Research Article
BibTex RIS Cite

Experimental Verification of Dynamic Properties of a Hollow Aluminum Beam

Year 2023, Volume: 5 Issue: 3, 149 - 162, 27.12.2023
https://doi.org/10.46740/alku.1324880

Abstract

In this study, analytical and computational analyses are performed to determine the dynamic properties of an aluminum hollow beam and an experimental analysis is also performed. The experimental model is taken as a reference model and the computational model is updated accordingly using model updating tools. The damping behavior inherent in all physical structures is measured experimentally. According to the results of the cross-correlation modal assurance criterion, the experimental and computational results match well. The average error between the computational and experimental results for the first five damped natural frequency values is 1.5%.

Supporting Institution

TÜBİTAK

Project Number

1919B012220892

Thanks

This research was supported by The Scientific and Technological Research Council of Turkey (TUBITAK), 2209A Program, Project number: 1919B012220892

References

  • [1] Zannon, M. (2014). Free vibration of thin film cantilever beam. International Journal of Engineering and Technical Research (IJETR), 2, 304-314.
  • [2] Piranda, J., Corn, S., Bouhaddi, N., Stawicki, C., Van Herpe, F., & Cudney, H. H. (1998, February). Determination of equivalent beam properties for hollow girders typically used in the automotive industry. In Society for Experimental Mechanics, Inc, 16 th International Modal Analysis Conference. (Vol. 2, pp. 1227-1232).
  • [3] Machhan, R. A., & Könke, C. (2021). Investigation of different types of damping effects for automotive components–preliminary work. Materials Today: Proceedings, 46, 9659-9666.
  • [4] Demirtaş, A., & Bayraktar, M. (2019). Free vibration analysis of an aircraft wing by considering as a cantilever beam. Selçuk Üniversitesi Mühendislik, Bilim Ve Teknoloji Dergisi, 7(1), 12-21.
  • [5]Chaphalkar, S. P., Khetre, S. N., & Meshram, A. M. (2015). Modal analysis of cantilever beam structure using finite element analysis and experimental analysis. American Journal of Engineering Research, 4(10), 178-185.
  • [6] İnan, C. Y., & Oktav, A. (2021). Model Updating of a Euler-Bernoulli Beam Using the Response Method. Kocaeli Journal of Science and Engineering, 4(1), 16-23.
  • [7] Flaieh, E. H., Dwech, A. A., & Mosheer, M. R. (2021, February). Modal analysis of fixed-free beam considering different geometric parameters and materials. In IOP Conference Series: Materials Science and Engineering (Vol. 1094, No. 1, p. 012118). IOP Publishing.
  • [8] Wu, J. S., & Chou, H. M. (1998). Free vibration analysis of a cantilever beam carrying any number of elastically mounted point masses with the analytical-and-numerical-combined method. Journal of Sound and Vibration, 213(2), 317-332.
  • [9] Prashant, S. W., Chougule, V. N., & Mitra, A. C. (2015). Investigation on modal parameters of rectangular cantilever beam using experimental modal analysis. Materials Today: Proceedings, 2(4-5), 2121-2130.
  • [10] Imran, M., Abbasi, A. A., & Hyder, M. J. (2016, October). Determination of modal characteristics of cantilever beam. In 2016 International Conference on Emerging Technologies (ICET) (pp. 1-3). IEEE.
  • [11] Mekalke, G. C., & Sutar, A. V. (2016). Modal analysis of cantilever beam for various cases and its analytical and FEA analysis. International Journal of Engineering Technology, Management and Applied Sciences, 4(2), 60-66.
  • [12] Jassim, Z. A., Ali, N. N., Mustapha, F., & Jalil, N. A. (2013). A review on the vibration analysis for a damage occurrence of a cantilever beam. Engineering Failure Analysis, 31, 442-461.
  • [13] Korucu, S., Gök K., Tümsek, M., Soy, G., & Gök, A. (2019). Farklı profillere sahip kirişlerde meydana gelen eğilme gerilmesi ve sehim miktarının teorik ve nümerik yöntemler ile analizi. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi, 21(62), 469-482.
  • [14] Inman, D.J., Engineering Vibration. 3rd ed. 2007, New Jersey: Prentice Hall.
  • [15] Timoshenko, S. P., & Gere, J. M. (2009). Theory of Elastic Stability. Courier Corporation.
  • [16] Young, D., & Felgar, R. P. (1949). Tables of characteristic functions representing nomal modes of vibration of a beam. Bureau of Engineering Research.
  • [17] Irvine, T. (2000). An introduction to frequency response functions. Rapport, College of Engineering and Computer Science, 2000.
  • [18] Ewins, D. J. (2009). Modal testing: theory, practice and application. John Wiley & Sons.
  • [19] Machado, M.R., Adhikari, S., Dos Santos, J.M.C. & Arruda, J.R.F. (2018). Estimation of beam material random field properties via sensitivity-based model updating using experimental frequency response functions. Mechanical Systems and Signal Processing, 102,180-197.
  • [20] Oh, B. K., Kim, M. S., Kim, Y., Cho, T., & Park, H. S. (2015). Model updating technique based on modal participation factors for beam structures. Computer‐Aided Civil and Infrastructure Engineering, 30(9), 733-747.
  • [21] Zhong, J., Gou, H., Zhao, H., Zhao, T., & Wang, X. (2022, January). Comparison of several model updating methods based on full-scale model test of track beam. Structures, 35, 46-54.
  • [22] Bagha, A. K., Gupta, P., & Panwar, V. (2020). Finite element model updating of a composite material beam using direct updating method. Materials Today: Proceedings, 27, 1947-1950.

Alüminyum Kutu Kesitli Kirişin Dinamik Özelliklerinin Deneysel Olarak Doğrulanması

Year 2023, Volume: 5 Issue: 3, 149 - 162, 27.12.2023
https://doi.org/10.46740/alku.1324880

Abstract

Bu çalışmada, alüminyum boşluklu kirişin dinamik özelliklerini belirlemek için analitik ve hesaplamalı analizler gerçekleştirilmiş ve ayrıca deneysel bir analiz yapılmıştır. Deneysel model referans model olarak alınmış ve model güncelleme araçları kullanılarak hesaplamalı model buna göre güncellenmiştir. Tüm fiziksel yapılarda doğal olarak mevcut olan sönümleme davranışı deneysel olarak ölçülmüştür. Çapraz korelasyon modal güvence kriteri sonuçlarına göre, deneysel ve hesaplamalı sonuçlar iyi bir şekilde eşleşmektedir. İlk beş sönümlü doğal frekans değeri için hesaplamalı ve deneysel sonuçlar arasındaki ortalama hata 1,5% olarak hesaplanmıştır.

Project Number

1919B012220892

References

  • [1] Zannon, M. (2014). Free vibration of thin film cantilever beam. International Journal of Engineering and Technical Research (IJETR), 2, 304-314.
  • [2] Piranda, J., Corn, S., Bouhaddi, N., Stawicki, C., Van Herpe, F., & Cudney, H. H. (1998, February). Determination of equivalent beam properties for hollow girders typically used in the automotive industry. In Society for Experimental Mechanics, Inc, 16 th International Modal Analysis Conference. (Vol. 2, pp. 1227-1232).
  • [3] Machhan, R. A., & Könke, C. (2021). Investigation of different types of damping effects for automotive components–preliminary work. Materials Today: Proceedings, 46, 9659-9666.
  • [4] Demirtaş, A., & Bayraktar, M. (2019). Free vibration analysis of an aircraft wing by considering as a cantilever beam. Selçuk Üniversitesi Mühendislik, Bilim Ve Teknoloji Dergisi, 7(1), 12-21.
  • [5]Chaphalkar, S. P., Khetre, S. N., & Meshram, A. M. (2015). Modal analysis of cantilever beam structure using finite element analysis and experimental analysis. American Journal of Engineering Research, 4(10), 178-185.
  • [6] İnan, C. Y., & Oktav, A. (2021). Model Updating of a Euler-Bernoulli Beam Using the Response Method. Kocaeli Journal of Science and Engineering, 4(1), 16-23.
  • [7] Flaieh, E. H., Dwech, A. A., & Mosheer, M. R. (2021, February). Modal analysis of fixed-free beam considering different geometric parameters and materials. In IOP Conference Series: Materials Science and Engineering (Vol. 1094, No. 1, p. 012118). IOP Publishing.
  • [8] Wu, J. S., & Chou, H. M. (1998). Free vibration analysis of a cantilever beam carrying any number of elastically mounted point masses with the analytical-and-numerical-combined method. Journal of Sound and Vibration, 213(2), 317-332.
  • [9] Prashant, S. W., Chougule, V. N., & Mitra, A. C. (2015). Investigation on modal parameters of rectangular cantilever beam using experimental modal analysis. Materials Today: Proceedings, 2(4-5), 2121-2130.
  • [10] Imran, M., Abbasi, A. A., & Hyder, M. J. (2016, October). Determination of modal characteristics of cantilever beam. In 2016 International Conference on Emerging Technologies (ICET) (pp. 1-3). IEEE.
  • [11] Mekalke, G. C., & Sutar, A. V. (2016). Modal analysis of cantilever beam for various cases and its analytical and FEA analysis. International Journal of Engineering Technology, Management and Applied Sciences, 4(2), 60-66.
  • [12] Jassim, Z. A., Ali, N. N., Mustapha, F., & Jalil, N. A. (2013). A review on the vibration analysis for a damage occurrence of a cantilever beam. Engineering Failure Analysis, 31, 442-461.
  • [13] Korucu, S., Gök K., Tümsek, M., Soy, G., & Gök, A. (2019). Farklı profillere sahip kirişlerde meydana gelen eğilme gerilmesi ve sehim miktarının teorik ve nümerik yöntemler ile analizi. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi, 21(62), 469-482.
  • [14] Inman, D.J., Engineering Vibration. 3rd ed. 2007, New Jersey: Prentice Hall.
  • [15] Timoshenko, S. P., & Gere, J. M. (2009). Theory of Elastic Stability. Courier Corporation.
  • [16] Young, D., & Felgar, R. P. (1949). Tables of characteristic functions representing nomal modes of vibration of a beam. Bureau of Engineering Research.
  • [17] Irvine, T. (2000). An introduction to frequency response functions. Rapport, College of Engineering and Computer Science, 2000.
  • [18] Ewins, D. J. (2009). Modal testing: theory, practice and application. John Wiley & Sons.
  • [19] Machado, M.R., Adhikari, S., Dos Santos, J.M.C. & Arruda, J.R.F. (2018). Estimation of beam material random field properties via sensitivity-based model updating using experimental frequency response functions. Mechanical Systems and Signal Processing, 102,180-197.
  • [20] Oh, B. K., Kim, M. S., Kim, Y., Cho, T., & Park, H. S. (2015). Model updating technique based on modal participation factors for beam structures. Computer‐Aided Civil and Infrastructure Engineering, 30(9), 733-747.
  • [21] Zhong, J., Gou, H., Zhao, H., Zhao, T., & Wang, X. (2022, January). Comparison of several model updating methods based on full-scale model test of track beam. Structures, 35, 46-54.
  • [22] Bagha, A. K., Gupta, P., & Panwar, V. (2020). Finite element model updating of a composite material beam using direct updating method. Materials Today: Proceedings, 27, 1947-1950.
There are 22 citations in total.

Details

Primary Language English
Subjects Machine Theory and Dynamics
Journal Section Makaleler
Authors

Mert Bilir This is me 0009-0008-8144-3618

Muhsin Karakaş This is me 0000-0002-3285-6132

Akın Oktav 0000-0001-5983-3953

Emre Özdemir 0009-0000-0056-8470

Ahmet Selim Savi This is me 0009-0007-5679-9201

Fatih Sevinç 0009-0005-3157-0019

Hasan Ali Türkan This is me 0009-0006-1658-7629

Project Number 1919B012220892
Early Pub Date December 25, 2023
Publication Date December 27, 2023
Submission Date July 10, 2023
Acceptance Date October 19, 2023
Published in Issue Year 2023 Volume: 5 Issue: 3

Cite

APA Bilir, M., Karakaş, M., Oktav, A., Özdemir, E., et al. (2023). Experimental Verification of Dynamic Properties of a Hollow Aluminum Beam. ALKÜ Fen Bilimleri Dergisi, 5(3), 149-162. https://doi.org/10.46740/alku.1324880
AMA Bilir M, Karakaş M, Oktav A, Özdemir E, Savi AS, Sevinç F, Türkan HA. Experimental Verification of Dynamic Properties of a Hollow Aluminum Beam. ALKÜ Fen Bilimleri Dergisi. December 2023;5(3):149-162. doi:10.46740/alku.1324880
Chicago Bilir, Mert, Muhsin Karakaş, Akın Oktav, Emre Özdemir, Ahmet Selim Savi, Fatih Sevinç, and Hasan Ali Türkan. “Experimental Verification of Dynamic Properties of a Hollow Aluminum Beam”. ALKÜ Fen Bilimleri Dergisi 5, no. 3 (December 2023): 149-62. https://doi.org/10.46740/alku.1324880.
EndNote Bilir M, Karakaş M, Oktav A, Özdemir E, Savi AS, Sevinç F, Türkan HA (December 1, 2023) Experimental Verification of Dynamic Properties of a Hollow Aluminum Beam. ALKÜ Fen Bilimleri Dergisi 5 3 149–162.
IEEE M. Bilir, “Experimental Verification of Dynamic Properties of a Hollow Aluminum Beam”, ALKÜ Fen Bilimleri Dergisi, vol. 5, no. 3, pp. 149–162, 2023, doi: 10.46740/alku.1324880.
ISNAD Bilir, Mert et al. “Experimental Verification of Dynamic Properties of a Hollow Aluminum Beam”. ALKÜ Fen Bilimleri Dergisi 5/3 (December 2023), 149-162. https://doi.org/10.46740/alku.1324880.
JAMA Bilir M, Karakaş M, Oktav A, Özdemir E, Savi AS, Sevinç F, Türkan HA. Experimental Verification of Dynamic Properties of a Hollow Aluminum Beam. ALKÜ Fen Bilimleri Dergisi. 2023;5:149–162.
MLA Bilir, Mert et al. “Experimental Verification of Dynamic Properties of a Hollow Aluminum Beam”. ALKÜ Fen Bilimleri Dergisi, vol. 5, no. 3, 2023, pp. 149-62, doi:10.46740/alku.1324880.
Vancouver Bilir M, Karakaş M, Oktav A, Özdemir E, Savi AS, Sevinç F, Türkan HA. Experimental Verification of Dynamic Properties of a Hollow Aluminum Beam. ALKÜ Fen Bilimleri Dergisi. 2023;5(3):149-62.