Research Article
BibTex RIS Cite
Year 2023, Volume: 29 Issue: 3, 854 - 867, 25.09.2023
https://doi.org/10.15832/ankutbd.1082347

Abstract

References

  • Abdoli M (2022). Sustainable Use of Sewage Sludge in Soil Fertility and Crop Production. In Sustainable Management and Utilization of Sewage Sludge (pp. 297-333). Springer, Cham. DOI: 10.1007/978-3-030-85226-9_15
  • Almendros P, Obrador A, Gonzalez D & Alvarez J M (2015). Biofortification of zinc in onions (Allium cepa L.) and soil Zn status by the application of different organic Zn complexes. Scientia Horticulturae, 186: 254–265. https://doi.org/10.1016/j.scienta.2015.02.023
  • Antoniadis V, Levizou E, Shaheen S M, Ok Y S, Sebastian A, Baum C, Prasad M N V, Wenzel W W, Rinklebe J (2017). Trace elements in the soil-plant interface: Phytoavailability, translocation, and phytoremediation. A review. Earth-Sci. Rev. 171: 621–645. https://doi.org/10.1016/j.earscirev.2017.06.005
  • Antonkiewicz J, Popławska A, Kołodziej B, Ciarkowska K, Gambuś F, Bryk M & Babula J (2020). Application of ash and municipal sewage sludge as macronutrient sources in sustainable plant biomass production. Journal of environmental management 264: 110450. https://doi.org/10.1016/j.jenvman.2020.110450
  • Balafrej H, Bogusz D, Triqui Z E A, Guedira A, Bendaou N, Smouni A & Fahr M (2020). Zinc hyperaccumulation in plants: A review. Plants, 9(5),562
  • Boguta, P., Sokolowska, Z., 2016. Interactions of Zn (II) Ions with humic acids isolated from various type of soils. PLoS One 11(4): e0153626. https://doi.org/10.1371/journal.pone.0153626
  • Boye K (2002). Phytoextraction of Cu, Pb and Zn. Ragn-Sells Avfall Behandling. Swedish University of Agricultural Sciences Department of Soil Science.
  • Calace N, Petronio B M, Picciolo M & Pietroletti M (2002). Heavy metal uptake by barley growing in polluted soils: relationship with heavy metal speciation in soils. Communications in soil science and plant analysis 33(1-2): 103-115. https://doi.org/10.1081/CSS-120002381
  • Chakroun H K, Souissi F, Bouchardon J L, Souissi R, Moutte J , Faure O& Abdeljaoued S (2010). Transfer and accumulation of lead, zinc, cadmium and copper in plants growing in abandoned mining-district area. African Journal of Environmental Science and Technology 4(10): 651-659
  • Chen T B, Huang Q F& Gao D (2003) Heavy metal concentrations and their decreasing trends in sewage sludges of China. Acta Scientiae Circumstantiae 23: 561–569
  • Clemente R, Hartley W, Riby P, Dickinson N M & Lepp N W (2010). Trace element mobility in a contaminated soil two years after field-amendment with a greenwaste compost mulch. Environmental pollution 158(5): 1644-1651. https://doi.org/10.1016/j.envpol.2009.12.006
  • Cunningham S D & Berti W R (2000). Phytoextraction and phytostabilization: technical, economic and regulatory considerations of the soil-lead issue. Phytoremediation of contaminated soil and water.
  • Demim S, Drouiche N, Aouabed A & Semsari S (2013). CCD study on the ecophysiological effects of heavy metals on Lemna gibba. Ecological engineering 57: 302-313. https://doi.org/10.1016/j.ecoleng.2013.04.041
  • Ebbs S D & Kochian L V (1998). Phytoextraction of zinc by oat (Avena sativa), barley (Hordeum vulgare), and Indian mustard (Brassica juncea). Environmental science & technology 32(6): 802-806. https://doi.org/10.1021/es970698p
  • Ernst W H, Nelissen H J & Ten Bookum W M (2000). Combination toxicology of metal-enriched soils: physiological responses of a Zn-and Cd-resistant ecotype of Silene vulgaris on polymetallic soils.
  • Environmental and Experimental Botany 43(1): 55-71. https://doi.org/10.1016/S0098-8472(99)00048-9
  • Fässler E, Robinson B H, Stauffer W, Gupta S K, Papritz A & Schulin R (2010). Phytomanagement of metal-contaminated agricultural land using sunflower, maize and tobacco. Agriculture, ecosystems & environment 136(1-2): 49-58. https://doi.org/10.1016/j.agee.2009.11.007
  • García G, Zanuzzi A L & Faz Á (2005). Evaluation of heavy metal availability prior to an in situ soil phytoremediation program. Biodegradation 16: 187-194. https://doi.org/10.1007/s10532-004-4880-1
  • Garvanska S M (2000). Determination of the effect of the sludge from waste water treatment station near sofia-city fertilizer. Proceedingc of Intrnational Symposium on Desertifisation. 13-17 June 2000. Konya, Turkey
  • Goswami S & Das S (2015). A study on cadmium phytoremediation potential of Indian mustard, Brassica juncea. International journal of phytoremediation 17(6): 583-588 : https://doi.org/10.1080/15226514.2014.935289
  • Güner A, Aslan S, Ekim T, Vural M, Babaç M T & Yıldırım H (2012). Turkey plant list (Vascular plants). Publication of Nezahat Gökyiğit Botanical Garden and Flora Research Association, Istanbul
  • Hamadouche N A (2012). Phytoremediation potential of Raphanus sativus L. for lead contaminated soil. Acta Biologica Szegediensis 56(1): 43-49
  • Hamlin R L& Barker A V (2002). Phytoekstraction potential of indian mustard as influenced by range of zinc concentration in solution culture. www.umac. edu/umext/ soil cand plant/web pages/ phytoremediation. htm. Abctract
  • Hanus-Fajerska E, Ciarkowska K & Muszyńska E (2019). Long-term field study on stabilization of contaminated wastes by growing clonally reproduced Silene vulgaris calamine ecotype. Plant and Soil 439(1): 431-445. https://doi.org/10.1007/s11104-019-04043-8.
  • He M M, Tian G M, Liang X Q, Yu Y T, Wu J Y & Zhou G D (2007). Effects of two sludge application on fractionation and phytotoxicity of zinc and copper in soil. Journal of Environmental Sciences 19(12): 1482-1490. https://doi.org/10.1016/S1001-0742(07)60241-1
  • Houben, D., Sonnet, P., 2012. Zinc mineral weathering as affected by plant roots. Appl. Geochem. 27: 1587–1592. https://doi.org/10.1016/j.apgeochem.2012.05.004
  • Hseu Z Y (2006). Extractability and bioavailability of zinc over time in three tropical soils incubated with biosolids. Chemosphere 63(5): 762-771. https://doi.org/10.1016/j.chemosphere.2005.08.014
  • Huang H, Luo L, Huang L, Zhang J, Gikas P & Zhou Y (2020). Effect of manure compost on distribution of Cu and Zn in rhizosphere soil and heavy metal accumulation by Brassica juncea. Water, Air, & Soil Pollution 231(5): 1-10. https://doi.org/10.1007/s11270-020-04572-4
  • Huang W Z & Schoenau J J (1997). Seasonal and spatial variations in soil nitrogen and phosphorus supply rates in a boreal aspen forest. Canadian journal of soil science 77(4): 597-612. https://doi.org/10.4141/S97-002
  • Jakubus M & Czekala J (2001). Heavy metal speciation in sewage sludge. Polish Journal of Environmental Studies 10(4): 245-250
  • Kacar B (1972). Bitki ve Topraǧın Kimyasal Analizleri. I. Bitki Analizleri. Ankara Üniversitesi Ziraat Fakültesi Yayınları No. 453 Ankara.
  • Kacar B (1995). Bitki ve Topraǧın Kimyacal analizleri. Ankara Ünv. Ziraat. Fak. Eǧitim, Araştırma, Geliştirme Vakfı, Yayın No:3, Ankara.
  • Küçükyumuk Z & Erdal İ (2014). Yapraktan Çinko Sülfat Uygulamasının Granny Smith Elma Çeşidine Olumsuz Etkisi. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi 24(2): 140-147
  • Liang Z, Peng X & Luan Z (2011). Immobilization of Cd, Zn and Pb in sewage sludge using red mud. Environmental Earth Sciences, 66(5): 1321–1328. https://doi.org/10.1007/s12665-011-1341-0
  • Lombi E, Zhao F J, Dunham S J & McGrath S P (2001). Phytoremediation of heavy metal–contaminated soils: Natural hyperaccumulation versus chemically enhanced phytoextraction. Journal of
  • Environmental Quality 30(6): 1919-1926. https://doi.org/10.2134/jeq2001.1919
  • Máthé-Gáspár G & Anton A (2002). Heavy metal uptake by two radish varieties. Acta Biologica Szegediensis 46(3-4): 113-114
  • McGill W B, Cannon K R, Robertson J A & Cook F D (1986). Dynamics of soil microbial biomass and water-soluble organic C in Breton L after 50 years of cropping to two rotations. Canadian journal of soil science 66(1): 1-19. https://doi.org/10.4141/cjss86-001
  • Mousavi S M, Motesharezadeh B, Hosseini H M, Alikhani H & Zolfaghari A A (2018). Geochemical fractions and phytoavailability of zinc in a contaminated calcareous soil affected by biotic and abiotic amendments. Environmental geochemistry and health 40(4): 1221-1235. https://doi.org/10.1007/s10653-017-0038-z
  • Mumcu Ü & Korkmaz H (2018). Vascular flora of the central and western parts of Yeşilırmak Delta (Çarşamba/Samsun/Turkey). Phytologia Balcanica: International Journal of Balkan Flora and Vegetation 24(1): 87-98
  • Muszyńska E & Labudda M (2020). Effects of lead, cadmium and zinc on protein changes in Silene vulgaris shoots cultured in vitro. Ecotoxicology and Environmental Safety 204 111086. https://doi.org/10.1016/j.ecoenv.2020.111086.
  • Nadgórska-Socha A & Ciepał R (2009). Phytoextraction of zinc, lead and cadmium with Silene vulgaris Moench (Garcke) in the Postindustrial Area. Ecological Chemistry and Engineering. A 16(7): 831-837)
  • Nagar R, Sarkar D & Datta R (2006). Effect of sewage sludge addition on soil quality in terms of metal concentrations. Bulletin of environmental contamination and toxicology 76(5): 823-830. DOI: 10.1007/s00128-006-0993-z
  • Nogueira T A R, Melo W J, Fonseca I M, Marcussi S A, Melo G M P & Marques M (2010). Fractionation of Zn, Cd and Pb in a tropical soil after nine-year sewage sludge applications. Pedosphere 20(5): 545-556. https://doi.org/10.1016/S1002-0160(10)60044-6
  • Ozbucak T B, Kutbay H G & Akcın O E (2006). The Contributıon of Wıld Edible Plants to Human Nutrıtion in the Black Sea Regıon of Turkey. Ethnobotanical Leaflets, 2006(1), 10.
  • Padmavathiamma P K & Li L Y (2007). Phytoremediation technology: hyper-accumulation metals in plants. Water, Air, and Soil Pollution 184(1): 105-126. https://doi.org/10.1007/s11270-007-9401-5
  • Pandey J, Sarkar S & Pandey V C (2022). Compost-assisted phytoremediation. In Assisted Phytoremediation (pp. 243-264). Elsevier. https://doi.org/10.1016/B978-0-12-822893-7.00001-X Panwar B, Kádár I, Bíró B, Rajkai-Vegh K, Ragályi P, Rékási M & Márton L (2011). Phytoremediation: Enhanced cadmium (Cd) accumulation by organic manuring, EDTA and microbial inoculants (Azotobacter sp., Pseudomonas sp.) in Indian mustard (Brassica juncea L.). Acta Agronomica Hungarica, 59(2): 117-123. DOI: 10.1556/AAgr.59.2011.2.2.
  • Parat C, Chaussod R, Lévêque J & Andreux F (2005). Long-term effects of metal-containing farmyard manure and sewage sludge on soil organic matter in a fluvisol. Soil Biology and Biochemistry 37(4): 673-679. https://doi.org/10.1016/j.soilbio.2004.08.025
  • Park J H, Lamb D, Peneerselvam P, Choppala G, Bolan N, Chung J W (2011). Role of organic amendments on enhanced bioremediation of heavy metal(loid) contaminated soils. J. Hazard. Mater. 185: 549–574. https://doi.org/10.1016/j.jhazmat.2010.09.082
  • Praburaman L, Park J H, Park Y J, He Z, Kamala-Kannan S & Oh B T (2020). Effect of panchakavya (organic formulation) on phytoremediation of lead and zinc using Zea mays. Chemosphere 246: 125810. https://doi.org/10.1016/j.chemosphere.2019.125810
  • Prasad M N V (2003). Phytoremediation of metal-polluted ecosystems: hype for commercialization. Russian Journal of Plant Physiology 50(5): 686-701. https://doi.org/10.1023/A:1025604627496
  • Qiao X L, Luo Y M, Christie P& Wong M H (2003). Chemical speciation and extractability of Zn, Cu and Cd in two contrasting biosolidsamended clay soils. Chemosphere 50: 823–829. https://doi.org/10.1016/S0045-6535(02)00226-6.
  • Revathi K, Haribabu T E & Sudha P N (2011). Phytoremediation of chromium contaminated soil using sorghum plant. International Journal of Environmental Sciences 2(2): 417-428
  • Ryan J, Estefan G & Rashid A (2001). Soil and plant analysis laboratory manual. International Center for Agricultural Recearch in the Dry Areas (ICARDA). Syria.
  • Salinitro M, Montanari S, Simoni A, Ciavatta C & Tassoni A (2021). Trace metal accumulation and phytoremediation potential of four crop plants cultivated on pure sewage sludge. Agronomy 11(12): 2456. https://doi.org/10.3390/agronomy11122456
  • Scheid S, Günthardt-Goerg M S, Schulin R& Nowack B (2009). Accumulation and solubility of metals during leaf litter decomposition in non-polluted and polluted soil. Eur. J. Soil Sci. 60: 613–621. https://doi.org/10.1111/j.1365-2389.2009.01153.x
  • Seshadri B, Bolan N S & Naidu R (2015). Rhizosphere-induced heavy metal (loid) transformation in relation to bioavailability and remediation. Journal of soil science and plant nutrition 15(2): 524-548. http://dx.doi.org/10.4067/S0718-95162015005000043
  • Shaheen S M, Wang J X, Ann-Christin S, Feng X B, Nanthi B & Rinklebe J (2019). Enhancing phytoextraction of potentially toxic elements in a polluted floodplain soil using sulfur-impregnated organoclay. Environ. Pollut. 248: 1059–1066. https://doi.org/10.1016/j.envpol.2019.02.073
  • Shi T, Ma J, Wu X, Ju T, Lin X, Zhang Y& Wu F. (2018). Inventories of heavy metal inputs and outputs to and from agricultural soils: A review. Ecotoxicology and environmental safety 164: 118-124. https://doi.org/10.1016/j.ecoenv.2018.08.016
  • Shuman L M (1985). Fractionation method for soil microelements. Soil science 140(1): 11-22. doi:10.1097/00010694-198507000-00003
  • Tripathi D K, Singh S, Singh S, Mishra S, Chauhan D K & Dubey N K (2015). Micronutrients and their diverse role in agricultural crops: advances and future prospective. Acta Physiologiae Plantarum 37: 1-14
  • Tuzen M (2003) Determination of trace metals in the River Yesilirmak sediments in Tokat, Turkey using sequential extraction procedure. Microchem. J. 74: 105–110. https://doi.org/10.1016/S0026-265X(02)00174-1
  • Udom B E, Mbagwu J S C, Adesodun J K & Agbim N N (2004). Distributions of zinc, copper, cadmium and lead in a tropical ultisol after long-term disposal of sewage sludge. Environment International 30(4): 467-470. https://doi.org/10.1016/j.envint.2003.09.004
  • Wan X, Lei M & Chen T (2016). Cost–benefit calculation of phytoremediation technology for heavy-metal-contaminated soil. Science of the Total Environment 563: 796-802. https://doi.org/10.1016/j.scitotenv.2015.12.080
  • Wang L, Hou D, Shen Z, Zhu J, Jia X, Ok Y S, Tack F M G& Rinklebe J (2019). Field trials of phytomining and phytoremediation: a critical review of influencing factors and effects of additives. Critical Rev. Environ. Sci. Technol. 50: 2724–2774. https://doi.org/10.1080/10643389.2019.1705724
  • Weng L, Temminghoff E J M, Lofts S, Tipping E& Van Riemsdijk W H (2002). Complexation with dissolved organic matter and solubility control of heavy metals in a sandy soil. Environ. Sci. Technol. 36: 4804–4810. https://doi.org/10.1021/es0200084
  • Yadav B, Khamparia R S & Kumar R (2013). Effect of zinc and organic matter application on various zinc fractions under direct-seeded rice in vertisols. Journal of the Indian Society of Soil Science, 61(2), 128-134.
  • Yüksel M& Dengiz O (1996). Bafra ovası sağ sahil topraklarının sınıflandırılması. Ankara üniversitesi ziraat fakültesi tarım bilimleri dergisi 2(2):95-102
  • Yurtsever N (1984). Deneysel İstatistik Metodları. Tarım, Orman ve Köyişleri Bakanlıǧı. Köy Hizmetleri Genel Müdürlüǧü Yayınları, Ankara. c.623.
  • Zinati G M, Li Y & Bryan H H (2001). Accumulation and fractionation of copper, iron, manganese, and zinc in calcareous soils amended with composts. Journal of Environmental Science and Health, Part B 36(2): 229-243. https://doi.org/10.1081/PFC-100103746

Removal of Zinc Pollution by Using Some Hyperaccumulator Plants in Sewage Sludge Treated and Untreated Soils

Year 2023, Volume: 29 Issue: 3, 854 - 867, 25.09.2023
https://doi.org/10.15832/ankutbd.1082347

Abstract

Soil pollution caused by heavy metals has emerged as one of the most significant environmental problems in the world. In such environments, specific plant species are able to grow, adapt and absorb heavy metals. Phytoremediation is an emerging technology in which higher plants are used to reclaim the contaminated environment. In this study, the possibilities of removing the pollution caused by Zn, which is applied to the loamy soil together with and without sewage sludge at increasing levels (0, 75, 150, 300, 600 and 1200 μg g-1), has been researched with certain hyperaccumulator plants such as Brassica juncea, Raphanus sativus and Silene vulgaris grown in Bafra ecological conditions.
In order to clean Zn added to the soil at increasing levels with or without sewage sludge by using phytoremediation technology, Silene vulgaris was found to remove the highest amount of Zn in the soil by producing the greatest amount of biomass in the ecological conditions of the region compared to Brassica juncea and Raphanus sativus, and other hyperaccumulator plants grown in the plots. Significant differences were determined in the development of plants and Zn removal between the sludge treated and untreated plots.
Water-soluble Zn, which was found at high levels in the cultivation of plants at 600 and 1200 μg g-1 Zn application doses in the sewage sludge treated plots, was determined at lower levels at the end of the harvest of the plants. In the application of increasing levels of Zn with sewage sludge, the lowest organic bound Zn was determined in the plots where Silene vulgaris was grown. The highest exchangeable Zn concentration was determined in soil samples taken after the harvest of the Raphanus sativus plant among the hyperaccumulator plants grown at all Zn application doses in the trials with and without sewage sludge application.

References

  • Abdoli M (2022). Sustainable Use of Sewage Sludge in Soil Fertility and Crop Production. In Sustainable Management and Utilization of Sewage Sludge (pp. 297-333). Springer, Cham. DOI: 10.1007/978-3-030-85226-9_15
  • Almendros P, Obrador A, Gonzalez D & Alvarez J M (2015). Biofortification of zinc in onions (Allium cepa L.) and soil Zn status by the application of different organic Zn complexes. Scientia Horticulturae, 186: 254–265. https://doi.org/10.1016/j.scienta.2015.02.023
  • Antoniadis V, Levizou E, Shaheen S M, Ok Y S, Sebastian A, Baum C, Prasad M N V, Wenzel W W, Rinklebe J (2017). Trace elements in the soil-plant interface: Phytoavailability, translocation, and phytoremediation. A review. Earth-Sci. Rev. 171: 621–645. https://doi.org/10.1016/j.earscirev.2017.06.005
  • Antonkiewicz J, Popławska A, Kołodziej B, Ciarkowska K, Gambuś F, Bryk M & Babula J (2020). Application of ash and municipal sewage sludge as macronutrient sources in sustainable plant biomass production. Journal of environmental management 264: 110450. https://doi.org/10.1016/j.jenvman.2020.110450
  • Balafrej H, Bogusz D, Triqui Z E A, Guedira A, Bendaou N, Smouni A & Fahr M (2020). Zinc hyperaccumulation in plants: A review. Plants, 9(5),562
  • Boguta, P., Sokolowska, Z., 2016. Interactions of Zn (II) Ions with humic acids isolated from various type of soils. PLoS One 11(4): e0153626. https://doi.org/10.1371/journal.pone.0153626
  • Boye K (2002). Phytoextraction of Cu, Pb and Zn. Ragn-Sells Avfall Behandling. Swedish University of Agricultural Sciences Department of Soil Science.
  • Calace N, Petronio B M, Picciolo M & Pietroletti M (2002). Heavy metal uptake by barley growing in polluted soils: relationship with heavy metal speciation in soils. Communications in soil science and plant analysis 33(1-2): 103-115. https://doi.org/10.1081/CSS-120002381
  • Chakroun H K, Souissi F, Bouchardon J L, Souissi R, Moutte J , Faure O& Abdeljaoued S (2010). Transfer and accumulation of lead, zinc, cadmium and copper in plants growing in abandoned mining-district area. African Journal of Environmental Science and Technology 4(10): 651-659
  • Chen T B, Huang Q F& Gao D (2003) Heavy metal concentrations and their decreasing trends in sewage sludges of China. Acta Scientiae Circumstantiae 23: 561–569
  • Clemente R, Hartley W, Riby P, Dickinson N M & Lepp N W (2010). Trace element mobility in a contaminated soil two years after field-amendment with a greenwaste compost mulch. Environmental pollution 158(5): 1644-1651. https://doi.org/10.1016/j.envpol.2009.12.006
  • Cunningham S D & Berti W R (2000). Phytoextraction and phytostabilization: technical, economic and regulatory considerations of the soil-lead issue. Phytoremediation of contaminated soil and water.
  • Demim S, Drouiche N, Aouabed A & Semsari S (2013). CCD study on the ecophysiological effects of heavy metals on Lemna gibba. Ecological engineering 57: 302-313. https://doi.org/10.1016/j.ecoleng.2013.04.041
  • Ebbs S D & Kochian L V (1998). Phytoextraction of zinc by oat (Avena sativa), barley (Hordeum vulgare), and Indian mustard (Brassica juncea). Environmental science & technology 32(6): 802-806. https://doi.org/10.1021/es970698p
  • Ernst W H, Nelissen H J & Ten Bookum W M (2000). Combination toxicology of metal-enriched soils: physiological responses of a Zn-and Cd-resistant ecotype of Silene vulgaris on polymetallic soils.
  • Environmental and Experimental Botany 43(1): 55-71. https://doi.org/10.1016/S0098-8472(99)00048-9
  • Fässler E, Robinson B H, Stauffer W, Gupta S K, Papritz A & Schulin R (2010). Phytomanagement of metal-contaminated agricultural land using sunflower, maize and tobacco. Agriculture, ecosystems & environment 136(1-2): 49-58. https://doi.org/10.1016/j.agee.2009.11.007
  • García G, Zanuzzi A L & Faz Á (2005). Evaluation of heavy metal availability prior to an in situ soil phytoremediation program. Biodegradation 16: 187-194. https://doi.org/10.1007/s10532-004-4880-1
  • Garvanska S M (2000). Determination of the effect of the sludge from waste water treatment station near sofia-city fertilizer. Proceedingc of Intrnational Symposium on Desertifisation. 13-17 June 2000. Konya, Turkey
  • Goswami S & Das S (2015). A study on cadmium phytoremediation potential of Indian mustard, Brassica juncea. International journal of phytoremediation 17(6): 583-588 : https://doi.org/10.1080/15226514.2014.935289
  • Güner A, Aslan S, Ekim T, Vural M, Babaç M T & Yıldırım H (2012). Turkey plant list (Vascular plants). Publication of Nezahat Gökyiğit Botanical Garden and Flora Research Association, Istanbul
  • Hamadouche N A (2012). Phytoremediation potential of Raphanus sativus L. for lead contaminated soil. Acta Biologica Szegediensis 56(1): 43-49
  • Hamlin R L& Barker A V (2002). Phytoekstraction potential of indian mustard as influenced by range of zinc concentration in solution culture. www.umac. edu/umext/ soil cand plant/web pages/ phytoremediation. htm. Abctract
  • Hanus-Fajerska E, Ciarkowska K & Muszyńska E (2019). Long-term field study on stabilization of contaminated wastes by growing clonally reproduced Silene vulgaris calamine ecotype. Plant and Soil 439(1): 431-445. https://doi.org/10.1007/s11104-019-04043-8.
  • He M M, Tian G M, Liang X Q, Yu Y T, Wu J Y & Zhou G D (2007). Effects of two sludge application on fractionation and phytotoxicity of zinc and copper in soil. Journal of Environmental Sciences 19(12): 1482-1490. https://doi.org/10.1016/S1001-0742(07)60241-1
  • Houben, D., Sonnet, P., 2012. Zinc mineral weathering as affected by plant roots. Appl. Geochem. 27: 1587–1592. https://doi.org/10.1016/j.apgeochem.2012.05.004
  • Hseu Z Y (2006). Extractability and bioavailability of zinc over time in three tropical soils incubated with biosolids. Chemosphere 63(5): 762-771. https://doi.org/10.1016/j.chemosphere.2005.08.014
  • Huang H, Luo L, Huang L, Zhang J, Gikas P & Zhou Y (2020). Effect of manure compost on distribution of Cu and Zn in rhizosphere soil and heavy metal accumulation by Brassica juncea. Water, Air, & Soil Pollution 231(5): 1-10. https://doi.org/10.1007/s11270-020-04572-4
  • Huang W Z & Schoenau J J (1997). Seasonal and spatial variations in soil nitrogen and phosphorus supply rates in a boreal aspen forest. Canadian journal of soil science 77(4): 597-612. https://doi.org/10.4141/S97-002
  • Jakubus M & Czekala J (2001). Heavy metal speciation in sewage sludge. Polish Journal of Environmental Studies 10(4): 245-250
  • Kacar B (1972). Bitki ve Topraǧın Kimyasal Analizleri. I. Bitki Analizleri. Ankara Üniversitesi Ziraat Fakültesi Yayınları No. 453 Ankara.
  • Kacar B (1995). Bitki ve Topraǧın Kimyacal analizleri. Ankara Ünv. Ziraat. Fak. Eǧitim, Araştırma, Geliştirme Vakfı, Yayın No:3, Ankara.
  • Küçükyumuk Z & Erdal İ (2014). Yapraktan Çinko Sülfat Uygulamasının Granny Smith Elma Çeşidine Olumsuz Etkisi. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi 24(2): 140-147
  • Liang Z, Peng X & Luan Z (2011). Immobilization of Cd, Zn and Pb in sewage sludge using red mud. Environmental Earth Sciences, 66(5): 1321–1328. https://doi.org/10.1007/s12665-011-1341-0
  • Lombi E, Zhao F J, Dunham S J & McGrath S P (2001). Phytoremediation of heavy metal–contaminated soils: Natural hyperaccumulation versus chemically enhanced phytoextraction. Journal of
  • Environmental Quality 30(6): 1919-1926. https://doi.org/10.2134/jeq2001.1919
  • Máthé-Gáspár G & Anton A (2002). Heavy metal uptake by two radish varieties. Acta Biologica Szegediensis 46(3-4): 113-114
  • McGill W B, Cannon K R, Robertson J A & Cook F D (1986). Dynamics of soil microbial biomass and water-soluble organic C in Breton L after 50 years of cropping to two rotations. Canadian journal of soil science 66(1): 1-19. https://doi.org/10.4141/cjss86-001
  • Mousavi S M, Motesharezadeh B, Hosseini H M, Alikhani H & Zolfaghari A A (2018). Geochemical fractions and phytoavailability of zinc in a contaminated calcareous soil affected by biotic and abiotic amendments. Environmental geochemistry and health 40(4): 1221-1235. https://doi.org/10.1007/s10653-017-0038-z
  • Mumcu Ü & Korkmaz H (2018). Vascular flora of the central and western parts of Yeşilırmak Delta (Çarşamba/Samsun/Turkey). Phytologia Balcanica: International Journal of Balkan Flora and Vegetation 24(1): 87-98
  • Muszyńska E & Labudda M (2020). Effects of lead, cadmium and zinc on protein changes in Silene vulgaris shoots cultured in vitro. Ecotoxicology and Environmental Safety 204 111086. https://doi.org/10.1016/j.ecoenv.2020.111086.
  • Nadgórska-Socha A & Ciepał R (2009). Phytoextraction of zinc, lead and cadmium with Silene vulgaris Moench (Garcke) in the Postindustrial Area. Ecological Chemistry and Engineering. A 16(7): 831-837)
  • Nagar R, Sarkar D & Datta R (2006). Effect of sewage sludge addition on soil quality in terms of metal concentrations. Bulletin of environmental contamination and toxicology 76(5): 823-830. DOI: 10.1007/s00128-006-0993-z
  • Nogueira T A R, Melo W J, Fonseca I M, Marcussi S A, Melo G M P & Marques M (2010). Fractionation of Zn, Cd and Pb in a tropical soil after nine-year sewage sludge applications. Pedosphere 20(5): 545-556. https://doi.org/10.1016/S1002-0160(10)60044-6
  • Ozbucak T B, Kutbay H G & Akcın O E (2006). The Contributıon of Wıld Edible Plants to Human Nutrıtion in the Black Sea Regıon of Turkey. Ethnobotanical Leaflets, 2006(1), 10.
  • Padmavathiamma P K & Li L Y (2007). Phytoremediation technology: hyper-accumulation metals in plants. Water, Air, and Soil Pollution 184(1): 105-126. https://doi.org/10.1007/s11270-007-9401-5
  • Pandey J, Sarkar S & Pandey V C (2022). Compost-assisted phytoremediation. In Assisted Phytoremediation (pp. 243-264). Elsevier. https://doi.org/10.1016/B978-0-12-822893-7.00001-X Panwar B, Kádár I, Bíró B, Rajkai-Vegh K, Ragályi P, Rékási M & Márton L (2011). Phytoremediation: Enhanced cadmium (Cd) accumulation by organic manuring, EDTA and microbial inoculants (Azotobacter sp., Pseudomonas sp.) in Indian mustard (Brassica juncea L.). Acta Agronomica Hungarica, 59(2): 117-123. DOI: 10.1556/AAgr.59.2011.2.2.
  • Parat C, Chaussod R, Lévêque J & Andreux F (2005). Long-term effects of metal-containing farmyard manure and sewage sludge on soil organic matter in a fluvisol. Soil Biology and Biochemistry 37(4): 673-679. https://doi.org/10.1016/j.soilbio.2004.08.025
  • Park J H, Lamb D, Peneerselvam P, Choppala G, Bolan N, Chung J W (2011). Role of organic amendments on enhanced bioremediation of heavy metal(loid) contaminated soils. J. Hazard. Mater. 185: 549–574. https://doi.org/10.1016/j.jhazmat.2010.09.082
  • Praburaman L, Park J H, Park Y J, He Z, Kamala-Kannan S & Oh B T (2020). Effect of panchakavya (organic formulation) on phytoremediation of lead and zinc using Zea mays. Chemosphere 246: 125810. https://doi.org/10.1016/j.chemosphere.2019.125810
  • Prasad M N V (2003). Phytoremediation of metal-polluted ecosystems: hype for commercialization. Russian Journal of Plant Physiology 50(5): 686-701. https://doi.org/10.1023/A:1025604627496
  • Qiao X L, Luo Y M, Christie P& Wong M H (2003). Chemical speciation and extractability of Zn, Cu and Cd in two contrasting biosolidsamended clay soils. Chemosphere 50: 823–829. https://doi.org/10.1016/S0045-6535(02)00226-6.
  • Revathi K, Haribabu T E & Sudha P N (2011). Phytoremediation of chromium contaminated soil using sorghum plant. International Journal of Environmental Sciences 2(2): 417-428
  • Ryan J, Estefan G & Rashid A (2001). Soil and plant analysis laboratory manual. International Center for Agricultural Recearch in the Dry Areas (ICARDA). Syria.
  • Salinitro M, Montanari S, Simoni A, Ciavatta C & Tassoni A (2021). Trace metal accumulation and phytoremediation potential of four crop plants cultivated on pure sewage sludge. Agronomy 11(12): 2456. https://doi.org/10.3390/agronomy11122456
  • Scheid S, Günthardt-Goerg M S, Schulin R& Nowack B (2009). Accumulation and solubility of metals during leaf litter decomposition in non-polluted and polluted soil. Eur. J. Soil Sci. 60: 613–621. https://doi.org/10.1111/j.1365-2389.2009.01153.x
  • Seshadri B, Bolan N S & Naidu R (2015). Rhizosphere-induced heavy metal (loid) transformation in relation to bioavailability and remediation. Journal of soil science and plant nutrition 15(2): 524-548. http://dx.doi.org/10.4067/S0718-95162015005000043
  • Shaheen S M, Wang J X, Ann-Christin S, Feng X B, Nanthi B & Rinklebe J (2019). Enhancing phytoextraction of potentially toxic elements in a polluted floodplain soil using sulfur-impregnated organoclay. Environ. Pollut. 248: 1059–1066. https://doi.org/10.1016/j.envpol.2019.02.073
  • Shi T, Ma J, Wu X, Ju T, Lin X, Zhang Y& Wu F. (2018). Inventories of heavy metal inputs and outputs to and from agricultural soils: A review. Ecotoxicology and environmental safety 164: 118-124. https://doi.org/10.1016/j.ecoenv.2018.08.016
  • Shuman L M (1985). Fractionation method for soil microelements. Soil science 140(1): 11-22. doi:10.1097/00010694-198507000-00003
  • Tripathi D K, Singh S, Singh S, Mishra S, Chauhan D K & Dubey N K (2015). Micronutrients and their diverse role in agricultural crops: advances and future prospective. Acta Physiologiae Plantarum 37: 1-14
  • Tuzen M (2003) Determination of trace metals in the River Yesilirmak sediments in Tokat, Turkey using sequential extraction procedure. Microchem. J. 74: 105–110. https://doi.org/10.1016/S0026-265X(02)00174-1
  • Udom B E, Mbagwu J S C, Adesodun J K & Agbim N N (2004). Distributions of zinc, copper, cadmium and lead in a tropical ultisol after long-term disposal of sewage sludge. Environment International 30(4): 467-470. https://doi.org/10.1016/j.envint.2003.09.004
  • Wan X, Lei M & Chen T (2016). Cost–benefit calculation of phytoremediation technology for heavy-metal-contaminated soil. Science of the Total Environment 563: 796-802. https://doi.org/10.1016/j.scitotenv.2015.12.080
  • Wang L, Hou D, Shen Z, Zhu J, Jia X, Ok Y S, Tack F M G& Rinklebe J (2019). Field trials of phytomining and phytoremediation: a critical review of influencing factors and effects of additives. Critical Rev. Environ. Sci. Technol. 50: 2724–2774. https://doi.org/10.1080/10643389.2019.1705724
  • Weng L, Temminghoff E J M, Lofts S, Tipping E& Van Riemsdijk W H (2002). Complexation with dissolved organic matter and solubility control of heavy metals in a sandy soil. Environ. Sci. Technol. 36: 4804–4810. https://doi.org/10.1021/es0200084
  • Yadav B, Khamparia R S & Kumar R (2013). Effect of zinc and organic matter application on various zinc fractions under direct-seeded rice in vertisols. Journal of the Indian Society of Soil Science, 61(2), 128-134.
  • Yüksel M& Dengiz O (1996). Bafra ovası sağ sahil topraklarının sınıflandırılması. Ankara üniversitesi ziraat fakültesi tarım bilimleri dergisi 2(2):95-102
  • Yurtsever N (1984). Deneysel İstatistik Metodları. Tarım, Orman ve Köyişleri Bakanlıǧı. Köy Hizmetleri Genel Müdürlüǧü Yayınları, Ankara. c.623.
  • Zinati G M, Li Y & Bryan H H (2001). Accumulation and fractionation of copper, iron, manganese, and zinc in calcareous soils amended with composts. Journal of Environmental Science and Health, Part B 36(2): 229-243. https://doi.org/10.1081/PFC-100103746
There are 70 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Makaleler
Authors

Betul Bayrakli 0000-0003-2415-965X

Rıdvan Kızılkaya This is me 0000-0001-7475-9851

Early Pub Date May 24, 2023
Publication Date September 25, 2023
Submission Date March 3, 2022
Acceptance Date February 21, 2023
Published in Issue Year 2023 Volume: 29 Issue: 3

Cite

APA Bayrakli, B., & Kızılkaya, R. (2023). Removal of Zinc Pollution by Using Some Hyperaccumulator Plants in Sewage Sludge Treated and Untreated Soils. Journal of Agricultural Sciences, 29(3), 854-867. https://doi.org/10.15832/ankutbd.1082347

Journal of Agricultural Sciences is published open access journal. All articles are published under the terms of the Creative Commons Attribution License (CC BY).