Research Article
BibTex RIS Cite

Antioxidant potential of Pseudevernia furfuracea (L.) Zopf and its secondary metabolites on hepatocellular carcinoma cells: regulation of antioxidant enzymes

Year 2021, Volume: 5 Issue: 2, 127 - 133, 15.11.2021
https://doi.org/10.30616/ajb.993406

Abstract

The use of medicinal plants and secondary metabolites increases in treating numerous diseases such as hepatocellular carcinoma (HCC), one of the leading causes of cancer-related death worldwide. Oxidative stress contributes to the development of liver cancer, and promoting antioxidant systems might provide better insights for the treatment. In the present study, the antioxidant potential of Pseudevernia furfuracea (L.) Zopf lichen species were investigated. Besides, effects of major secondary metabolites, olivetoric acid (OA) and physodic acid (PA), which were isolated from P. furfuracea, on hepatic gene expressions of antioxidant enzymes, were evaluated in both cancerous (HepG2) and healthy (THLE2) human liver cells. According to the results, the total phenolic content of P. furfuracea was 71.52 µg/mg and 8.16 µg/mg gallic acid equivalent for ethanolic and aqueous extracts, respectively. Likewise, β-carotene and lycopene contents were also higher in ethanolic extracts. In line with these antioxidant ingredients, DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging activity of ethanol extract (IC50: 158.79 mg/L) was remarkably high as compared with its aqueous extracts (IC50: 630.33 mg/L). OA and PA strongly augment all antioxidant enzymes’ gene expressions in HepG2 cells, while only gpx expression was upregulated in healthy THLE2 cells. Conversely, these two metabolites suppress cat, sod1, and sod2 expressions in THLE2 cells. These results together suggest that P. furfuracea not only has high antioxidant potential, but its secondary metabolites might also reduce oxidative stress in cancer cells by upregulating antioxidant enzymes, which would prevent oncogenesis and tumor progression in liver cancer.

Supporting Institution

Karamanoğlu Mehmetbey University, BAP

Project Number

21-YL-19

Thanks

The authors would like to thank Karamanoğlu Mehmetbey University Scientific Research Projects Commission for financial support (grant number 21-YL-19).

References

  • Ameh SJ, Obodozie OO, Inyang US, Abubakar MS, Garba M (2010). Current phytotherapy - A perspective on the science and regulation of herbal medicine. Journal of Medicinal Plants Research 4(2): 72-81.
  • Aoussar N, Manzali R, Nattah I, Rhallabi N, Vasiljevic P, Bouksaim M, Douira A, Manojlović N, Mellouki F (2017). Chemical composition and antioxidant activity of two lichens species (Pseudevernia furfuracea L and Evernia prunastri L) collected from Morocco. JMES 8(6): 1968-1976.
  • Bailly C (2021). The traditional and modern uses of Selaginella tamariscina (P.Beauv.) Spring, in medicine and cosmetic: Applications and bioactive ingredients: Medicinal and cosmetic uses of Selaginella tamariscina. Journal of Ethnopharmacology 280: 114444.
  • Bharti R, Chopra BS, Raut S, Khatri N (2021). Pueraria tuberosa: A review on traditional uses, pharmacology, and phytochemistry. Frontiers in Pharmacology 11: 582506.
  • Bilgin Sökmen B, Kinalioǧlu K, Aydin S (2012). Antimicrobial and antioxidant activities of Pseudevernia furfuracea (L.) Zopf var. furfuracea and Evernia prunastri lichens collected from Black Sea Region. Gazi University Journal of Science 25(3): 557-565.
  • Cheng S Bin, Liu HT, Chen SY, Lin PT, Lai CY, Huang YC (2017). Changes of oxidative stress, glutathione, and its dependent antioxidant enzyme activities in patients with hepatocellular carcinoma before and after tumor resection. PLoS ONE 12(1): e0170016.
  • Emsen B (2019). The antioxidant and antigenotoxic potential of Peltigera canina and Umbilicaria nylanderiana based on their phenolic profile. Farmacia 67(5): 912-921.
  • Emsen B, Aslan A, Togar B, Turkez H (2016). In vitro antitumor activities of the lichen compounds olivetoric, physodic and psoromic acid in rat neuron and glioblastoma cells. Pharmaceutical Biology 54(9): 1748-1762.
  • Emsen B, Kolukisa AL (2021). Cytogenetic and oxidative effects of three lichen extracts on human peripheral lymphocytes. Zeitschrift Fur Naturforschung Section C-A Journal of Biosciences 76(7-8): 291-299.
  • Emsen B, Sadi G, Bostanci A, Gursoy N, Emsen A, Aslan A (2021). Evaluation of the biological activities of olivetoric acid, a lichen-derived molecule, in human hepatocellular carcinoma cells. Rendiconti Lincei 32(1): 135-148.
  • Emsen B, Sadi G, Bostanci A, Aslan A (2020). In vitro evaluation of cytotoxic, oxidative, genotoxic, and apoptotic activities of physodic acid from Pseudevernia furfuracea in HepG2 and THLE2 cells. Plant Biosyst. doi: 10.1080/11263504.2020.1852329
  • Emsen B, Togar B, Turkez H, Aslan A (2018). Effects of two lichen acids isolated from Pseudevernia furfuracea (L.) Zopf in cultured human lymphocytes. Zeitschrift Fur Naturforschung Section C-A Journal of Biosciences 73(7-8): 303-312.
  • Emsen B, Turkez H, Togar B, Aslan A (2017). Evaluation of antioxidant and cytotoxic effects of olivetoric and physodic acid in cultured human amnion fibroblasts. Human & Experimental Toxicology 36(4): 376-385. Fu Y, Chung F-L (2018). Oxidative stress and hepatocarcinogenesis. Hepatoma Research 4(8): 39.
  • Güvenç A, Küpeli Akkol E, Süntar İ, Keleş H, Yıldız S, Çalış İ (2012). Biological activities of Pseudevernia furfuracea (L.) Zopf extracts and isolation of the active compounds. Journal of Ethnopharmacology 144(3): 726-734.
  • Karabulut G, Ozturk S (2015). Antifungal activity of Evernia prunastri, Parmelia sulcata, Pseudevernia furfuracea var. furfuracea. Pakistan Journal of Botany 47(4): 1575-1579.
  • Karagöz A, Aslan A (2005). Antiviral and cytotoxic activity of some lichen extracts. Biologia 60(3): 281-286.
  • Korkmaz AI, Akgul H, Sevindik M, Selamoglu Z (2018). Study on determination of bioactive potentials of certain lichens. Acta Alimentaria 47(1): 80-87.
  • Kosanić M, Manojlović N, Janković S, Stanojković T, Ranković B (2013). Evernia prunastri and Pseudoevernia furfuraceae lichens and their major metabolites as antioxidant, antimicrobial and anticancer agents. Food and Chemical Toxicology 53: 112-118.
  • Kosanić M, Rankoví B (2011). Lichens as possible sources of antioxidants. Pakistan Journal of Pharmaceutical Sciences 24(2): 165-170.
  • Marra M, Sordelli IM, Lombardi A, Lamberti M, Tarantino L, Giudice A, Stiuso P, Abbruzzese A, Sperlongano R, Accardo M, Agresti M, Caraglia M, Sperlongano P (2011). Molecular targets and oxidative stress biomarkers in hepatocellular carcinoma: An overview. Journal of Translational Medicine 9.
  • Mitrović T, Stamenković S, Cvetković V, Radulović N, Mladenović M, Stanković M, Topuzović M, Radojević I, Stefanović O, Vasić S, Čomić L (2014). Platismatia glauca and Pseudevernia furfuracea lichens as sources of antioxidant, antimicrobial and antibiofilm agents. EXCLI Journal 13: 938-953.
  • Mohammed FS, Günal S, Pehlivan M, Doğan M, Sevindik M, Akgül H (2020). Phenolic content, antioxidant and antimicrobial potential of endemic Ferulago platycarpa. Gazi University Journal of Science 33(4): 670-677.
  • Mohammed FS, Pehlivan M, Sevindik E, Akgul H, Sevindik M, Bozgeyik I, Yumrutas O (2021). Pharmacological properties of edible Asparagus acutifolius and Asparagus officinalis collected from North Iraq and Turkey (Hatay). Acta Alimentaria 50(1): 136-143.
  • Odabasoglu F, Aslan A, Cakir A, Suleyman H, Karagoz Y, Bayir Y, Halici M (2005). Antioxidant activity, reducing power and total phenolic content of some lichen species. Fitoterapia 76(2): 216-219.
  • Pachi VK, Mikropoulou EV, Gkiouvetidis P, Siafakas K, Argyropoulou A, Angelis A, Mitakou S, Halabalaki M (2020). Traditional uses, phytochemistry and pharmacology of Chios mastic gum (Pistacia lentiscus var. Chia, Anacardiaceae): A review. Journal of Ethnopharmacology 254: 112485.
  • Purvis OW, Coppins BJ, Hawksworth DL, James PW, Moore DM (1992). The lichen flora of Great Britain and Ireland. In: The Lichen Flora of Great Britain and Ireland. London: Natural History Museum Publications in Association with the British Lichen Society.
  • Ranković B, Kosanić M (2019). Lichens as a potential source of bioactive secondary metabolites. In: Ranković B (ed) Lichen Secondary Metabolites. Springer, pp 1-29.
  • Roychoudhury S, Sinha B, Choudhury BP, Jha NK, Palit P, Kundu S, Mandal SC, Kolesarova A, Yousef MI, Ruokolainen J, Slama P, Kesari KK (2021). Scavenging properties of plant-derived natural biomolecule para-coumaric acid in the prevention of oxidative stress-induced diseases. Antioxidants 10(8): 1205.
  • Sadi G, Sadi Ö (2010). Antioxidants and Regulation of Antioxidant Enzymes by Cellular Redox Status. Turkish Journal of Scientific Reviews 3(2): 95-107.
  • Sadi G, Sadi Ö (2011). Diyabetik Sıçan Karaciğer Dokularında Oksidatif Hasar Parametrelerinin ve Antioksidan Enzimlerin Değişimleri. Biyolojik Bilimler Araştırma Dergisi 4(3): 14-19.
  • Šeklić DS, Obradović AD, Stanković MS, Živanović MN, Mitrović TL, Stamenković SM, Marković SD (2018). Pro-apoptotic and antimigratory effects of Pseudevernia furfuracea and Platismatia glauca on colon cancer cell lines. Food Technology and Biotechnology 56(3): 421–430.
  • Shrestha G, Raphael J, Leavitt SD, St. Clair LL (2014). In vitro evaluation of the antibacterial activity of extracts from 34 species of North American lichens. Pharmaceutical Biology 52(10): 1262-1266.
  • Solárová Z, Liskova A, Samec M, Kubatka P, Büsselberg D, Solár P (2020a). Anticancer potential of lichens’ secondary metabolites. Biomolecules 10(1): 87.
  • Solárová Z, Liskova A, Samec M, Kubatka P, Büsselberg D, Solár P (2020b). Anticancer Potential of Lichens’ Secondary Metabolites. Biomolecules.
  • Turkez H, Aydin E, Aslan A (2014). Role of aqueous Bryoria capillaris (Ach.) extract as a genoprotective agent on imazalil-induced genotoxicity in vitro. Toxicology and Industrial Health 30(1): 33-39.
  • Wang C, Zhang H, Liu Q, Qi J, Zhuang H, Gou Y, Wang H, Wang Y (2021). A review of the aromatic genus Adenosma: Geographical distribution, traditional uses, phytochemistry and biological activities. Journal of Ethnopharmacology 275: 114075.
  • Wirth V (1995). Die Flechten Baden Württembergs. In: Die Flechten Baden Württembergs. Ulmer, Stuttgart, p 1006.
  • Yahya RS, Ghanem OH, Foyouh AAA, Atwa MA, Enany SA (2013). Role of interleukin-8 and oxidative stress in patients with hepatocellular carcinoma. Clinical Laboratory 59(9-10): 969-976.
  • Zambare VP, Christopher LP (2012). Biopharmaceutical potential of lichens. Pharmaceutical Biology 50(6): 778-798.

Pseudevernia furfuracea (L.) Zopf ve sekonder metabolitlerinin hepatosellüler karsinom hücreleri üzerindeki antioksidan potansiyeli: antioksidan enzimlerin düzenlenmesi

Year 2021, Volume: 5 Issue: 2, 127 - 133, 15.11.2021
https://doi.org/10.30616/ajb.993406

Abstract

Dünyada kansere bağlı ölümlerin önde gelen nedenlerinden biri olan hepatosellüler karsinom (HCC) gibi çok sayıda hastalığın tedavisinde tıbbi bitkilerin ve sekonder metabolitlerin kullanımı artmaktadır. Oksidatif stres, karaciğer kanseri gelişimine katkıda bulunur ve antioksidan sistemlerin teşvik edilmesi, tedavi için daha iyi bilgiler sağlayabilir. Bu çalışmada, Pseudevernia furfuracea (L.) Zopf likeninin antioksidan potansiyeli araştırılıştır. Ayrıca, P.furfuracea'dan izole edilen ana sekonder metabolitler olan olivetorik asit (OA) ve fisodik asitin (PA) hepatik antioksidan enzimlerin gen ekspresyonları üzerindeki etkileri hem kanserli (HepG2) hem de sağlıklı (THLE2) insan karaciğer hücrelerinde değerlendirilmiştir. Sonuçlara göre, P. furfuracea'nın toplam fenolik içeriği etanolik ve sulu ekstraktlar için sırasıyla 71.52 µg/mg ve 8.16 µg/mg gallik asit eşdeğeri bulunmuştur. Aynı şekilde β-karoten ve likopen içerikleri de etanolik ekstraktlarda daha yüksek olarak belirlenmiştir. Bu antioksidan bileşenlerle uyumlu olarak, etanol özütünün DPPH (2,2-difenil-1-pikrilhidrazil) radikal süpürme aktivitesi (IC50: 158.79 mg/L), sulu ekstraktlar (IC50: 630.33 mg/L) ile karşılaştırıldığında oldukça yüksektir. OA ve PA, HepG2 hücrelerinde tüm antioksidan enzimlerin gen ifade düzeylerini arttırırken, sağlıklı THLE2 hücrelerinde ise sadece gpx ekspresyonu yukarı yönde regüle olmuştur. Bundan farklı olarak, her iki metabolit de THLE2 hücrelerinde cat, sod1 ve sod2 ekspresyonlarını baskılamıştır. Bu sonuçlar P. furfuracea'nın sadece yüksek antioksidan potansiyeline sahip olmadığını, aynı zamanda sekonder metabolitlerinin de karaciğer kanserinde onkogenezi ve tümör ilerlemesini önleyecek antioksidan enzimleri yukarı regüle ederek kanser hücrelerinde oksidatif stresi azaltabileceğini göstermektedir.

Project Number

21-YL-19

References

  • Ameh SJ, Obodozie OO, Inyang US, Abubakar MS, Garba M (2010). Current phytotherapy - A perspective on the science and regulation of herbal medicine. Journal of Medicinal Plants Research 4(2): 72-81.
  • Aoussar N, Manzali R, Nattah I, Rhallabi N, Vasiljevic P, Bouksaim M, Douira A, Manojlović N, Mellouki F (2017). Chemical composition and antioxidant activity of two lichens species (Pseudevernia furfuracea L and Evernia prunastri L) collected from Morocco. JMES 8(6): 1968-1976.
  • Bailly C (2021). The traditional and modern uses of Selaginella tamariscina (P.Beauv.) Spring, in medicine and cosmetic: Applications and bioactive ingredients: Medicinal and cosmetic uses of Selaginella tamariscina. Journal of Ethnopharmacology 280: 114444.
  • Bharti R, Chopra BS, Raut S, Khatri N (2021). Pueraria tuberosa: A review on traditional uses, pharmacology, and phytochemistry. Frontiers in Pharmacology 11: 582506.
  • Bilgin Sökmen B, Kinalioǧlu K, Aydin S (2012). Antimicrobial and antioxidant activities of Pseudevernia furfuracea (L.) Zopf var. furfuracea and Evernia prunastri lichens collected from Black Sea Region. Gazi University Journal of Science 25(3): 557-565.
  • Cheng S Bin, Liu HT, Chen SY, Lin PT, Lai CY, Huang YC (2017). Changes of oxidative stress, glutathione, and its dependent antioxidant enzyme activities in patients with hepatocellular carcinoma before and after tumor resection. PLoS ONE 12(1): e0170016.
  • Emsen B (2019). The antioxidant and antigenotoxic potential of Peltigera canina and Umbilicaria nylanderiana based on their phenolic profile. Farmacia 67(5): 912-921.
  • Emsen B, Aslan A, Togar B, Turkez H (2016). In vitro antitumor activities of the lichen compounds olivetoric, physodic and psoromic acid in rat neuron and glioblastoma cells. Pharmaceutical Biology 54(9): 1748-1762.
  • Emsen B, Kolukisa AL (2021). Cytogenetic and oxidative effects of three lichen extracts on human peripheral lymphocytes. Zeitschrift Fur Naturforschung Section C-A Journal of Biosciences 76(7-8): 291-299.
  • Emsen B, Sadi G, Bostanci A, Gursoy N, Emsen A, Aslan A (2021). Evaluation of the biological activities of olivetoric acid, a lichen-derived molecule, in human hepatocellular carcinoma cells. Rendiconti Lincei 32(1): 135-148.
  • Emsen B, Sadi G, Bostanci A, Aslan A (2020). In vitro evaluation of cytotoxic, oxidative, genotoxic, and apoptotic activities of physodic acid from Pseudevernia furfuracea in HepG2 and THLE2 cells. Plant Biosyst. doi: 10.1080/11263504.2020.1852329
  • Emsen B, Togar B, Turkez H, Aslan A (2018). Effects of two lichen acids isolated from Pseudevernia furfuracea (L.) Zopf in cultured human lymphocytes. Zeitschrift Fur Naturforschung Section C-A Journal of Biosciences 73(7-8): 303-312.
  • Emsen B, Turkez H, Togar B, Aslan A (2017). Evaluation of antioxidant and cytotoxic effects of olivetoric and physodic acid in cultured human amnion fibroblasts. Human & Experimental Toxicology 36(4): 376-385. Fu Y, Chung F-L (2018). Oxidative stress and hepatocarcinogenesis. Hepatoma Research 4(8): 39.
  • Güvenç A, Küpeli Akkol E, Süntar İ, Keleş H, Yıldız S, Çalış İ (2012). Biological activities of Pseudevernia furfuracea (L.) Zopf extracts and isolation of the active compounds. Journal of Ethnopharmacology 144(3): 726-734.
  • Karabulut G, Ozturk S (2015). Antifungal activity of Evernia prunastri, Parmelia sulcata, Pseudevernia furfuracea var. furfuracea. Pakistan Journal of Botany 47(4): 1575-1579.
  • Karagöz A, Aslan A (2005). Antiviral and cytotoxic activity of some lichen extracts. Biologia 60(3): 281-286.
  • Korkmaz AI, Akgul H, Sevindik M, Selamoglu Z (2018). Study on determination of bioactive potentials of certain lichens. Acta Alimentaria 47(1): 80-87.
  • Kosanić M, Manojlović N, Janković S, Stanojković T, Ranković B (2013). Evernia prunastri and Pseudoevernia furfuraceae lichens and their major metabolites as antioxidant, antimicrobial and anticancer agents. Food and Chemical Toxicology 53: 112-118.
  • Kosanić M, Rankoví B (2011). Lichens as possible sources of antioxidants. Pakistan Journal of Pharmaceutical Sciences 24(2): 165-170.
  • Marra M, Sordelli IM, Lombardi A, Lamberti M, Tarantino L, Giudice A, Stiuso P, Abbruzzese A, Sperlongano R, Accardo M, Agresti M, Caraglia M, Sperlongano P (2011). Molecular targets and oxidative stress biomarkers in hepatocellular carcinoma: An overview. Journal of Translational Medicine 9.
  • Mitrović T, Stamenković S, Cvetković V, Radulović N, Mladenović M, Stanković M, Topuzović M, Radojević I, Stefanović O, Vasić S, Čomić L (2014). Platismatia glauca and Pseudevernia furfuracea lichens as sources of antioxidant, antimicrobial and antibiofilm agents. EXCLI Journal 13: 938-953.
  • Mohammed FS, Günal S, Pehlivan M, Doğan M, Sevindik M, Akgül H (2020). Phenolic content, antioxidant and antimicrobial potential of endemic Ferulago platycarpa. Gazi University Journal of Science 33(4): 670-677.
  • Mohammed FS, Pehlivan M, Sevindik E, Akgul H, Sevindik M, Bozgeyik I, Yumrutas O (2021). Pharmacological properties of edible Asparagus acutifolius and Asparagus officinalis collected from North Iraq and Turkey (Hatay). Acta Alimentaria 50(1): 136-143.
  • Odabasoglu F, Aslan A, Cakir A, Suleyman H, Karagoz Y, Bayir Y, Halici M (2005). Antioxidant activity, reducing power and total phenolic content of some lichen species. Fitoterapia 76(2): 216-219.
  • Pachi VK, Mikropoulou EV, Gkiouvetidis P, Siafakas K, Argyropoulou A, Angelis A, Mitakou S, Halabalaki M (2020). Traditional uses, phytochemistry and pharmacology of Chios mastic gum (Pistacia lentiscus var. Chia, Anacardiaceae): A review. Journal of Ethnopharmacology 254: 112485.
  • Purvis OW, Coppins BJ, Hawksworth DL, James PW, Moore DM (1992). The lichen flora of Great Britain and Ireland. In: The Lichen Flora of Great Britain and Ireland. London: Natural History Museum Publications in Association with the British Lichen Society.
  • Ranković B, Kosanić M (2019). Lichens as a potential source of bioactive secondary metabolites. In: Ranković B (ed) Lichen Secondary Metabolites. Springer, pp 1-29.
  • Roychoudhury S, Sinha B, Choudhury BP, Jha NK, Palit P, Kundu S, Mandal SC, Kolesarova A, Yousef MI, Ruokolainen J, Slama P, Kesari KK (2021). Scavenging properties of plant-derived natural biomolecule para-coumaric acid in the prevention of oxidative stress-induced diseases. Antioxidants 10(8): 1205.
  • Sadi G, Sadi Ö (2010). Antioxidants and Regulation of Antioxidant Enzymes by Cellular Redox Status. Turkish Journal of Scientific Reviews 3(2): 95-107.
  • Sadi G, Sadi Ö (2011). Diyabetik Sıçan Karaciğer Dokularında Oksidatif Hasar Parametrelerinin ve Antioksidan Enzimlerin Değişimleri. Biyolojik Bilimler Araştırma Dergisi 4(3): 14-19.
  • Šeklić DS, Obradović AD, Stanković MS, Živanović MN, Mitrović TL, Stamenković SM, Marković SD (2018). Pro-apoptotic and antimigratory effects of Pseudevernia furfuracea and Platismatia glauca on colon cancer cell lines. Food Technology and Biotechnology 56(3): 421–430.
  • Shrestha G, Raphael J, Leavitt SD, St. Clair LL (2014). In vitro evaluation of the antibacterial activity of extracts from 34 species of North American lichens. Pharmaceutical Biology 52(10): 1262-1266.
  • Solárová Z, Liskova A, Samec M, Kubatka P, Büsselberg D, Solár P (2020a). Anticancer potential of lichens’ secondary metabolites. Biomolecules 10(1): 87.
  • Solárová Z, Liskova A, Samec M, Kubatka P, Büsselberg D, Solár P (2020b). Anticancer Potential of Lichens’ Secondary Metabolites. Biomolecules.
  • Turkez H, Aydin E, Aslan A (2014). Role of aqueous Bryoria capillaris (Ach.) extract as a genoprotective agent on imazalil-induced genotoxicity in vitro. Toxicology and Industrial Health 30(1): 33-39.
  • Wang C, Zhang H, Liu Q, Qi J, Zhuang H, Gou Y, Wang H, Wang Y (2021). A review of the aromatic genus Adenosma: Geographical distribution, traditional uses, phytochemistry and biological activities. Journal of Ethnopharmacology 275: 114075.
  • Wirth V (1995). Die Flechten Baden Württembergs. In: Die Flechten Baden Württembergs. Ulmer, Stuttgart, p 1006.
  • Yahya RS, Ghanem OH, Foyouh AAA, Atwa MA, Enany SA (2013). Role of interleukin-8 and oxidative stress in patients with hepatocellular carcinoma. Clinical Laboratory 59(9-10): 969-976.
  • Zambare VP, Christopher LP (2012). Biopharmaceutical potential of lichens. Pharmaceutical Biology 50(6): 778-798.
There are 39 citations in total.

Details

Primary Language English
Subjects Structural Biology
Journal Section Articles
Authors

Nuray Şahin This is me 0000-0002-1420-6259

Buğrahan Emsen 0000-0002-9636-2596

Ali Aslan 0000-0002-5122-6646

Gökhan Sadi 0000-0002-6422-1203

Project Number 21-YL-19
Publication Date November 15, 2021
Acceptance Date September 25, 2021
Published in Issue Year 2021 Volume: 5 Issue: 2

Cite

APA Şahin, N., Emsen, B., Aslan, A., Sadi, G. (2021). Antioxidant potential of Pseudevernia furfuracea (L.) Zopf and its secondary metabolites on hepatocellular carcinoma cells: regulation of antioxidant enzymes. Anatolian Journal of Botany, 5(2), 127-133. https://doi.org/10.30616/ajb.993406
AMA Şahin N, Emsen B, Aslan A, Sadi G. Antioxidant potential of Pseudevernia furfuracea (L.) Zopf and its secondary metabolites on hepatocellular carcinoma cells: regulation of antioxidant enzymes. Ant J Bot. November 2021;5(2):127-133. doi:10.30616/ajb.993406
Chicago Şahin, Nuray, Buğrahan Emsen, Ali Aslan, and Gökhan Sadi. “Antioxidant Potential of Pseudevernia Furfuracea (L.) Zopf and Its Secondary Metabolites on Hepatocellular Carcinoma Cells: Regulation of Antioxidant Enzymes”. Anatolian Journal of Botany 5, no. 2 (November 2021): 127-33. https://doi.org/10.30616/ajb.993406.
EndNote Şahin N, Emsen B, Aslan A, Sadi G (November 1, 2021) Antioxidant potential of Pseudevernia furfuracea (L.) Zopf and its secondary metabolites on hepatocellular carcinoma cells: regulation of antioxidant enzymes. Anatolian Journal of Botany 5 2 127–133.
IEEE N. Şahin, B. Emsen, A. Aslan, and G. Sadi, “Antioxidant potential of Pseudevernia furfuracea (L.) Zopf and its secondary metabolites on hepatocellular carcinoma cells: regulation of antioxidant enzymes”, Ant J Bot, vol. 5, no. 2, pp. 127–133, 2021, doi: 10.30616/ajb.993406.
ISNAD Şahin, Nuray et al. “Antioxidant Potential of Pseudevernia Furfuracea (L.) Zopf and Its Secondary Metabolites on Hepatocellular Carcinoma Cells: Regulation of Antioxidant Enzymes”. Anatolian Journal of Botany 5/2 (November 2021), 127-133. https://doi.org/10.30616/ajb.993406.
JAMA Şahin N, Emsen B, Aslan A, Sadi G. Antioxidant potential of Pseudevernia furfuracea (L.) Zopf and its secondary metabolites on hepatocellular carcinoma cells: regulation of antioxidant enzymes. Ant J Bot. 2021;5:127–133.
MLA Şahin, Nuray et al. “Antioxidant Potential of Pseudevernia Furfuracea (L.) Zopf and Its Secondary Metabolites on Hepatocellular Carcinoma Cells: Regulation of Antioxidant Enzymes”. Anatolian Journal of Botany, vol. 5, no. 2, 2021, pp. 127-33, doi:10.30616/ajb.993406.
Vancouver Şahin N, Emsen B, Aslan A, Sadi G. Antioxidant potential of Pseudevernia furfuracea (L.) Zopf and its secondary metabolites on hepatocellular carcinoma cells: regulation of antioxidant enzymes. Ant J Bot. 2021;5(2):127-33.

Anatolian Journal of Botany is licensed under CC BY 4.0cc.svg?ref=chooser-v1by.svg?ref=chooser-v1.