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Abstract: In order to explain the dependency structure of random variables, copula functions are frequently
used in areas such as insurance, actuarial and risk. In addition, the concept of risk aversion can be considered
as a decision making parameter and insurance companies can calculate the risk premium by taking advantage
of this parameter. In this study, risk aversion coefficient and risk premium based on utility copulas were
calculated for dependent bivariate risks. For this, bivariate risk aversion coefficient and risk premium vector
of the utility copula defined in Kettler (2007) [16] were found. Numerical results are presented in tables and
graphs for various dependency parameter values.
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1. Introduction
In this study, it is aimed to find bivariate risk aversion functions and risk premiums for utility

copulas based on utility functions under dependency conditions [16]. First of all, bivariate risk
aversion and risk premium functions based on this utility copula model were obtained. Then, the
changes of the risk premiums according to different dependency parameters were examined. Finally,
the numerical results are presented and interpreted with tables and graphs.

The utility function is often used in the modelling of risky alternatives in many areas such as
economics [8], finance [12] and insurance [9, 10]. It is also utilized as a tool for decision making in
portfolio preference, fund preference and securities investments [27]. Thus, each decision maker may
be considered to have a utility function which expresses his or her own preferences [7]. Eeckhoudt
et al. examined the future state of wealth and health conditions associated with the utility function
by looking at the current savings of individuals [14]. Denuit et al. provided optimal solutions for
the bivariate utility function and related associated financial risks [11].

The utility function forms the basis of the expected utility theory. If a decision maker’s prefer-
ences related to risky alternatives provide the axioms of the expected utility theory (completeness,
reflexivity, transitivity, monotonicity, continuity, independence), the choices of this decision maker
can be represented by a utility function.

However, Tasdemir [26], particularly asserts that this theory is not sufficient to provide some
axioms of interrelated risky preferences showed on Ellsberg and Allais paradox examples. In this
case, for the first time, Kettler [16] stated that utility copulas could be used to explain the depen-
dency structure of the related risky preferences. Then, in the literature, Archimedean utility copulas
[1] and utility copula construction methods [3] related studies were conducted.
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In the field of risk management and insurance, it is very important to determine the risk pre-
miums and risk aversion to make the right decision among the related risky choices [15]. Risk
aversion is a basic parameter that determines how much benefit is provided from a property or
money [28]. On the other hand, the risk aversion measure helps to determine the least risky choice
for a decision-maker who has to choose among risky preferences.

The measure of risk aversion can be determined by the utility function and utility copula. The
first studies in the literature were performed according to the utility function. Arrow [5, 6] and
Pratt [22] described a measure of the univariate risk aversion according to the univariate utility
function. Duncan [13] obtained the univariate risk premium by using the bivariate risk aversion
function based on the bivariate utility function. In the literature, there are also other studies related
on univariate and bivariate risk aversion coefficients [7, 20, 21, 23, 25, 28].

In the literature, there are very few studies on risk aversion measures based on utility copulas.
In one of these studies Kettler [16] gave the methods of construction utility copula. Then, for the
first time, Abbas [1] referred to the risk aversion measures based on utility copulas for dependent
risks. There are also his other studies on this subject [2, 3, 4].

On the other hand, in reality, there is a need to calculate the correct risk premiums for dependent
risks. Therefore, in this paper, we study bivariate risk aversion and risk premium inferences using
the utility copula model introduced by Kettler [16] for the dependency structure of the risks.

The definitions of utility function and utility copula are given in Section 2 of the paper. The
bivariate risk aversion and risk premiums based on the utility copula are also defined in Section
2. Section 3 concludes the inferences of bivariate risk aversion and risk premium for logarithmic
utility copula function in the literature. In the same section, numerical results obtained for various
dependency parameter values are presented and interpreted with some tables and graphs. Finally,
a brief summary of the paper and some evaluations are included in Section 4.

2. Preliminaries
In this section, firstly, the methods of constructions of the utility copulas are introduced by

utility functions. Then the definitions related to bivariate risk aversion measures and risk premiums
using utility copula are given.

Copulas are often used to model dependence among dependent random variables in actuarial
and finance areas [18]. When the marginal distributions don’t have normal distribution, it is an
important statistical tool to identify the relationship between the dependence risk groups. In addi-
tion, when the dependency is modelled with copula functions, it is not necessary to know the joint
distributions of the variables. Because of these advantages, it has many real applications [17].

Copula function was first defined by Sklar [24] as follows: H(x, y), a two-dimensional continuous
distribution function with marginals F and G, can be expressed by H(x, y) = C(F (x),G(y)) and
there exists a unique bivariate copula C : [0,1]2→ [0,1] [21].

Utility functions are often used in risk and actuarial applications to make appropriate decisions
under uncertainty. On the other hand, it is an important tool for calculating some risk quantities
such as risk aversion, risk seeking and risk premiums [11].

A set of bivariate utility functions is given as follows:

U =
{
u (x, y)∈C2 :A= [a,∞)× [b,∞)→R}

when ∂u
∂x
> 0, ∂u

∂y
> 0, ∂

2u
∂x2
< 0, ∂

2u
∂y2
< 0, ∂2u

∂x∂y
= ∂2u

∂y∂x
< 0, ∂

2u
∂x2

∂2u
∂y2
− ∂2u

∂x∂y
∂2u
∂y∂x

> 0.
Depending on the utility function, bivariate utility copula C(u, v) is defined by Kettler [16] as

follows:

C (u, v) =−u (u−1
1 (u+ k) ,u−1

2 (v+ k)
)
+(u+ k)+ k > 0, u (x, y)∈R2 (2.1)
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where u1 (x) = u(x, b) and u2 (y) = u(a, y) are marginal utility functions and u (a, b) = u1 (a) =

u2 (b) = k.

Bivariate risk aversion matrix is defined by the equation (2.2) depending on the utility copula

given in equation (2.1) [1].

RA= rij =−
[ r11

r1

r12
r1

r21
r2

r22
r2

]
, i, j = 1,2 (2.2)

where components of RA are found as rij = ∂
2C(u, v)/∂u∂v, rji = ∂

2C(u, v)/∂v∂u for i �= j and

rii = ∂
2C(u, v)/∂u2, rjj = ∂

2C(u, v)/∂v2 for i = j. Also marginal copula functions are found as

r1 =
d
du
C (u, v) and r2 =

d
dv
C (u, v).

Also in RA, the partial derivatives r1 and r2 are positive and the sign of RA is based on the

sign of the second derivatives that is rij , i= 1, 2 , j = 1, 2. If the copula function is a concave

function of u and v, the risk aversion function RA is positive, so the decision maker is a risk averse.

If the copula function is a convex, risk aversion function RA is negative and decision maker is a

risk seeking [1].

Risk premium refers to the net premium amount calculated to cover the possible loss amount

and the number of losses. The approximately bivariate risk premium vector is given by Duncan

[13] as follows:

π=
1

2
diag[(RA)Σ] (2.3)

where Σ=

[
σ11 σ12

σ21 σ22

]
is variance-covariance matrix of risks. If a decision maker is risk averse (RA>

0), he will agree to pay more premiums (π > 0). If a decision maker is a risk seeking (RA< 0), he

will keen to pay less premiums (π < 0).

In other words, the statistical premium is an increasing function of risk aversion [19]. That is,

the more a decision maker wants to be risk aversion, the more risk premium should agree to pay.

3. Risk aversion matrix and risk premium vector for utility copula

In this section of the study, the bivariate risk aversion matrix and risk premium vector are

obtained for logarithmic substitution utility copula function given in Kettler [16]. Accordingly,

here the logarithmic substitution utility function, u(x, y) and utility copula, C(u, v) are defined as

following, respectively:

u(x, y) = ln(x+ y− 1), (x, y)∈ [1, ∞)
2

(3.1)

and

C (u, v) = (u+ v− (ln(eu + ev − 1)), (u, v)∈ (0,∞)
2
. (3.2)

Here, utility copula model given in equation (3.2) is derived using equation (2.1) for logarithmic

utility function, u(x, y) in equation (3.1). In addition, the copula function defined in equation (3.2)

is extended to a one-parameter copula family as follows:

Cθ (u, v) =
(
uθ + vθ− ln(eu

θ

+ ev
θ − 1)

)1/θ

, (u, v)∈ (0,∞)
2
, θ ∈ (0,∞) . (3.3)
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In this study, we obtain the risk aversion matrix (RA) and risk premium vector (π) for the

copula model given in equation (3.3) as follows:

RAθ=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

θeu
θ
uθ−1

k1
+

(θ−1)uθ−1
(
ev

θ−1

)
k1[Cθ(u,v)]θ

− (θ−1)

u
vθ−1

k1

(
θeu

θ
ev

θ(
ev

θ−1
) − (θ−1)

(
eu

θ−1

)
[Cθ(u,v)]θ

)

uθ−1

k1

(
θeu

θ
ev

θ(
eu

θ−1
) − (θ−1)

(
ev

θ−1

)
[Cθ(u,v)]θ

)
ev

θ
vθ(−θ([Cθ(u,v)]θ−1)−1)

vk1[Cθ(u,v)]θ
+

(θ−1)k1([Cθ(u,v)]θ−vθ)−θev
θ
v2θ

vk1[Cθ(u,v)]θ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

π=
1

2k1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ11
u

(
eu

θ
uθ +(θ− 1)

(
uθ

(
ev

θ−1

)
[Cθ(u,v)]θ

− k1

))
+σ21v

θ−1

(
(θ−1)

(
eu

θ−1

)
[Cθ(u,v)]θ

− θeu
θ
ev

θ(
ev

θ−1
)
)

−σ22
v

(
(θ−1)

(
eu

θ−1

)
([Cθ(u,v)]θ−vθ)

[Cθ(u,v)]θ
+ ev

θ
(θ (1− vθ)− 1)

)
+σ12u

θ−1

(
θeu

θ
ev

θ(
eu

θ−1
) − (θ−1)

(
ev

θ−1

)
[Cθ(u,v)]θ

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Here, k1 = e
uθ

+ ev
θ − 1 abbreviations are used. Now, we examine risk aversion matrix and risk

premium vector for two case by θ= 1 and θ= 2. In addition, we give the samples for independent

(σ12 = 0, σ21 = 0), semi-dependent (σ12 = 0.5, σ21 = 0.5) and fully-dependent (σ12 = 1, σ21 = 1).

Case 1: Risk aversion matrix and risk premium vector for θ=1

RAθ=1 =

⎡
⎣ eu/(eu + ev − 1) −euev/(ev − 1)(eu + ev − 1)

−euev/(eu− 1)(eu + ev − 1) ev/(eu + ev − 1)

⎤
⎦

πθ=1 =−1

2

⎡
⎣ (eu/(ev − 1))((σ21e

v −σ11(e
v − 1))/(eu + ev − 1))

(ev/(eu− 1))((σ12e
u−σ22(e

u− 1))/(eu + ev − 1))

⎤
⎦
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Table 1. Risk premium vector values of Cθ(u, v) copula with θ = 1

θ= 1 σ12 = 0, σ21 = 0 σ12 = .5, σ21 = .5 σ12 = 1, σ21 = 1
u v π11 π21 π11 π21 π11 π21

0.1 0.1 0.4566 0.4566 −1.9423 −1.9423 −4.3411 −4.3411
0.3 0.3798 0.4639 −0.3529 −1.9733 −1.0855 −4.4105
0.5 0.3151 0.4700 −0.0853 −1.9995 −0.4857 −4.4691
0.7 0.2608 0.4752 0.0018 −2.0215 −0.2572 −4.5182
0.9 0.2155 0.4795 0.0339 −2.0399 −0.1476 −4.5592

0.3 0.1 0.4639 0.3798 −1.9733 −0.3529 −4.4105 −1.0855
0.3 0.3971 0.3971 −0.3689 −0.3689 −1.1350 −1.1350
0.5 0.3377 0.4125 −0.0914 −0.3832 −0.5206 −1.1790
0.7 0.2856 0.4260 0.0019 −0.3958 −0.2817 −1.2176
0.9 0.2402 0.4377 0.0378 −0.4067 −0.1646 −1.2512

0.5 0.1 0.4700 0.3151 −1.9995 −0.0853 −4.4691 −0.4857
0.3 0.4125 0.3377 −0.3832 −0.0914 −1.1790 −0.5206
0.5 0.3588 0.3588 −0.0971 −0.0971 −0.5531 −0.5531
0.7 0.3096 0.3782 0.0021 −0.1024 −0.3054 −0.5830
0.9 0.2652 0.3956 0.0418 −0.1071 −0.1817 −0.6099

0.7 0.1 0.4752 0.2608 −2.0215 0.0018 −4.5182 −0.2572
0.3 0.4260 0.2856 −0.3958 0.0019 −1.2176 −0.2817
0.5 0.3782 0.3096 −0.1024 0.0021 −0.5830 −0.3054
0.7 0.3326 0.3326 0.0023 0.0023 −0.3281 −0.3281
0.9 0.2899 0.3541 0.0456 0.0024 −0.1986 −0.3493

0.9 0.1 0.4795 0.2155 −2.0399 0.0339 −4.5592 −0.1476
0.3 0.4377 0.2402 −0.4067 0.0378 −1.2512 −0.1646
0.5 0.3956 0.2652 −0.1071 0.0418 −0.6099 −0.1817
0.7 0.3541 0.2899 0.0024 0.0456 −0.3493 −0.1986
0.9 0.3138 0.3138 0.0494 0.0494 −0.2150 −0.2150
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Figure 1. Risk premium graphics of Cθ(u, v) copula with θ = 1 and σ12 = 0, σ21 = 0
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Figure 2. Risk premium graphics of Cθ(u, v) copula with θ = 1 and σ12 = .5, σ21 = .5
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Figure 3. Risk premium graphics of Cθ(u, v) copula with θ = 1 and σ12 = 1, σ21 = 1

Case 2: Risk aversion matrix and risk premium vector for θ=2

RAθ=2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

1
u
− 2eu

2
u

k1:θ=2
−

u

(
ev

2−1

)
k1:θ=2[C2(u,v)]2

v
k1:θ=2

(
2eu

2
ev

2

(ev2−1)
− eu

2−1

[C2(u,v)]2

)

u
k1:θ=2

(
2eu

2
ev

2

(eu2−1)
− ev

2−1

[C2(u,v)]2

)
ev

2
(1−2([C2(u,v)]2−v2))−2ev

2
v3

k1:θ=2[C2(u,v)]2
+ [C2(u,v)]2−v2

v[C2(u,v)]2

⎤
⎥⎥⎥⎥⎥⎥⎦

πθ=2 =
1

2k1:θ=2

⎡
⎢⎢⎢⎢⎢⎢⎣

σ11
u

(
eu

2
u2 +

(
u2

(
ev

2−1

)
[C2(u,v)]2

− k1:θ=2

))
+σ21v

(
eu

2−1

[C2(u,v)]2
− θeu

2
ev

2

(ev2−1)

)

−σ22
v

((
eu

2−1

)
([C2(u,v)]2−v2)

[C2(u,v)]2
+ ev

2
(2 (1− v2)− 1)

)
+σ12u

(
2eu

2
ev

2

(eu2−1)
− ev

2−1

[C2(u,v)]2

)

⎤
⎥⎥⎥⎥⎥⎥⎦

Here k1:θ=2 = e
u2 + ev

2 − 1, this means that θ= 2 is written in the k1 = e
uθ

+ ev
θ − 1.
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Table 2. Risk premium vector values of Cθ(u, v) copula with θ = 2

θ= 1 σ12 = 0, σ21 = 0 σ12 = .5, σ21 = .5 σ12 = 1, σ21 = 1
u v π11 π21 π11 π21 π11 π21

0.1 0.1 0.0743 0.0743 −2.4136 −2.4136 −4.9015 −4.9015
0.3 0.0686 0.2241 −0.7288 −2.2666 −1.5262 −4.7574
0.5 0.0586 0.3773 −0.3830 −2.1185 −0.8245 −4.6142
0.7 0.0462 0.5360 −0.2322 −1.9659 −0.5106 −4.4679
0.9 0.0336 0.7020 −0.1482 −1.8062 −0.3300 −4.3145

0.3 0.1 0.2241 0.0686 −2.2666 −0.7288 −4.7574 −1.5262
0.3 0.2083 0.2083 −0.5970 −0.5970 −1.4023 −1.4023
0.5 0.1797 0.3546 −0.2732 −0.4651 −0.7261 −1.2847
0.7 0.1436 0.5105 −0.1475 −0.3271 −0.4386 −1.1648
0.9 0.1059 0.6778 −0.0880 −0.1787 −0.2819 −1.0352

0.5 0.1 0.3773 0.0586 −2.1185 −0.3830 −4.6142 −0.8245
0.3 0.3546 0.1797 −0.4651 −0.2732 −1.2847 −0.7261
0.5 0.3121 0.3121 −0.1621 −0.1621 −0.6362 −0.6362
0.7 0.2559 0.4610 −0.0600 −0.0412 −0.3759 −0.5435
0.9 0.1940 0.6288 −0.0244 0.0956 −0.2428 −0.4376

0.7 0.1 0.5360 0.0462 −1.9659 −0.2322 −4.4679 −0.5106
0.3 0.5105 0.1436 −0.3271 −0.1475 −1.1648 −0.4386
0.5 0.4610 0.2559 −0.0412 −0.0600 −0.5435 −0.3759
0.7 0.3913 0.3913 0.0406 0.0406 −0.3101 −0.3101
0.9 0.3087 0.5549 0.0533 0.1628 −0.2021 −0.2292

0.9 0.1 0.7020 0.0336 −1.8062 −0.1482 −4.3145 −0.3300
0.3 0.6778 0.1059 −0.1787 −0.0880 −1.0352 −0.2819
0.5 0.6288 0.1940 0.0956 −0.0244 −0.4376 −0.2428
0.7 0.5549 0.3087 0.1628 0.0533 −0.2292 −0.2021
0.9 0.4592 0.4592 0.1559 0.1559 −0.1473 −0.1473
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Figure 4. Risk premium graphics of Cθ(u, v) copula with θ = 2 and σ12 = 0, σ21 = 0

-2.5

-2

1

-1.5

-1

1

Π
1

-0.5

0.8

(a)

v

0

0.5 0.6

u

0.5

0.4
0.2

0 0

-2

-1.5

-1

-0.5

0

-2.5

-2

1 1

-1.5

-1

0.8 0.8

(b)

Π
2

-0.5

0.60.6

0

uv

0.5

0.40.4
0.2 0.2

0 0

-2

-1.5

-1

-0.5

0

Figure 5. Risk premium graphics of Cθ(u, v) copula with θ = 2 and σ12 = .5, σ21 = .5
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The calculated risk premium vector values for case 1 (θ= 1) and case 2 (θ= 2) are presented in
Table 1 and Table 2, respectively.

In Table 1 and Table 2, the premium coefficients are greater than 0 for the two independent
risks (σ12 = 0, σ21 = 0). This shows that the insurer has a risk-averse attitude towards independent
risks.

In cases the risks are semi-dependent and fully dependent, while the dependence of the risks
increases, there is a decrease in the premium coefficients. This situation shows that insurance of
interdependent risks together will be more advantageous in terms of premium payments. On the
other hand, as the value of the dependency parameter θ increases, in both cases a significant
decrease in the coefficients of premium to be determined for the risks are observed. These results
mean that as the risk dependency increases, the insurance company, who does not wish to take
risks, wants to receive more premiums than the risk holders as much as the determined premium
coefficient.

4. Conclusions
The selection of utility functions and copula models are important in risk management decisions.

Accordingly, the bivariate risk aversion and risk premium can be considered as a decision-maker
in terms of dependent risk groups. In cases the risks are dependent, the bivariate risk aversion
functions created by the utility copula models also become important to decide under uncertainty.

In this study, it is emphasized to create the utility copula by using a known utility function
and then to obtain the risk aversion matrix and risk premium vector by using the utility copula.
For this purpose, risk premium coefficients were calculated for different dependency parameters of
the utility copula, which was selected under the risk of dependent insurance. Accordingly, if an
insurance company has dependent risks, it can determine the premiums to be received from the
risks according to the obtained premium coefficients.
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İSTATİSTİK
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Abstract: Suppose a system fails if the time between two consecutive shocks falls below a fixed threshold
δ ∈N and the lifetime of the system is measured as the time to the occurrence of this event. In this paper, we
consider the interarrival times between (i− 1)-th and i-th successive shocks follow a geometric distribution
with mean 1/pi ,where pi = θpi−1, i = 1,2, . . . , 0 < θ < 1, 0 < p ≤ 1. Under the above considerations, the
distribution of system lifetime is obtained. Probability generating function and than also moments of system
are derived. The proportion estimates of distribution parameters are studied. A numerical example is also
presented by using real data.
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1. Introduction
Shock models have aroused great interest in reliability theory [1]-[9]. Shock models are systems

that experience shocks of random magnitudes at random times. There are three modes of shock
models which are run shock model, extreme shock model and cumulative shock model. In an run
shock model, the amplitudes of a specified number of consecutive shocks are considered a failure
criterion. See, e.g., [3]. For extreme shock and cumulative shock model please see [1]-[3].

Let us consider, a system collapses when the time between two consecutive shocks falls below a
fixed threshold δ. Furthermore, the system’s lifetime is measured as the time to the occurrence of
that event. Such systems called as δ-shock model. Since the δ-shock model take into account the
time between two consecutive shocks instead of magnitudes, it can be considered as a forth mode
in shock models. δ-shock models have been studied by [6]-[9].

Recently, Eryilmaz [9] studied the discrete time release of the δ-shock model. In this model, he
assumed that the shocks occur according to a binomial process at all times and the interarrival
times between successive shocks have a geometric distribution with mean 1/p.

In this paper, we assume that the interarrival times between (i−1)-th and i-th successive shocks
follow a geometric distribution with mean 1/qi ,where qi = 1−θqi−1, i= 1,2, . . . , 0< θ < 1, 0< q≤ 1.
Studying such a geometric model in the context of this delta-shock model can be motivated as
follows: Consider a unit that is subject to a sequence of shocks. Assume that the unit degrades
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