Research Article
BibTex RIS Cite
Year 2023, Volume: 44 Issue: 1, 81 - 89, 26.03.2023
https://doi.org/10.17776/csj.1221864

Abstract

References

  • [1] Kaur P., Kaur R., Thiadiazole as an antimicrobial scaffold, Ann Trop Med & Public Health, 23 (2020) SP231542.
  • [2] Szeliga M., Thiadiazole derivatives as anticancer agents, Pharmacological Reports, 72 (2020) 1079-1100.
  • [3] Zhong X., Wang X., Chen L., Ruan X., Li Q., Zhang J., Chen Z., Xue W., Synthesis and biological activity of myricetin derivatives containing 1,3,4-thiadiazole scaffold, Chem. Cent. J., 11 (2017) 106.
  • [4] Chudzik B., Bonio K., Dabrowski W., Pietrzak D., Niewiadomy A., Olender A., Pawlikowska-Pawlęga B., Gagoś M., Antifungal effects of a 1,3,4-thiadiazole derivative determined by cytochemical and vibrational spectroscopic studies, PLoS One, 14 (2019) 0222775.
  • [5] Gautam A., Tyagi M., An insight into antitubercular activity associated with 1,3,4-thiadiazoles, Chemistry & Biology Interface, 10 (2020) 140-148.
  • [6] Mayura K., Kirtee B., Biological potential of thiadiazole linked heterocycles: An overview, Journal of Current Pharma Research, 5 (2015)1578-1585.
  • [7] Sharma B., Verma A., Prajapati S., Sharma U K., Synthetic methods, chemistry, and the anticonvulsant activity of thiadiazoles, Int. J Med. Chem, 2013 (2013) 348948.
  • [8] Drapak I.V., Zimenkovsky B.S., Slabyy M.V., Holota S.M., Perekhoda L.O., Yaremkevych R.V., Nektegayev I.O., Synthesis and diuretic activity of novel 5-amino-1,3,4-thiadiazole-2-thiol derivatives, Biopolymers and Cell, 37 (2021) 33-45.
  • [9] Parlak A.E., Koparır P., In vitro antioxidant properties of novel compound (1r, 2r) -1,2-bis- (5- (4-hydroxynaphthalen-1-ylazo) - [1,3,4] thiadiazol-2-yl) -ethane- 1,2-diole, Cumhuriyet Sci. J, 39-3 (2018) 658-667.
  • [10] Madkour H.F., Azab M.E., Aly A.F., Khamees M.S.M., Novel heterocycles based on 1,3,4-Thiadiazole scaffold as insecticides, J. Environ. Sci., 40 (2017) 19-44.
  • [11] Bader R.F.W., A quantum theory of molecular structure and its applications, Chem. Rev., 91 (1991) 893-928.
  • [12] Bader R. F. W., Atoms in molecules, Acc. Chem. Res., 18 (1985) 9-15.
  • [13] Johnson E.R., Keinan S., Mori-Sánchez P., Contreras-García J., Cohen A. J., Yang W., Revealing noncovalent interactions, J. Am. Chem. Soc., 132 (2010) 6498-6506.
  • [14] Muğlu H., Şener N., Emsaed H. A. M., Özkınalı S., Özkan O.E., Gür M., Synthesis and characterization of 1, 3, 4-thiadiazole compounds derived from 4-phenoxybutyric acid for antimicrobial activities, J. Mol. Struct, 1174 (2018) 151-159.
  • [15] Schwalbe R., Steele-moore L., Goodwin A., Antimicrobial susceptibility testing protocols. 1nd ed. Boca Raton, (2007) 432.
  • [16] Dechayont B., Ruamdee P., Poonnaimuang S., Mokmued K., Chunthorng-Orn J., Antioxidant and antimicrobial activities of Pogostemon cablin (Blanco) Benth., Journal of Botany, 2017 (2017) 1-6.
  • [17] Re R., Pellegrini N., Proteggente A., Pannala A., Yang M.C., Rice-Evans C., Antioxidant activity applying an improved ABTS radical cation decolorization assay, Free Radic Biol Med, 26 (1999) 1231-1237.
  • [18] Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery Jr., J.A., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J. and Fox, D.J. Gaussian 09, (2010).
  • [19] Kohn W., Sham L.J., Self-consistent equations including exchange and correlation effects, Phys. Rev., 140 (1965) A1133-A1138.
  • [20] Hohenberg P., Kohn W., Inhomogeneous electron gas, Phys. Rev., 136 (1964) B864-B871.
  • [21] Klein J., Khartabil H., Boisson J. C., Contreras-Garciá J., Piquemal J. P., Hénon E., New way for probing bond strength, J. Phys. Chem. A., 124 (2020) 1850-1860.
  • [22] Lefebvre C., Rubez G., Khartabil H., Boisson J.C., Contreras-García J., Hénon E., Accurately extracting the signature of intermolecular interactions present in the NCI plot of the reduced density gradient versus electron density, Phys. Chem. Chem. Phys, 19 (2017) 17928-17936.
  • [23] Lu T., Chen F., Multiwfn: A multifunctional wavefunction analyzer, J. Comput. Chem., 33 (2012) 580-592.
  • [24] Nash A., Collier T., Birch H. L., de Leeuw N. H., ForceGen: atomic covalent bond value derivation for Gromacs, J. Mol. Model, 24 (2017).
  • [25] Muğlu H., Yakan H., Shouaib H. A., New 1, 3, 4-thiadiazoles based on thiophene-2-carboxylic acid: Synthesis, characterization, and antimicrobial activities, J. Mol. Struct., 1203 (2020) 127470.
  • [26] Popiołek Ł., Kosikowska U., Mazur L., Dobosz M., Malm A., Synthesis and antimicrobial evaluation of some novel 1, 2, 4-triazole and 1, 3, 4-thiadiazole derivatives, Med. Chem. Res., 22 (2013) 3134-3147.
  • [27] Zamani K., Faghihi K., Tofighi T., Shariatzadeh M. R., Synthesis and antimicrobial activity of some pyridyl and naphthyl substituted 1, 2, 4-triazole and 1, 3, 4-thiadiazole derivatives, Turk. J. Chem., 28 (2004 )95-100.
  • [28] Williams D., Fleming I., RNA structure and NMR spectroscopy, Spectroscopic Methods in Organic Chemistry, McGraw-Hill, New York, (1996).
  • [29] Demirbas A., Sahin D., Demirbas N., Karaoglu S. A., Synthesis of some new 1,3,4-thiadiazol-2-ylmethyl-1,2,4-triazole derivatives and investigation of their antimicrobial activities, Eur. J. Med. Chem, 44 (2009) 2896-2903.
  • [30] Okada Y., Tanaka K., Fujita I., Sato E., Okajima H., Antiodidant activity of thiosulfinates derived from garlic, Redox Report, 10 (2005) 96-102.
  • [31] Bendary E., Francis R. R., Ali H. M. G., Sarwat M. I., El Hady S., Antioxidant and structure–activity relationships (SARs) of some phenolic and anilines compounds, Ann. Agric. Sci., 58 (2013) 173-181.

Novel Bis-1,3,4-Thiadiazoles Derivatives: Synthesis, Spectroscopic Characterization, DFT Calculations and Evaluation of their Antimicrobial and Antioxidant Activities

Year 2023, Volume: 44 Issue: 1, 81 - 89, 26.03.2023
https://doi.org/10.17776/csj.1221864

Abstract

Two new, bis-1,3,4-thiadiazoles derivatives (I and II), were prepared by cyclization reaction of oxalic acid with N-alkyl/allyl thiosemicarbazides and phosphorous oxychloride (POCl3). Then the newly prepared products screened for their antimicrobial and antioxidant activities. The biological activity results shown that tested compounds exhibited effective antibacterial activity against six different bacteria. However, the compound II demonstrated greater ABTS˙+ scavenging ability. The characterization of the synthesized molecules was done by FT-IR, 1H NMR, 13C NMR spectroscopic methods and elemental analysis. Moreover, the experimental FT-IR and NMR spectra of the molecules were compared with the results calculated at the cc-pvtz, 6-311g(2d,2p), and 6-311++g(2d,2p) levels of theory. The effect of substituted groups on the spectral and electronic properties of the compounds was investigated. NCI and QTAIM analyses were performed to examine the effects of allyl group and intramolecular interactions on σ and π bonds. How the N-H bonds of the substituted groups affect the bond degrees was investigated using Fuzzy, Laplacian and Mayer approaches, and the relationship of the data with the antioxidant properties of the compounds was examined. In addition, the relationship between bond stretching force constant and intrinsic bond strength index, electron density, and delocalization index for some bonds was revealed.

References

  • [1] Kaur P., Kaur R., Thiadiazole as an antimicrobial scaffold, Ann Trop Med & Public Health, 23 (2020) SP231542.
  • [2] Szeliga M., Thiadiazole derivatives as anticancer agents, Pharmacological Reports, 72 (2020) 1079-1100.
  • [3] Zhong X., Wang X., Chen L., Ruan X., Li Q., Zhang J., Chen Z., Xue W., Synthesis and biological activity of myricetin derivatives containing 1,3,4-thiadiazole scaffold, Chem. Cent. J., 11 (2017) 106.
  • [4] Chudzik B., Bonio K., Dabrowski W., Pietrzak D., Niewiadomy A., Olender A., Pawlikowska-Pawlęga B., Gagoś M., Antifungal effects of a 1,3,4-thiadiazole derivative determined by cytochemical and vibrational spectroscopic studies, PLoS One, 14 (2019) 0222775.
  • [5] Gautam A., Tyagi M., An insight into antitubercular activity associated with 1,3,4-thiadiazoles, Chemistry & Biology Interface, 10 (2020) 140-148.
  • [6] Mayura K., Kirtee B., Biological potential of thiadiazole linked heterocycles: An overview, Journal of Current Pharma Research, 5 (2015)1578-1585.
  • [7] Sharma B., Verma A., Prajapati S., Sharma U K., Synthetic methods, chemistry, and the anticonvulsant activity of thiadiazoles, Int. J Med. Chem, 2013 (2013) 348948.
  • [8] Drapak I.V., Zimenkovsky B.S., Slabyy M.V., Holota S.M., Perekhoda L.O., Yaremkevych R.V., Nektegayev I.O., Synthesis and diuretic activity of novel 5-amino-1,3,4-thiadiazole-2-thiol derivatives, Biopolymers and Cell, 37 (2021) 33-45.
  • [9] Parlak A.E., Koparır P., In vitro antioxidant properties of novel compound (1r, 2r) -1,2-bis- (5- (4-hydroxynaphthalen-1-ylazo) - [1,3,4] thiadiazol-2-yl) -ethane- 1,2-diole, Cumhuriyet Sci. J, 39-3 (2018) 658-667.
  • [10] Madkour H.F., Azab M.E., Aly A.F., Khamees M.S.M., Novel heterocycles based on 1,3,4-Thiadiazole scaffold as insecticides, J. Environ. Sci., 40 (2017) 19-44.
  • [11] Bader R.F.W., A quantum theory of molecular structure and its applications, Chem. Rev., 91 (1991) 893-928.
  • [12] Bader R. F. W., Atoms in molecules, Acc. Chem. Res., 18 (1985) 9-15.
  • [13] Johnson E.R., Keinan S., Mori-Sánchez P., Contreras-García J., Cohen A. J., Yang W., Revealing noncovalent interactions, J. Am. Chem. Soc., 132 (2010) 6498-6506.
  • [14] Muğlu H., Şener N., Emsaed H. A. M., Özkınalı S., Özkan O.E., Gür M., Synthesis and characterization of 1, 3, 4-thiadiazole compounds derived from 4-phenoxybutyric acid for antimicrobial activities, J. Mol. Struct, 1174 (2018) 151-159.
  • [15] Schwalbe R., Steele-moore L., Goodwin A., Antimicrobial susceptibility testing protocols. 1nd ed. Boca Raton, (2007) 432.
  • [16] Dechayont B., Ruamdee P., Poonnaimuang S., Mokmued K., Chunthorng-Orn J., Antioxidant and antimicrobial activities of Pogostemon cablin (Blanco) Benth., Journal of Botany, 2017 (2017) 1-6.
  • [17] Re R., Pellegrini N., Proteggente A., Pannala A., Yang M.C., Rice-Evans C., Antioxidant activity applying an improved ABTS radical cation decolorization assay, Free Radic Biol Med, 26 (1999) 1231-1237.
  • [18] Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery Jr., J.A., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J. and Fox, D.J. Gaussian 09, (2010).
  • [19] Kohn W., Sham L.J., Self-consistent equations including exchange and correlation effects, Phys. Rev., 140 (1965) A1133-A1138.
  • [20] Hohenberg P., Kohn W., Inhomogeneous electron gas, Phys. Rev., 136 (1964) B864-B871.
  • [21] Klein J., Khartabil H., Boisson J. C., Contreras-Garciá J., Piquemal J. P., Hénon E., New way for probing bond strength, J. Phys. Chem. A., 124 (2020) 1850-1860.
  • [22] Lefebvre C., Rubez G., Khartabil H., Boisson J.C., Contreras-García J., Hénon E., Accurately extracting the signature of intermolecular interactions present in the NCI plot of the reduced density gradient versus electron density, Phys. Chem. Chem. Phys, 19 (2017) 17928-17936.
  • [23] Lu T., Chen F., Multiwfn: A multifunctional wavefunction analyzer, J. Comput. Chem., 33 (2012) 580-592.
  • [24] Nash A., Collier T., Birch H. L., de Leeuw N. H., ForceGen: atomic covalent bond value derivation for Gromacs, J. Mol. Model, 24 (2017).
  • [25] Muğlu H., Yakan H., Shouaib H. A., New 1, 3, 4-thiadiazoles based on thiophene-2-carboxylic acid: Synthesis, characterization, and antimicrobial activities, J. Mol. Struct., 1203 (2020) 127470.
  • [26] Popiołek Ł., Kosikowska U., Mazur L., Dobosz M., Malm A., Synthesis and antimicrobial evaluation of some novel 1, 2, 4-triazole and 1, 3, 4-thiadiazole derivatives, Med. Chem. Res., 22 (2013) 3134-3147.
  • [27] Zamani K., Faghihi K., Tofighi T., Shariatzadeh M. R., Synthesis and antimicrobial activity of some pyridyl and naphthyl substituted 1, 2, 4-triazole and 1, 3, 4-thiadiazole derivatives, Turk. J. Chem., 28 (2004 )95-100.
  • [28] Williams D., Fleming I., RNA structure and NMR spectroscopy, Spectroscopic Methods in Organic Chemistry, McGraw-Hill, New York, (1996).
  • [29] Demirbas A., Sahin D., Demirbas N., Karaoglu S. A., Synthesis of some new 1,3,4-thiadiazol-2-ylmethyl-1,2,4-triazole derivatives and investigation of their antimicrobial activities, Eur. J. Med. Chem, 44 (2009) 2896-2903.
  • [30] Okada Y., Tanaka K., Fujita I., Sato E., Okajima H., Antiodidant activity of thiosulfinates derived from garlic, Redox Report, 10 (2005) 96-102.
  • [31] Bendary E., Francis R. R., Ali H. M. G., Sarwat M. I., El Hady S., Antioxidant and structure–activity relationships (SARs) of some phenolic and anilines compounds, Ann. Agric. Sci., 58 (2013) 173-181.
There are 31 citations in total.

Details

Primary Language English
Journal Section Natural Sciences
Authors

Şükriye Çakmak 0000-0002-2221-0098

Muhammet Çavuş 0000-0002-3721-0883

Publication Date March 26, 2023
Submission Date December 20, 2022
Acceptance Date March 1, 2023
Published in Issue Year 2023Volume: 44 Issue: 1

Cite

APA Çakmak, Ş., & Çavuş, M. (2023). Novel Bis-1,3,4-Thiadiazoles Derivatives: Synthesis, Spectroscopic Characterization, DFT Calculations and Evaluation of their Antimicrobial and Antioxidant Activities. Cumhuriyet Science Journal, 44(1), 81-89. https://doi.org/10.17776/csj.1221864