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THE GOMPERTZ EXTENDED GENERALIZED EXPONENTIAL
DISTRIBUTION: PROPERTIES AND APPLICATIONS

J.T. EGHWERIDO, L.C. NZEI, I.J. DAVID, AND O.D. ADUBISI

Abstract. In this article, a new class of distribution of the exponential fam-
ily of distributions called the Gompertz extended generalized exponential (G-
EGE) distribution for life time processes is proposed. The mathematical prop-
erties of the G-EGE distribution such as reliability, hazard rate function, re-
versed hazard, cumulative, odd functions, quantiles function, kurtosis, skew-
ness and order statistics were derived. The parameters of the G-EGE distri-
bution were estimated using the maximum likelihood method. The effi ciency
and flexibility of the G-EGE distribution were examined using a simulation
study and a real life data application. The results revealed that the G-EGE
distribution outperformed some existing distributions in terms of their test
statistics.

1. Introduction

Modeling lifetime processes has received several attentions in recent years. How-
ever, the lifetime processes rely on the phenomena of distribution. Thus, developing
a flexible distributions depends on how the researcher compound one or more distri-
butions to form a more flexible distribution [1]. One of such distributions in mod-
eling lifetime processes is exponential distribution. The exponential distribution is
used to describing the time between events with a Poisson processes. Thus, the ex-
ponential distribution has been used to model processes with continuous memoryless
random processes and constant failure rate. However, the occurrence of constant
failure rate is almost impossible in real life. Hence, to account for this shortcom-
ing in distribution theory, [2] modeled lifetime processes with inverted exponential
(IE) distribution. The inverted exponential distribution was extensively studied in
[3]; who applied it to various data from the field of engineering and medicine. [4]
proposed the transmuted inverse exponential distribution and studied its statistical
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properties using data from medicine and engineering. [5] also examined the statis-
tical properties of the exponentiated generalized inverted exponential distribution.
[6] proposed the Kumaraswamy inverse exponential distribution. More so, [7] pro-
posed the extended generalized exponential distribution. [8] proposed the Harris
extended exponential distribution. [9] proposed the extended Poisson exponential
distribution. [10] proposed fractional beta exponential distribution. [11] proposed
the exponentiated generalized extended exponential distribution. [12] proposed the
moments of the alpha power transformed generalized exponential distribution. [13]
proposed the extended weighted exponential distribution. [14] proposed the type I
general exponential class of distribution. [15] proposed the Gompertz alpha power
inverted exponential distribution. [16] proposed extended new generalized expo-
nential distribution. [17] proposed the alpha power Gompertz distribution. [18]
proposed the odd exponentiated half logistic-G family of distribution. [19] pro-
posed a new distribution using the tangent function. [20] proposed generalized
exponential distribution. [21] proposed the alpha power inverted exponential dis-
tribution. [22] proposed the alpha power Weibull distribution. [23] proposed a
new extension of generalized exponential distribution. [24] proposed transmuted
exponentiated generalized-G family of distributions. [25] proposed exponentiated
generalized-G Poisson distribution. [26] proposed exponentiated generalized class
of distributions. [27] proposed a new method for generating distributions with an
application to exponential distribution. [28] proposed a method for estimating the
generalized inverted exponential distribution.
The cumulative distribution function (cdf) of the extended generalized distribu-

tion is given as

G(x; γ, β) =
(β − e−x)γ − (β − 1)γ
(βγ − (β − 1)γ) (βγ − (β − 1)γ) 6= 0 x > 0, γ > 1 , β > 1. (1)

The corresponding probability density function (pdf) to Equation (1) is given as

g(x; γ, β) =
γ(β − e−x)γ−1e−x
(βγ − (β − 1)γ) (βγ − (β − 1)γ) 6= 0 x > 0, γ > 1 , β > 1, (2)

where γ is shape parameter and β is the scale parameter.
Also, the Gompertz distribution is a continuous distribution used to describe

the lifespan of stochastic processes. Hence, there exist a relationship between the
exponential and the Gompertz distributions. A lot of researchers have developed
different compound distributions using the exponential and Gompertz distributions.
However, no knowledge of Gompertz extended generalized exponential distribution
was found in existing literature. Hence, this study is motivated to bridge the gap
in existing literature by proposing a lifetime distribution called Gompertz extended
generalized exponential (G-EGE) distribution using the Gompertz-G characteriza-
tion. This distribution is further applied to glass fibre to examine its effi ciency and
flexibility.
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Let G(x; τ) and g(x; τ) be the baseline model with parameter vector τ . Then,
the cdf of Gompertz-G family proposed in [29] is given as

F (x) =

∫ B[G(x;τ)]

0

u(t)dt, (3)

where u(t) is the probability density function of the Gompertz distribution and
B[G(x; τ)] = −log[1−G(x; τ)] is the link function.
The cumulative distribution function in Equation (3) can be expressed as

F (x) =

∫ − log[1−G(x;τ)]
0

θ eλt−
θ
λ (e

λt−1)dt = 1−e θλ (1−(1−G(x,τ))
−λ) for θ > 0 λ > 0,

(4)
where λ and θ are additional two shape parameters.
The pdf that corresponds to the G-family of distribution is given as

f(x) = [
d

dx
B[G(x; τ)]]u[B[G(x; τ)]] = θg(x; τ)[1−G(x; τ)]−λ−1e θλ (1−(1−G(x;τ))

−λ).

(5)
A random variable X with pdf in Equation (5) is denoted by X ∼ Gompertz −

G(θ, λ, τ).
The aim of this study is to propose a G-EGE class of the family of the exponential

distribution and examining its statistical characteristics extensively.
This paper is unfolded as follows. In Section 2, we define the G-EGE distribution

and a plot for its pdf, cdf and hazard rate function (hrf). Useful mixture represen-
tation of the pdf is derived in Section 3. In Section 4 derives some mathematical
properties of the newly proposed class of distribution. In Section 5, the order statis-
tics is obtained. The maximum likelihood estimates (MLEs) of the newly proposed
class of distribution and simulation are performed in Section 6. The viability of the
new class of distribution is examined in Section 7 by means of real life data sets.
Section 7 is the concluding remarks.

2. The Gompertz Extended Generalized Exponential Distribution

In this section, we shall establish the pdf and the cdf of the newly proposed
continuous distribution. Let X be a continuous random variable. Then, X follows
an G-EGE distribution if its pdf is given as

f(G−EGE)(x; θ, λ, β, γ) = θ γ exp
(
−x
) (

βγ −
(
β − 1

)γ)λ(
β − exp

(
−x
))γ−1

×
[
βγ −

(
β − exp

(
−x
))γ]−(λ+1)

× exp
(
θ

λ

{
1−

( βγ −
(
β − 1

)γ
βγ −

(
β − exp(−x)

)γ )λ
})

(6)
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for θ > 0 λ > 0 x > 0, γ > 1 , β > 1.

The cdf that corresponds to the pdf is given as

F(G−EGE)(x) = 1− exp
(
θ

λ

{
1−

( βγ −
(
β − 1

)γ
βγ −

(
β − exp(−x)

)γ )λ
})

(7)

for θ > 0 λ > 0 x > 0, γ > 1 , β > 1,

where γ is shape parameter and β is the scale parameter; λ and θ are additional
two shape parameters.
Figure 1 shows the plots of the G-EGE density for some selected values of the

parameters γ, β, λ and θ. The pdf plots indicate that the G-EGE distribution can
be unimodal, left skewed, increasing and decreasing.

Figure 1. The plots of the G-EGE pdf for some parameter values.

The Hazard Rate function (hrf), reliability function (rf) and cumulative hazard
rate function (chrf) of the random variable X are given respectively as

hrf(x) =
f(G−EGE)(x)

1− F(G−EGE)(x)
= θ γ exp

(
−x
) (

βγ −
(
β − 1

)γ)λ(
β − exp

(
−x
))γ−1

×
[
βγ −

(
β − exp

(
−x
))γ]−(λ+1)

.

(8)
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Figure 2 shows the plots for the hazard rate function of the G-EGE distribution.
The plots shows that the G-EGE density is increasing and bathtub depending on
the values of the parameters γ, β, λ, and θ.

Figure 2. The plots of the G-EGE hrf for some parameter values.

R(x) = 1− F(G−EGE)(x) = exp
(
θ

λ

{
1−

( βγ −
(
β − 1

)γ
βγ −

(
β − exp(−x)

)γ )λ
})

. (9)

H(x) = −InR(G−EGE)(x) =
{
θ

λ

( βγ −
(
β − 1

)γ
βγ −

(
β − exp(−x)

)γ )λ
}
− θ

λ
. (10)

3. Mixture Representation

The quantity
(
β − exp(−x)

)γ
can be expressed as

γ∑
k=0

(−1)k
(
γ

k

)
βγ−k exp(−xk).
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More so, the quantity
(
βγ −

(
β − exp(−x)

)γ)λ+1
can be expressed as

γ∑
k=0

λ+1∑
p=0

(
−1
)p(k+1)(λ+ 1

p

)(
γ

k

)p
βλ(γ+1)+p(γ−λ−k) exp(−xkp).

Thus, inserting these expressions into Equation (6) and after some algebraic sim-
plification we expanded Equation (6) as

f(x) =

γ∑
k=0

λ+1∑
p=0

γ−1∑
i=0

(γ − 1)!
(γ − i− 1)!i!θ γ exp

(
−x
) (

βγ −
(
β − 1

)γ)λ(
−1
)i−p(k+1)

× exp
(
−xi

)
am+jβ

(
γ−i−1

)
−
(
λ(γ+1)+p(γ−λ−k)

)
exp
(
xkp

)
× exp

(
θ

λ

{
1−

( βγ −
(
β − 1

)γ
βγ −

(
β − exp(−x)

)γ )λ
})

, (11)

where

aj =
[ (λ− p+ 1)!p!

(λ+ 1)!

]
and am =

[ (γ − k)!k!
γ!

]p
.

Expanding the binomial terms, we have

f(x) =

γ∑
k=0

λ+1∑
p=0

γ−1∑
i=0

υi,k,p exp

(
−x Dikp −m

(
βγ −

(
β − e−x

)γ)−λ)
, (12)

where

υi,k,p =
(γ − 1)!

(γ − i− 1)!i!θ γ
(
βγ −

(
β − 1

)γ)λ(
−1
)i−p(k+1)

am+j

×β−
(
λ(γ+1)+p(γ−λ−k)

)
+
(
γ−i−1

)
exp(

θ

λ
).

Dikp =
(
i− kp+ 1

)
,

m =
θ

λ

( 1

βγ − (β − 1)γ
)−λ

.

4. Mathematical Properties

This section investigates some statistical properties of the G-EGE distribution.
This includes quantile and random number generation, Skewness, Kurtosis and
order statistics. These structural properties of the G-EGE distribution can be
computed effi ciently by using programming softwares like R, Mathematical, Maple
and Matlab.
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4.1. Quantile function and random number generation. Let X be a random
variable such that X ∼ G− EGE(θ, β, γ, λ). Then, the quantile function of X for
p ∈ (0, 1) is obtained by inverting Equation (7) as

xp = − log
[
β −

(
βγ −

(
βγ −

(
β − 1

)γ)(
1− λ

θ
log
(
1− p

))− 1
λ

) 1
γ
]
. (13)

Setting p = 0.5 in Equation (13) gives the median M of X as

x0.5 = − log
[
β −

(
βγ −

(
βγ −

(
β − 1

)γ)(
1− λ

θ
log
(
0.5
))− 1

λ

) 1
γ
]
0 < p < 1. (14)

Simulating the G-EGE random variable is flexible. If U is a uniform variates
on the interval (0, 1), then the random variable X = xp at p = U follows the
xp ∼ G− EGE(θ, β, γ, λ) of Equation (6).
However, the 25th and 75th percentile for the random variable X are obtained

as

x0.25 = − log
[
β −

(
βγ −

(
βγ −

(
β − 1

)γ)(
1− λ

θ
log
(
0.75

))− 1
λ

) 1
γ
]
, (15)

x0.75 = − log
[
β −

(
βγ −

(
βγ −

(
β − 1

)γ)(
1− λ

θ
log
(
0.25

))− 1
λ

) 1
γ
]
. (16)

4.2. Skewness and Kurtosis. The Bowleys formula for coeffi cient of skewness is
given as

Sk =
x0.75 − 2x0.5 + x0.25

x0.75 − x0.25
.

However, the Moors formula for coeffi cient of kurtosis is given as

Ks =
x0.875 − x0.625 − x0.375 + x0.125

x0.75 − x0.25
.

4.3. Order statistics. Let X1, X2, · · · , Xn be a random sample of size n of the
fAPEGE(x) distribution and X(1), X(2), · · · , X(n) be the corresponding order sta-
tistics. Then, probability density function of the ith order statistics Xk, say fk(x)
is expressed as

gk(yk) =
n!(

k − 1
)
!

(
nk

)
!

[
FG−EGE(yk)

]k−1
fG−EGE(yk)

[
1− FG−EGE(yk)

]k−1
.

(17)
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We can write

gk(yk) =
n!(

k − 1
)
!

(
nk

)
!

×
[
1− exp

(
θ

λ

{
1−

( βγ −
(
β − 1

)γ
βγ −

(
β − exp(−x)

)γ )λ
})]k−1

×
γ∑
k=0

λ+1∑
p=0

γ−1∑
i=0

υi,k,p exp

(
−x
(
i− kp+ 1

)
+
θ

λ

{
1−

( βγ −
(
β − 1

)γ
βγ −

(
β − exp(−x)

)γ )λ
})

×
[
exp

(
θ

λ

{
1−

( βγ −
(
β − 1

)γ
βγ −

(
β − exp(−x)

)γ )λ
})

)

]n−k
.

(18)

The order statistics for the G-EGE distribution can be obtained as follows:

• The minimum order statistics is obtained for k = 1.
• The median is obtained when k = m = 1, given n is odd expressed as
n = 2m+ 1.

• The maximum order statistics is obtained for k = n for even n expressed
as n = 2m.

5. Parameter Estimation

Several approaches have been employed for parameter estimation in literature. In
this article, the maximum likelihood method was adopted to obtain the parameters
of the G-EGE. Let x = (x1, . . . , xn) be a random sample of the G-EGE model with
unknown parameter vector θ = (θ, β, γ, λ)T . Then, the log-likelihood function ` of
the G-EGE distribution can be expressed as

` = n log θ+n log γ−
n∑
i=1

xi+nλ log z−
(
λ+1

) n∑
i=1

si+

n∑
i=1

θ

λ

{
1−
(
z

si

)λ}
, (19)

where

z = βγ −
(
β − 1

)γ
and s = βγ −

(
β − exp(−x)

)γ
However, the partial derivative of the ` with respect to each parameter is given as

∂`

∂θ
=
n

θ
+
1

λ

n∑
i=1

{
1−

(
z

si

)λ}
, (20)

∂`

∂γ
=
n

γ
+
nλz′γ
z
−
(
λ+ 1

) n∑
i=1

s′γ −
n∑
i=1

θ

{
zλ−1z′γs

−λ
i − zλs

−λ−1
i s′γ

}
, (21)
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∂`

∂λ
= n log z −

n∑
i=1

si −
nθ

λ2
+

n∑
i=1

{
θ

λ2

(
z

si

)λ
− θ

λ

(
z

si

)λ
ln

(
z

si

)}
, (22)

∂`

∂β
=

nλγ

(
βγ−1 −

(
β − 1

)γ−1)
βγ −

(
β − 1

)γ − γ
(
λ+ 1

) n∑
i=1

(
βγ−1 −

(
β − exp(−x)

)γ−1)

−
n∑
i=1

γθ

(
zλ−1s−λi

(
βγ−1 − (β − 1)γ−1

)
− zλs(λ+1)i

(
βγ −

(
β − exp(−x)

)γ−1))
,

(23)

where

z′γ =
∂z

∂γ
; s′γ =

∂s

∂γ
.

The solution to the vector is obtained analytically using Newton-Raphson algo-
rithm. Software like MATLAB, R, MAPLE, and so on could be used to obtain the
estimates.

5.1. Simulations study. A simulation is carried out to test the flexibility and
effi ciency of the G-EGE distribution. Table 1 shows the simulation for different
values of parameters for the G-EGE distribution. The simulation is performed as
follows:

• Data are generated using

x = − log
[
β −

(
βγ −

(
βγ −

(
β − 1

)γ)(
1− λ

θ
log
(
1− p

))− 1
λ

) 1
γ
]
, 0 < p < 1

• The values of the parameters are set as follows: γ = 1.5, θ = 1.3, λ = 1.5,
and β = 2.0

• The sample sizes are taken as n = 50, 100, 150, 250 and 350.
• Each sample size is replicated 1000 times.

The bias is calculated by (for S = â, b̂, α̂, λ̂,)

B̂iasS =
1

1000

1000∑
i=1

(
Ŝi − S

)
.

Also, the MSE is obtained as

M̂SES =
1

1000

1000∑
i=1

(
Ŝi − S

)2
.

The simulation study investigates the average estimates (MEs), biases, variance,
means squared errors and roots means squared errors. The results are shown in Ta-
ble 1. The results of the Monte Carlo study show that the MSEs and RMSEs decay
towards zero as the sample size increases. This corroborates the first-order asymp-
totic theory. The mean estimates of the parameters tend to the true parameter
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Table 1. A simulation Study of the G-EGE Distribution

Sample size Parameter Average estimate Bias Variance MSE RMSE

50 γ 1.4859 -0.0141 0.1470 0.1472 0.3836
θ 1.2792 -0.0208 0.0299 0.0303 0.1741
λ 1.5913 0.0913 0.1078 0.1162 0.3408
β 2.1554 0.1554 0.3791 0.4032 0.6350

100 γ 1.5168 0.0168 0.0739 0.0742 0.2723
θ 1.3097 0.0097 0.0146 0.0147 0.1211
λ 1.5657 0.0657 0.0775 0.0818 0.2860
β 2.0793 0.0793 0.1920 0.1983 0.4453

150 γ 1.5143 0.0143 0.0549 0.0551 0.2348
θ 1.3153 0.0153 0.0105 0.0107 0.1036
λ 1.5752 0.0752 0.0716 0.0773 0.2779
β 2.0492 0.0492 0.1212 0.1237 0.3517

250 γ 1.5187 0.0187 0.0340 0.0343 0.1853
θ 1.3325 0.0325 0.0065 0.0076 0.0869
λ 1.5665 0.0665 0.0491 0.0535 0.2314
β 2.0381 0.0381 0.0729 0.0743 0.2726

350 γ 1.5135 0.0135 0.0228 0.0229 0.1515
θ 1.3317 0.0317 0.0040 0.0050 0.0706
λ 1.5792 0.0792 0.0416 0.0478 0.2187
β 2.0248 0.0248 0.0501 0.0508 0.2253

values as the sample size increases. This corroborates the fact that the asymptotic
normal distribution provides an adequate approximation of the estimates.

6. Data Analysis

In this section, the flexibility of the newly developed G-EGE model is proven by
means of a real life datasets. The fits of G-EGE model is compared with Weibull
Frechét (WFr), extended generalized exponential (EGE), Weibull alpha power in-
verted exponential (WAPIE), Kumaraswamy Frechét (KFr), transmuted Frechét
(TFr), transmuted Marshall-Olkin Frechét (TMOFr), Kumaraswamy alpha power
inverted exponential (KAPIE), Kumaraswamy inverted exponential (KIE), beta
Lomax (BL), alpha power inverted exponential (APIE) and exponential(E) distrib-
utions. However, these models were chosen base on their relationship that enables
us make effective and effi cient conclusion about their test statistics.
The following criteria were used to determine the best fit: Akaike Information

Criteria (AIC), Consistent Akaike Information Criteria (CAIC), Bayesian Infor-
mation Criteria (BIC), and Hannan and Quinn Information Criteria (HQIC). The
test statistics are given as follows: AIC = −2ˆ̀+ 2k, BIC = −2ˆ̀+ k log(n),
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CAIC = −2ˆ̀+ 2kn
n−k−1 , HQIC = −2ˆ̀+ 2k log(log(n)), where n is the sample

size, k is the number of model parameters and ˆ̀ is minus twice the maximized
log-likelihood. The model with the lowest values test statistics is chosen as the best
model to fit the datasets.
The first set of data on 1.5 cm strengths of glass fibres were obtained by workers

at the UK National Physical Laboratory was used to compare the performance of
the G-EGE distribution as used by [30], [31], [32], [33], [34], [35] and [36].
The performance of a model is determined by the value that corresponds to the

lowest Akaike Information Criteria (AIC) as the best model. In the real life cases
considered in Table 2, the G-EGE distribution has the lowest AIC value with 37.6.
Figure 3 shows the plots of the estimated densities together with the estimated

cdfs of the models under consideration. These plots show that the G-EGE distrib-
ution produces a better fit than others models.

Figure 3. The plots of empirical estimated pdfs and cdfs of the
G-EGE model

7. Conclusion

The G-EGE distribution has been successfully derived. The basic statistical
properties of the G-EGE distribution such as the order statistics, cumulative hazard
function, reversed hazard function, quantile, median, hazard function, odds function
have been successfully established. The G-EGE distribution was also explicitly
expressed as a linear function of the exponential distribution. The order statistics
of the proposed distribution was also derived. A simulation study of the proposed
model was also illustrated. The simulation shows that the shape of the proposed
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Table 2. Performance rating of the G-EGE distribution with
glass fibers dataset

D is t r ib u t io n P a r am e t e r M L E s A IC C A IC B IC H Q IC W A

θ̂ = 0.0085

λ̂ = 3.5696
G -E G E 37.6 38.3 46.2 41.0 0.14 0.84

β̂ = 8.6251
γ̂ = 0.1765

α̂ = 0.0207

β̂ = 10.0442
We ib u l l Fr e ch é t 3 9 .3 3 9 .7 4 7 .6 4 2 .4 0 .2 6 1 .4 2

â = 0.4430

b̂ = 0.3690

α̂ = 0.0058

β̂ = 4.9797
We ib u l l A lp h a P ow e r In v e r t e d E x p o n e n t ia l 3 9 .6 4 0 .2 4 8 .1 4 2 .9 0 .2 7 1 .4 6

λ̂ = 0.3655
γ̂ = 2.0357

α̂ = 2.1160

β̂ = 0.7401
K um a ra sw am y Fr e ch é t 4 7 .6 4 8 .3 5 6 .2 5 1 .0 0 .2 6 1 .4 2

â = 5.5043

b̂ = 857.3434

â = 1.04428

b̂ = 19.3039
K um a ra sw am y A lp h a P ow e r In v e r t e d E x p o n e n t ia l 5 2 .7 5 3 .4 6 1 .3 5 6 .1 0 .5 1 2 .7 7

ĉ = 7.4277
α̂ = 0.0021

α̂ = 3.0232

K um a ra sw am y In v e r t e d E x p o n e n t ia l λ̂ = 163.2152 5 3 .4 5 3 .8 5 9 .9 5 6 .0 0 .5 1 2 .8 3
β̂ = 2.6961

α̂ = 0.6524

β̂ = 6.8744
Tra n sm u t e d M a r s h a l l -O lk in Fr e ch é t 5 6 .5 5 7 .2 6 5 .1 5 9 .9 2 .5 0 3 .1 0

λ̂ = 376.2684
γ̂ = 0.1499

α̂ = 18.1737

β̂ = 26.7645
B e t a L om a x 5 6 .8 5 7 .5 6 5 .4 6 0 .2 2 .5 4 3 .2 0

â = 10.8769

b̂ = 0.0329

α̂ = 1.3068

Tra n sm u t e d Fr e ch é t β̂ = 2.7898 1 0 0 .1 1 0 0 .5 1 0 6 .6 1 0 2 .7 0 .9 9 4 .2 8
λ̂ = 0.1298

α̂ = 0.5128

G β̂ = 0.5009 1 4 1 .4 1 4 1 .6 1 4 5 .6 1 4 3 .1 2 .0 2 3 .4 2
α̂ = 144.0791

β̂ = 0.0550
E x t e n d e d G e n e r a l i z e d E x p o n e n t ia l 1 4 5 .3 1 4 5 .9 1 5 3 .8 1 4 8 .6 0 .9 9 4 .2 5

λ̂ = 137.8711
γ̂ = 7.994

E x p o n e n t ia l λ̂ = 0.6637 1 7 9 .6 1 8 1 .8 1 8 5 .9 1 7 9 .7 1 .0 0 4 .2 9
α̂ = 53.5634

A lp h a P ow e r In v e r t e d E x p o n e n t ia l λ̂ = 0.3509 1 9 6 .3 1 9 6 .5 2 0 0 .6 1 9 8 .0 0 .7 8 4 .2 4

distribution could be inverted bathtub or decreasing (depending on the value of the
parameters). The new distribution was applied to a real life data. It shows that
the G-EGE distribution performed better than some existing models in literature.
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