Research Article
BibTex RIS Cite

Refinements and Reverses of Tensorial and Hadamard Product Inequalities for Selfadjoint Operators in Hilbert Spaces Related to Young's Result

Year 2024, Volume: 7 Issue: 1, 56 - 70, 04.03.2024
https://doi.org/10.33434/cams.1362711

Abstract

Let $H$ be a Hilbert space. In this paper we show among others that, if the
selfadjoint operators $A$ and $B$ satisfy the condition $0$ $<$ $m\leq A,$ $B\leq
M,$ for some constants $m,$ $M,$ then
\begin{align*}
0& \leq \frac{m}{M^{2}}\nu \left( 1-\nu \right) \left( \frac{A^{2}\otimes
1+1\otimes B^{2}}{2}-A\otimes B\right) \\
& \leq \left( 1-\nu \right) A\otimes 1+\nu 1\otimes B-A^{1-\nu }\otimes
B^{\nu } \\
& \leq \frac{M}{m^{2}}\nu \left( 1-\nu \right) \left( \frac{A^{2}\otimes
1+1\otimes B^{2}}{2}-A\otimes B\right)
\end{align*}
for all $\nu \in \left[ 0,1\right] .$ We also have the inequalities for
Hadamard product
\begin{align*}
0& \leq \frac{m}{M^{2}}\nu \left( 1-\nu \right) \left( \frac{A^{2}+B^{2}}{2}%
\circ 1-A\circ B\right) \\
& \leq \left[ \left( 1-\nu \right) A+\nu B\right] \circ 1-A^{1-\nu }\circ
B^{\nu } \\
& \leq \frac{M}{m^{2}}\nu \left( 1-\nu \right) \left( \frac{A^{2}+B^{2}}{2}%
\circ 1-A\circ B\right)
\end{align*}
for all $\nu \in \left[ 0,1\right] .$

References

  • [1] W. Specht, Zer Theorie der elementaren Mittel, Math. Z., 74 (1960), 91–98.
  • [2] M. Tominaga, Specht’s ratio in the Young inequality, Sci. Math. Japon., 55 (2002), 583–588.
  • [3] S. Furuichi, Refined Young inequalities with Specht’s ratio, Journal of the Egyptian Mathematical Society, 20(2012), 46–49.
  • [4] F. Kittaneh, Y. Manasrah, Improved Young and Heinz inequalities for matrix, J. Math. Anal. Appl., 361 (2010), 262–269.
  • [5] F. Kittaneh, Y. Manasrah, Reverse Young and Heinz inequalities for matrices, Linear Multilinear Algebra., 59 (2011), 1031–1037.
  • [6] G. Zuo, G. Shi, M. Fujii, Refined Young inequality with Kantorovich constant, J. Math. Inequal., 5 (2011), 551–556.
  • [7] W. Liao, J. Wu, J. Zhao, New versions of reverse Young and Heinz mean inequalities with the Kantorovich constant, Taiwanese J. Math., 19(2) (2015), 467–479.
  • [8] S. S. Dragomir, A note on Young’s inequality, Revista de la Real Academia de Ciencias Exactas, F´ısicas y Naturales. Serie A. Matematicas, 111(2) (2017), 349–354. Preprint RGMIA Res. Rep. Coll. 18 (2015), Art. 126. [http://rgmia.org/papers/v18/v18a126.pdf].
  • [9] S. S. Dragomir, A note on new refinements and reverses of Young’s inequality, Transyl. J. Math. Mec. 8(1) (2016), 45–49. Preprint RGMIA Res. Rep. Coll. 18 (2015), Art. [https://rgmia.org/papers/v18/v18a131.pdf].
  • [10] H. Alzer, C. M. da Fonseca, A. Kovacec, Young-type inequalities and their matrix analogues, Linear and Multilinear Algebra, 63(3) (2015), 622–635.
  • [11] S. Furuichi, N. Minculete, Alternative reverse inequalities for Young’s inequality, J. Math Inequal., 5(4) (2011), 595–600.
  • [12] H. Araki, F. Hansen, Jensen’s operator inequality for functions of several variables, Proc. Amer. Math. Soc., 128(7) (2000), 2075–2084.
  • [13] A. Koranyi, On some classes of analytic functions of several variables, Trans. Amer. Math. Soc., 101 (1961), 520–554.
  • [14] T. Furuta, J. Micic Hot, J. Pecaric, Y. Seo, Mond-Peˇcari´c Method in Operator Inequalities. Inequalities for Bounded Selfadjoint Operators on a Hilbert Space, Element, Zagreb, 2005.
  • [15] S. Wada, On some refinement of the Cauchy-Schwarz inequality, Lin. Alg. & Appl., 420 (2007), 433–440.
  • [16] J. I. Fujii, The Marcus-Khan theorem for Hilbert space operators, Math. Jpn., 41(1995), 531–535.
  • [17] T. Ando, Concavity of certain maps on positive definite matrices and applications to Hadamard products, Lin. Alg. & Appl., 26 (1979), 203–241.
  • [18] J. S. Aujila, H. L. Vasudeva, Inequalities involving Hadamard product and operator means, Math. Japon., 42 (1995), 265–272.
  • [19] K. Kitamura, Y. Seo, Operator inequalities on Hadamard product associated with Kadison’s Schwarz inequalities, Scient. Math., 1(2) (1998), 237–241.
Year 2024, Volume: 7 Issue: 1, 56 - 70, 04.03.2024
https://doi.org/10.33434/cams.1362711

Abstract

References

  • [1] W. Specht, Zer Theorie der elementaren Mittel, Math. Z., 74 (1960), 91–98.
  • [2] M. Tominaga, Specht’s ratio in the Young inequality, Sci. Math. Japon., 55 (2002), 583–588.
  • [3] S. Furuichi, Refined Young inequalities with Specht’s ratio, Journal of the Egyptian Mathematical Society, 20(2012), 46–49.
  • [4] F. Kittaneh, Y. Manasrah, Improved Young and Heinz inequalities for matrix, J. Math. Anal. Appl., 361 (2010), 262–269.
  • [5] F. Kittaneh, Y. Manasrah, Reverse Young and Heinz inequalities for matrices, Linear Multilinear Algebra., 59 (2011), 1031–1037.
  • [6] G. Zuo, G. Shi, M. Fujii, Refined Young inequality with Kantorovich constant, J. Math. Inequal., 5 (2011), 551–556.
  • [7] W. Liao, J. Wu, J. Zhao, New versions of reverse Young and Heinz mean inequalities with the Kantorovich constant, Taiwanese J. Math., 19(2) (2015), 467–479.
  • [8] S. S. Dragomir, A note on Young’s inequality, Revista de la Real Academia de Ciencias Exactas, F´ısicas y Naturales. Serie A. Matematicas, 111(2) (2017), 349–354. Preprint RGMIA Res. Rep. Coll. 18 (2015), Art. 126. [http://rgmia.org/papers/v18/v18a126.pdf].
  • [9] S. S. Dragomir, A note on new refinements and reverses of Young’s inequality, Transyl. J. Math. Mec. 8(1) (2016), 45–49. Preprint RGMIA Res. Rep. Coll. 18 (2015), Art. [https://rgmia.org/papers/v18/v18a131.pdf].
  • [10] H. Alzer, C. M. da Fonseca, A. Kovacec, Young-type inequalities and their matrix analogues, Linear and Multilinear Algebra, 63(3) (2015), 622–635.
  • [11] S. Furuichi, N. Minculete, Alternative reverse inequalities for Young’s inequality, J. Math Inequal., 5(4) (2011), 595–600.
  • [12] H. Araki, F. Hansen, Jensen’s operator inequality for functions of several variables, Proc. Amer. Math. Soc., 128(7) (2000), 2075–2084.
  • [13] A. Koranyi, On some classes of analytic functions of several variables, Trans. Amer. Math. Soc., 101 (1961), 520–554.
  • [14] T. Furuta, J. Micic Hot, J. Pecaric, Y. Seo, Mond-Peˇcari´c Method in Operator Inequalities. Inequalities for Bounded Selfadjoint Operators on a Hilbert Space, Element, Zagreb, 2005.
  • [15] S. Wada, On some refinement of the Cauchy-Schwarz inequality, Lin. Alg. & Appl., 420 (2007), 433–440.
  • [16] J. I. Fujii, The Marcus-Khan theorem for Hilbert space operators, Math. Jpn., 41(1995), 531–535.
  • [17] T. Ando, Concavity of certain maps on positive definite matrices and applications to Hadamard products, Lin. Alg. & Appl., 26 (1979), 203–241.
  • [18] J. S. Aujila, H. L. Vasudeva, Inequalities involving Hadamard product and operator means, Math. Japon., 42 (1995), 265–272.
  • [19] K. Kitamura, Y. Seo, Operator inequalities on Hadamard product associated with Kadison’s Schwarz inequalities, Scient. Math., 1(2) (1998), 237–241.
There are 19 citations in total.

Details

Primary Language English
Subjects Pure Mathematics (Other)
Journal Section Articles
Authors

Sever Dragomır 0000-0003-2902-6805

Early Pub Date March 4, 2024
Publication Date March 4, 2024
Submission Date September 19, 2023
Acceptance Date February 19, 2024
Published in Issue Year 2024 Volume: 7 Issue: 1

Cite

APA Dragomır, S. (2024). Refinements and Reverses of Tensorial and Hadamard Product Inequalities for Selfadjoint Operators in Hilbert Spaces Related to Young’s Result. Communications in Advanced Mathematical Sciences, 7(1), 56-70. https://doi.org/10.33434/cams.1362711
AMA Dragomır S. Refinements and Reverses of Tensorial and Hadamard Product Inequalities for Selfadjoint Operators in Hilbert Spaces Related to Young’s Result. Communications in Advanced Mathematical Sciences. March 2024;7(1):56-70. doi:10.33434/cams.1362711
Chicago Dragomır, Sever. “Refinements and Reverses of Tensorial and Hadamard Product Inequalities for Selfadjoint Operators in Hilbert Spaces Related to Young’s Result”. Communications in Advanced Mathematical Sciences 7, no. 1 (March 2024): 56-70. https://doi.org/10.33434/cams.1362711.
EndNote Dragomır S (March 1, 2024) Refinements and Reverses of Tensorial and Hadamard Product Inequalities for Selfadjoint Operators in Hilbert Spaces Related to Young’s Result. Communications in Advanced Mathematical Sciences 7 1 56–70.
IEEE S. Dragomır, “Refinements and Reverses of Tensorial and Hadamard Product Inequalities for Selfadjoint Operators in Hilbert Spaces Related to Young’s Result”, Communications in Advanced Mathematical Sciences, vol. 7, no. 1, pp. 56–70, 2024, doi: 10.33434/cams.1362711.
ISNAD Dragomır, Sever. “Refinements and Reverses of Tensorial and Hadamard Product Inequalities for Selfadjoint Operators in Hilbert Spaces Related to Young’s Result”. Communications in Advanced Mathematical Sciences 7/1 (March 2024), 56-70. https://doi.org/10.33434/cams.1362711.
JAMA Dragomır S. Refinements and Reverses of Tensorial and Hadamard Product Inequalities for Selfadjoint Operators in Hilbert Spaces Related to Young’s Result. Communications in Advanced Mathematical Sciences. 2024;7:56–70.
MLA Dragomır, Sever. “Refinements and Reverses of Tensorial and Hadamard Product Inequalities for Selfadjoint Operators in Hilbert Spaces Related to Young’s Result”. Communications in Advanced Mathematical Sciences, vol. 7, no. 1, 2024, pp. 56-70, doi:10.33434/cams.1362711.
Vancouver Dragomır S. Refinements and Reverses of Tensorial and Hadamard Product Inequalities for Selfadjoint Operators in Hilbert Spaces Related to Young’s Result. Communications in Advanced Mathematical Sciences. 2024;7(1):56-70.

Creative Commons License
The published articles in CAMS are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License..