartal, Yunus and Memik Taylan Daş. “Algılayıcı Ve Biyomalzeme üretiminde Eklemeli Imalat”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol. 38, no. 4, 2023, pp. 2191-04, doi:10.17341/gazimmfd.1075312.
Vancouver Kartal Y, Daş MT. Algılayıcı ve biyomalzeme üretiminde eklemeli imalat. GUMMFD. 2023;38(4):2191-204.