Research Article
BibTex RIS Cite

Development of Recombinant Inbred Line Population in Bread Wheat Using Speed Breeding Technology

Year 2022, Volume: 1 Issue: 2, 36 - 57, 01.12.2022

Abstract

Rye translocation is a significant genetic resource widely used in bread wheat breeding, but it neg-atively affects the bread-making quality. A recombinant inbred line population (RILs) containing different glutenin subunit (GS) combinations of High and Low Molecular Weight (HMW and LMW) and also carries rye translocation or not was developed in the study. We used speed breeding tech-nology and the single seed descent method to develop recombinant lines (RILs). The plants were grown in the plant growth room using Light-Emitting Diode (LED) lamps with a broad spectrum in 22 hours of light and 2 hours of darkness. A generation period ranged between 50-70 days. We obtained two hundred eighty seven inbred lines in F5:6 generation of the RILs population containing 16 different HMW-GS and LMW-GS combinations, genetically anticipated. Ninety-nine of the RILs carried 1BL.1RS rye translocation. As a result of the Gluten Swelling Index (GSI) analysis performed to determine the protein quality, it was determined that the lines carrying the Glu-B3b allele had a GSI value of 3.089, while the lines carrying the rye translocation (Glu-B3j allele) had a GSI value of 3.013. The protein content was found to be 21.41% in the lines carrying the Glu-B3b allele and 20.33% in the lines carrying the Glu-B3j allele. The RILs could be used to investigate the effect of HMW-GS and LMW-GS and rye translocation on the quality properties of bread wheat. The results showed that speed breeding technology is helpful to develop research material in bread wheat in a short period.

Project Number

Bu makale, Karamanoğlu Mehmetbey Üniversitesi, Bilimsel Araştırma Projeleri Koordinatörlüğü tarafından desteklenen 01-D-20 nolu proje kapsa-mında elde edilen verilerden üretilmiştir.

References

  • Bordes, J., Goudemand, E., Duchalais, L., Chevarin, L., Oury, F. X., Heumez, E. & Charmet, G., (2014). Genome-wide association mapping of three important traits using bread wheat elite breeding populations. Molecular breeding, 33(4), 755-768.
  • Bullrich, L.????, Tranquilli, G., Pfluger, L. A., Suárez, E. Y. & Barneix, A. J., (1998). Bread‐making quality and yield performance of 1BL/1RS wheat isogenic lines. Plant breeding, 117(2), 119-122.
  • Butow, B. J., Ma, W., Gale, K. R., Cornish, G. B., Rampling, L., Larroque, O. & Békés, F., (2003). Molecular discrimination of Bx7 alleles demonstrates that a highly expressed high-molecular-weight glutenin allele has a major impact on wheat flour dough strength. Theoretical and Applied Genetics, 107(8), 1524-1532.
  • Dhaliwal, A.S. & MacRitche, F., (1990). Contributions of protein fractions to dough handling properties of wheat-rye translocation cultivars. J Cereal Sci 12:113-122.
  • D'Ovidio, R., Masci, S., Porceddu1, E. & Kasarda, D. D., (1997). Duplication of the Bx7 high‐molecular‐weight glutenin subunit gene in bread wheat (Triticum aestivum L.) cultivar ‘Red River 68′. Plant Breeding, 116(6), 525-531.
  • Edae, E. A., Byrne, P. F., Haley, S. D., Lopes, M. S., & Reynolds, M. P., (2014). Genome-wide association mapping of yield and yield components of spring wheat under contrasting moisture regimes. Theoretical and applied genetics, 127, 791-807.
  • Ehdaie, B., Layne, A.P. & Waines, J.G., (2011). Root system plasticity to drought influences grain yield in bread wheat. Euphytica 186:219-232.
  • Ehdaie, B., Whitkus, R.W. & Waines, J.G., (2003). Root biomass, water-use efficiency, and performance of wheat-rye translocaitons of chromosomes 1 and 2 in spring bread wheat “Pavon”. Crop Sci. 43:710-717.
  • Elango, D., Sandoya, G., & Chopra, S., (2021). Techniques and Tools of Modern Plant Breeding. Plant Biotechnology: Experience and Future Prospects, 17-26.
  • Ghosh, S. & Hickey LT., (2018). Speed breeding in growth chambers and glasshouses for crop breeding and model plant research. Nature Protocols. 13:2944-2963.
  • Gobaa, S., Brabant, C., Kleijer, G. & Stamp, P., (2008). Effect of the 1BL. 1RS translocation and of the Glu-B3 variation on fifteen quality tests in a doubled haploid population of wheat (Triticum aestivum L.). Journal of Cereal Science, 48(3), 598-603.
  • Graybosch, R.A., Peterson, C.J., Hansen, L.E. & Mattern, P.J., (1990). Relationships between protein solubility characteristics, 1BL/1RS, high molecular weight glutenin composition, and end-use quality in winter wheat germ plasm. Cereal Chem 67:342-349.
  • Graybosch, R.A., (2001). Uneasy Unions: Quality effects of rye chromatin tranfers to wheat. J Cereal Sci 33:3-16.
  • Hickey, L. T., Germán, S. E., Pereyra, S. A., Diaz, J. E., Ziems, L. A., Fowler, R. A. & Dieters, M. J., (2017). Speed breeding for multiple disease resistance in barley. Euphytica, 213, 1-14.
  • Hoffman, B. (2008). Alteration of drought tolerance winter wheat caused by translocation of rye chromosome segment 1RS. Cereal Res Commun 36:269-278.
  • Howell, T., Hale, I., Jankuloski, L., Bonafede, M., Gilbert, M. & Dubcovsky, J., (2014). Mapping a region within the 1RS. 1BL translocation in common wheat affecting grain yield and canopy water status. Theoretical and applied genetics, 127, 2695-2709.
  • Kim, W. & Johnson, J., (2004). Agronomic effect of wheat-rye translocation carrying rye chromatin (1R) from different sources. Crop Sci 1254-1258.
  • Lee, J. H., Graybosch, R. A., & Peterson, C. J., (1995). Quality and biochemical effects of a IBL/IRS wheat-rye translocation in wheat. Theoretical and Applied Genetics, 90, 105-112.
  • Li, B., Zheng, Y., Pan, Z. & Hartsough, B., (2009). Improved properties of medium-density particleboard manufactured from saline Creeping Wild Rye and HDPE plastic. Industrial Crops and products, 30(1), 65-71.
  • Li, J., Han, C., Zhen, S., Li, X. & Yan, Y., (2014). Characterization of HMW glutenin subunit Bx7OE and its distribution in common wheat and related species. Plant Genetic Resources, 12(2), 191-198.
  • Lopes, M., Reynolds, M. P. & Manes, Y., (2012). Genetic yield gains ve changes in associated traits of CIMMYT spring bread wheat in a ‘Historic’ set representing 30 years of breeding. Crop Sci., 52, 1123–1131.
  • Lopes, M. S., El-Basyoni, I., Baenziger, P. S., Singh, S., Royo, C., Ozbek, K. & Vikram, P., (2015). Exploiting genetic diversity from landraces in wheat breeding for adaptation to climate change. Journal of experimental botany, 66(12), 3477-3486.
  • Ma, F., Kim, J., Cho, E., Brown-Guedira, G., Park, C. S. & Baik, B. K., (2019). HMW-GS composition and rye translocations of US eastern soft winter wheat and their associations with protein strength. Journal of Cereal Science, 89, 102799.
  • Marchylo, B.D., Lukow, O.M. & Kruger, J.E., (1992). Quantitative variation in high molecular weight subunit 7 in some Canadian wheats. J Cereal Sci 15: 29–38.
  • Moiraghi, M., Vanzetti, L., Pflüger, L., Helguera, M. & Perez, G.T., (2013). Effect of high molecular weight glutenins and rye translocations on soft wheat flour cookie quality. Journal of Cereal Sci 58:424-430.
  • Moose, S. P., & Mumm, R. H., (2008). Molecular plant breeding as the foundation for 21st century crop improvement. Plant physiology, 147(3), 969-977.
  • Moreno-Sevilla, B., Baenziger, P.S., Peterson, C.J. & Graybosch, R.A., (1992). Comparison of 1B and 1BL/1RL lines derived from wheat cultivar ‘Rawhide’. Agron Abstr: 107.
  • Moreno-Sevilla, B., Baenziger, P.S., Peterson, C.J., Graybosch, R.A. & McVey, D.V., (1995). The 1BL/1RS translocation: agronomic performance of F3-derived lines from a winter wheat cross. Crop Sci 35:1051-1055.
  • Payne, P.I., Nightingale, M.A., Krattiger, A.F. & Holt L.M., (1987). The relationship between HMW glutenin subunit composition and the bread-making quality of British-grown wheat varieties. J Sci Food Agric 40. 51-65.
  • Payne, PI., (1987). The genetical basis of breadmaking quality in wheat. Aspects Appl Biol 15:79-90.
  • Rabinovich, S. V., (1998). Importance of wheat-rye translocations for breeding modern cultivar of Triticum aestivum L. Euphytica, 100(1), 323-340.
  • Ragupathy, R., Naeem, H. A., Reimer, E., Lukow, O. M., Sapirstein, H. D. & Cloutier, S., (2008). Evolutionary origin of the segmental duplication encompassing the wheat GLU-B1 locus encoding the overexpressed Bx7 (Bx7OE) high molecular weight glutenin subunit. Theoretical and Applied Genetics, 116(2), 283-296.
  • Rakszegi M., Bekes F, Lang L., Tamas L., Shewry P.R. & Bedo Z., (2005). Technological quality transggenic wheat expressing an increased amount of HMW glütenin subunit. J Cereal Sci 42:15-23.
  • Rasheed, A., Jin, H., Xiao, Y., Zhang, Y., Hao, Y., Zhang, Y. & He, Z., (2019). Allelic effects and variations for key bread-making quality genes in bread wheat using high-throughput molecular markers. Journal of cereal science, 85, 305-309.
  • Sharma, S., Bhat, P.R., Ehdaie, B., Close, T.J., Lukaszewski, A.J. & Waines, J.G., (2009). Integrated genetic map and genetic analysis of a region associated with root traits on the short arm of rye chromosome 1 in bread wheat. Theor Appl Genet 119:783-793.
  • Sharma, S., Xu, S., Ehdaie, B., Hoops, A., Close, T.J., Lukaszewski, A.J. & Waines, J.G., (2011). Dissection of QTL effects for root traits using a chromosome arm-specific mapping population in bread wheat. Theor Appl Genet 122:759-769.
  • Shewry, P. R. & Hey, S. J., (2015). The contribution of wheat to human diet ve health. Food ve Energy Security, 4(3), 178–202.
  • Villareal, R.L., Banuelos, O., Mujeeb-Kazi, A. & Rajaram, S., (1998). Agronomic performance of chromosomes 1B and T1BL.1RS near-isolines in the spring bread wheat Seri M82. Euphytica. 103: 195-202.
  • Watson, A. & Hickey, LT., (2018). Speed breeding is a powerful tool to accelerate crop research and breeding. Nature Plants. 4: 23-29.
  • Yediay, F. E., Baloch, F. S., Kilian, B. & Özkan, H., (2010). Testing of rye-specific markers located on 1RS chromosome and distribution of 1AL. RS and 1BL. RS translocations in Turkish wheat (Triticum aestivum L., T. durum Desf.) varieties and landraces. Genetic resources and crop evolution, 57(1), 119-129.
  • Zeller, F.J. & Hsam, S.L.K., (1984). Broadening the genetic variability of cultivated wheat by utilizing rye chromatin. Proc 6th Int Wheat Genetic Symp, Kyoto, Japan pp. 161-173.
  • Zheng, S., Byrne, P. F., Bai, G., Shan, X., Reid, S. D., Haley, S. D. & Seabourn, B. W., (2009). Association analysis reveals effects of wheat glutenin alleles and rye translocations on dough-mixing properties. Journal of cereal science, 50(2), 283-290.

Hızlı Islah Teknolojisi KullanılarakEkmeklik Buğdayda Rekombinant Kendilenmiş Hat Popülasyonunun Geliştirilmesi

Year 2022, Volume: 1 Issue: 2, 36 - 57, 01.12.2022

Abstract

Çavdar translokasyonu buğday ıslahında yaygın olarak kullanılan önemli bir genetik kaynak olmakla birlikte buğdayın ekmeklik kalitesini olumsuz yönde etkilemektedir. Bu araştırmada farklı Yüksek ve Düşük Molekül ağırlıklı glütenin alt ünite (YMA-GA, DMA-GA) kombinasyonlarını taşıyan aynı zamanda çavdar translo-kasyonu taşıyıp taşımamasına göre genetik bir açılım gözlenen rekombinant kendilenmiş hat popülasyonu geliştirilmiştir. Rekombinant kendilenmiş hat popülasyonunun geliştirilmesinde hızlı ıslah teknolojisi ve tek tohum soy yöntemi kullanılmıştır. Bir generasyon süresi 50-70 gün arasında değişmiştir. F5:6 genera-syonunda 287 adet kendilenmiş hattın elde edildiği araştırmada genetik olarak beklenen 16 farklı YMA-GA ve DMA-GA kombinasyonu gözlenmiştir. Geliştirilen hatların 99 adedinin 1BL.1RS çavdar translokasyonu taşıdığı belirlenmiştir. Protein kalitesinin belirlenmesi için yapılan Gluten Şişme İndeksi (GSI) analizi sonu-cunda Glu-B3b alleli taşıyan hatların 3.089 değerine sahip iken, çavdar translokasyonu taşıyan (Glu-B3jalleli) hatların 3.013 değerine sahip olduğu saptanmıştır. Protein oranının ise Glu-B3b alleli taşıyan hatlarda %21.41, Glu-B3j alleli taşıyan hatlarda %20.33 olduğu saptanmıştır. Elde edilen rekombinant kendilenmiş hat popülasyonu çavdar translokasyonu ile YMA-GA ve DMA-GA ünitelerinin ekmeklik buğdayın kalite özel-liklerine etkisinin araştırılabileceği materyal olarak kullanılabilir. Araştırma sonuçları hızlı ıslah teknolojisinin buğdayda kısa sürede araştırma materyali geliştirmek için etkin olarak kullanılabileceğini göstermiştir.

Ethical Statement

Çalışma için etik kurul izni gerekmemektedir.

Project Number

Bu makale, Karamanoğlu Mehmetbey Üniversitesi, Bilimsel Araştırma Projeleri Koordinatörlüğü tarafından desteklenen 01-D-20 nolu proje kapsa-mında elde edilen verilerden üretilmiştir.

References

  • Bordes, J., Goudemand, E., Duchalais, L., Chevarin, L., Oury, F. X., Heumez, E. & Charmet, G., (2014). Genome-wide association mapping of three important traits using bread wheat elite breeding populations. Molecular breeding, 33(4), 755-768.
  • Bullrich, L.????, Tranquilli, G., Pfluger, L. A., Suárez, E. Y. & Barneix, A. J., (1998). Bread‐making quality and yield performance of 1BL/1RS wheat isogenic lines. Plant breeding, 117(2), 119-122.
  • Butow, B. J., Ma, W., Gale, K. R., Cornish, G. B., Rampling, L., Larroque, O. & Békés, F., (2003). Molecular discrimination of Bx7 alleles demonstrates that a highly expressed high-molecular-weight glutenin allele has a major impact on wheat flour dough strength. Theoretical and Applied Genetics, 107(8), 1524-1532.
  • Dhaliwal, A.S. & MacRitche, F., (1990). Contributions of protein fractions to dough handling properties of wheat-rye translocation cultivars. J Cereal Sci 12:113-122.
  • D'Ovidio, R., Masci, S., Porceddu1, E. & Kasarda, D. D., (1997). Duplication of the Bx7 high‐molecular‐weight glutenin subunit gene in bread wheat (Triticum aestivum L.) cultivar ‘Red River 68′. Plant Breeding, 116(6), 525-531.
  • Edae, E. A., Byrne, P. F., Haley, S. D., Lopes, M. S., & Reynolds, M. P., (2014). Genome-wide association mapping of yield and yield components of spring wheat under contrasting moisture regimes. Theoretical and applied genetics, 127, 791-807.
  • Ehdaie, B., Layne, A.P. & Waines, J.G., (2011). Root system plasticity to drought influences grain yield in bread wheat. Euphytica 186:219-232.
  • Ehdaie, B., Whitkus, R.W. & Waines, J.G., (2003). Root biomass, water-use efficiency, and performance of wheat-rye translocaitons of chromosomes 1 and 2 in spring bread wheat “Pavon”. Crop Sci. 43:710-717.
  • Elango, D., Sandoya, G., & Chopra, S., (2021). Techniques and Tools of Modern Plant Breeding. Plant Biotechnology: Experience and Future Prospects, 17-26.
  • Ghosh, S. & Hickey LT., (2018). Speed breeding in growth chambers and glasshouses for crop breeding and model plant research. Nature Protocols. 13:2944-2963.
  • Gobaa, S., Brabant, C., Kleijer, G. & Stamp, P., (2008). Effect of the 1BL. 1RS translocation and of the Glu-B3 variation on fifteen quality tests in a doubled haploid population of wheat (Triticum aestivum L.). Journal of Cereal Science, 48(3), 598-603.
  • Graybosch, R.A., Peterson, C.J., Hansen, L.E. & Mattern, P.J., (1990). Relationships between protein solubility characteristics, 1BL/1RS, high molecular weight glutenin composition, and end-use quality in winter wheat germ plasm. Cereal Chem 67:342-349.
  • Graybosch, R.A., (2001). Uneasy Unions: Quality effects of rye chromatin tranfers to wheat. J Cereal Sci 33:3-16.
  • Hickey, L. T., Germán, S. E., Pereyra, S. A., Diaz, J. E., Ziems, L. A., Fowler, R. A. & Dieters, M. J., (2017). Speed breeding for multiple disease resistance in barley. Euphytica, 213, 1-14.
  • Hoffman, B. (2008). Alteration of drought tolerance winter wheat caused by translocation of rye chromosome segment 1RS. Cereal Res Commun 36:269-278.
  • Howell, T., Hale, I., Jankuloski, L., Bonafede, M., Gilbert, M. & Dubcovsky, J., (2014). Mapping a region within the 1RS. 1BL translocation in common wheat affecting grain yield and canopy water status. Theoretical and applied genetics, 127, 2695-2709.
  • Kim, W. & Johnson, J., (2004). Agronomic effect of wheat-rye translocation carrying rye chromatin (1R) from different sources. Crop Sci 1254-1258.
  • Lee, J. H., Graybosch, R. A., & Peterson, C. J., (1995). Quality and biochemical effects of a IBL/IRS wheat-rye translocation in wheat. Theoretical and Applied Genetics, 90, 105-112.
  • Li, B., Zheng, Y., Pan, Z. & Hartsough, B., (2009). Improved properties of medium-density particleboard manufactured from saline Creeping Wild Rye and HDPE plastic. Industrial Crops and products, 30(1), 65-71.
  • Li, J., Han, C., Zhen, S., Li, X. & Yan, Y., (2014). Characterization of HMW glutenin subunit Bx7OE and its distribution in common wheat and related species. Plant Genetic Resources, 12(2), 191-198.
  • Lopes, M., Reynolds, M. P. & Manes, Y., (2012). Genetic yield gains ve changes in associated traits of CIMMYT spring bread wheat in a ‘Historic’ set representing 30 years of breeding. Crop Sci., 52, 1123–1131.
  • Lopes, M. S., El-Basyoni, I., Baenziger, P. S., Singh, S., Royo, C., Ozbek, K. & Vikram, P., (2015). Exploiting genetic diversity from landraces in wheat breeding for adaptation to climate change. Journal of experimental botany, 66(12), 3477-3486.
  • Ma, F., Kim, J., Cho, E., Brown-Guedira, G., Park, C. S. & Baik, B. K., (2019). HMW-GS composition and rye translocations of US eastern soft winter wheat and their associations with protein strength. Journal of Cereal Science, 89, 102799.
  • Marchylo, B.D., Lukow, O.M. & Kruger, J.E., (1992). Quantitative variation in high molecular weight subunit 7 in some Canadian wheats. J Cereal Sci 15: 29–38.
  • Moiraghi, M., Vanzetti, L., Pflüger, L., Helguera, M. & Perez, G.T., (2013). Effect of high molecular weight glutenins and rye translocations on soft wheat flour cookie quality. Journal of Cereal Sci 58:424-430.
  • Moose, S. P., & Mumm, R. H., (2008). Molecular plant breeding as the foundation for 21st century crop improvement. Plant physiology, 147(3), 969-977.
  • Moreno-Sevilla, B., Baenziger, P.S., Peterson, C.J. & Graybosch, R.A., (1992). Comparison of 1B and 1BL/1RL lines derived from wheat cultivar ‘Rawhide’. Agron Abstr: 107.
  • Moreno-Sevilla, B., Baenziger, P.S., Peterson, C.J., Graybosch, R.A. & McVey, D.V., (1995). The 1BL/1RS translocation: agronomic performance of F3-derived lines from a winter wheat cross. Crop Sci 35:1051-1055.
  • Payne, P.I., Nightingale, M.A., Krattiger, A.F. & Holt L.M., (1987). The relationship between HMW glutenin subunit composition and the bread-making quality of British-grown wheat varieties. J Sci Food Agric 40. 51-65.
  • Payne, PI., (1987). The genetical basis of breadmaking quality in wheat. Aspects Appl Biol 15:79-90.
  • Rabinovich, S. V., (1998). Importance of wheat-rye translocations for breeding modern cultivar of Triticum aestivum L. Euphytica, 100(1), 323-340.
  • Ragupathy, R., Naeem, H. A., Reimer, E., Lukow, O. M., Sapirstein, H. D. & Cloutier, S., (2008). Evolutionary origin of the segmental duplication encompassing the wheat GLU-B1 locus encoding the overexpressed Bx7 (Bx7OE) high molecular weight glutenin subunit. Theoretical and Applied Genetics, 116(2), 283-296.
  • Rakszegi M., Bekes F, Lang L., Tamas L., Shewry P.R. & Bedo Z., (2005). Technological quality transggenic wheat expressing an increased amount of HMW glütenin subunit. J Cereal Sci 42:15-23.
  • Rasheed, A., Jin, H., Xiao, Y., Zhang, Y., Hao, Y., Zhang, Y. & He, Z., (2019). Allelic effects and variations for key bread-making quality genes in bread wheat using high-throughput molecular markers. Journal of cereal science, 85, 305-309.
  • Sharma, S., Bhat, P.R., Ehdaie, B., Close, T.J., Lukaszewski, A.J. & Waines, J.G., (2009). Integrated genetic map and genetic analysis of a region associated with root traits on the short arm of rye chromosome 1 in bread wheat. Theor Appl Genet 119:783-793.
  • Sharma, S., Xu, S., Ehdaie, B., Hoops, A., Close, T.J., Lukaszewski, A.J. & Waines, J.G., (2011). Dissection of QTL effects for root traits using a chromosome arm-specific mapping population in bread wheat. Theor Appl Genet 122:759-769.
  • Shewry, P. R. & Hey, S. J., (2015). The contribution of wheat to human diet ve health. Food ve Energy Security, 4(3), 178–202.
  • Villareal, R.L., Banuelos, O., Mujeeb-Kazi, A. & Rajaram, S., (1998). Agronomic performance of chromosomes 1B and T1BL.1RS near-isolines in the spring bread wheat Seri M82. Euphytica. 103: 195-202.
  • Watson, A. & Hickey, LT., (2018). Speed breeding is a powerful tool to accelerate crop research and breeding. Nature Plants. 4: 23-29.
  • Yediay, F. E., Baloch, F. S., Kilian, B. & Özkan, H., (2010). Testing of rye-specific markers located on 1RS chromosome and distribution of 1AL. RS and 1BL. RS translocations in Turkish wheat (Triticum aestivum L., T. durum Desf.) varieties and landraces. Genetic resources and crop evolution, 57(1), 119-129.
  • Zeller, F.J. & Hsam, S.L.K., (1984). Broadening the genetic variability of cultivated wheat by utilizing rye chromatin. Proc 6th Int Wheat Genetic Symp, Kyoto, Japan pp. 161-173.
  • Zheng, S., Byrne, P. F., Bai, G., Shan, X., Reid, S. D., Haley, S. D. & Seabourn, B. W., (2009). Association analysis reveals effects of wheat glutenin alleles and rye translocations on dough-mixing properties. Journal of cereal science, 50(2), 283-290.
There are 42 citations in total.

Details

Primary Language Turkish
Subjects Food Engineering
Journal Section Research Article
Authors

Bedrettin Demir This is me 0000-0002-8892-2282

Yaşar Karaduman 0000-0003-1306-3572

Nevzat Aydın 0000-0003-3251-6880

Project Number Bu makale, Karamanoğlu Mehmetbey Üniversitesi, Bilimsel Araştırma Projeleri Koordinatörlüğü tarafından desteklenen 01-D-20 nolu proje kapsa-mında elde edilen verilerden üretilmiştir.
Publication Date December 1, 2022
Published in Issue Year 2022 Volume: 1 Issue: 2

Cite

APA Demir, B., Karaduman, Y., & Aydın, N. (2022). Hızlı Islah Teknolojisi KullanılarakEkmeklik Buğdayda Rekombinant Kendilenmiş Hat Popülasyonunun Geliştirilmesi. Cihannüma Teknoloji Fen Ve Mühendislik Bilimleri Akademi Dergisi, 1(2), 36-57.