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Some Properties of Generalized Frank Matrices
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Abstract

In this paper, we first introduce a new generalization of Frank matrix which is a lower Hessenberg matrix.
Then, we examine its algebraic structure, determinant, inverse, LU decomposition and characteristic
polynomial.
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1. Introduction
In 1958, Frank [3] defined an n x n matrix I as

n n—1 0 .- 00
n—1 n—1 n—2 -0 0
n—2 n—2 n—2 --- 0 0
F = ) ) ) T I @
2 2 2 0201
| 1 1 1 -1 1]

which is called Frank matrix [4,7]. One can easily generate the elements of matrix ' = [f;;] by the rule:
- n4+1-max(i,j), i>j—2
Fij = { 0, otherwise. 2)

Frank matrix is one of the popular test matrices for eigenvalue routines, because the matrix F has well-conditioned
and poorly conditioned eigenvalues [2,7]. Some properties of the Frank matrix F are reported [2,4] as: The
eigenvalues of the matrix F are real and positive and also come in reciprocal pair, det(F') = 1, the inverse of F is
an upper Hessenberg matrix, LU decomposition of F exists, the characteristic polynomial of F has the recurrence
relation

X (A) = (1= 2) xXno1 (A) = (0= DAxn—s (A),
x1(A) =1—Xand xo (A) = 1= 3A+ A%

Also, Varah [7] gave a generalization of the Frank matrix and showed how to compute its eigensystem accurately.
Frank matrix is also a Max matrix. There are many matrices defined on maximum and minimum concepts.
Some of them have been mentioned by Kili¢c and Arikan [5]. Also, they have introduced new generalizations of
the classical Max and Min matrices and have derived their inverses, LU and Cholesky decompositions and their
inverse matrices.
In this paper, we define a new generalization of the Frank matrix and examine its some properties such as
determinant and LU decomposition.
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2. Structure of Generalized Frank Matrices

Consider the real n-tuple a = (a1, a9, ...,a,) € R". The n-tuple a = (a1, as,...,ay,) corresponds to well-known
circulant, Min and Max matrices

ay az az - Gnp, a ap ap -+ a1 a a2 az -+ Qp

an, ap a2 -+ OGp-1 ap a2 a2 -+ G2 az az az -+ ap
pn-1 Qn a1 -+ Qp-2 | | d1 42 a4z - 43 and a3 az az -0 Ap o

as as a4 e ay ay az a3 et Qp anp ap QAan et Qp

respectively. For more information about the above matrices, please refer to [1,6].

Let us define a new matrix which corresponds to the real n-tuple a = (a1, aq, ..., ay) as follows:
[ a, an_i 0 0 0 0 7
Gp—1 QAp—-1 Gp-—2 0 0 0
Gp—2 Qap—2 Gp-2 Qap-3 - 0 0
Fa - . . . . . . . . (3)
as ag as az et G2 Gy
L ay aq ay aq e a1 Qg i
The elements of the matrix F, = [(f,);] is generated by the rule:
P An4-1—max(i,5) i > ] -2
(fa)is { 0, otherwise. )

When we take a; =i (i = 1,2, ...,n), the matrix F, is reduced to the classical Frank matrix F in (1). So, we call F, as
the generalized Frank matrix. From matrix multiplication, it is easily seen that the matrix F, is factored as

F, = IAPT (5)
where
a1 0 0 0
11 1 a1 as —ay 0 0
0 1 1
P: 7/X: 0 a2
00 - 1 b api—aes 0
0 0 s Ap—1 Ay — Qp—1
and
0 0 0 1
- 0 0 10
I = .
1 0 0
Hence, we have
1 0
0 0 01 1 1 0 0 11 1 0 0 01
0 0 10 0 1 1 0 0 10
F = 0 2 )
1 ... 0 0 oo . 10 00 --- 1 1 - 0 0

00 -+ n—11

for the classical Frank matrix.

Let V,, be a set of all n x n generalized Frank matrices as in (3). The following theorem gives us the algebraic
structure of V,,.
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Theorem 2.1. V,, is an n-dimensional vector space.

Proof. Let Fy = [(fa)ij], Fv» = [(fs)i;] € Vi for a = (a1,a2,...,an), b = (b1,b2,...,b,) € R” and «, S be real
numbers. If D = aF, + fF}, = [d;;], then by equation (4) we have,

R . A Ay 41 —max(i,5) + ﬂbn-‘rl—max(i,j)a 1> 7 — 2
dij = ol fa)ij + Bfo)ij = { 0, otherwise. ©)
Also,

aa + Bb = (aay + Pby,...,aa, + Bb,) = (c1,¢2,...,¢n) = c €R", )

where ¢; = aa; + b; (i =1,...,n). If F, = [(f.):;] € V;, corresponds to the n-tuple ¢ = (c1,¢co, ..., ¢,) , then

(f ) _ Cn4-1—max(i,5)> 1> j -2
e/ 0, otherwise.

Alp41—max(i,j) + an+17max(i7j)7 i> ] —2
0, otherwise.

Hence, considering the equations (6), (7) we get
F. = Faa+,(i’b =afF, +pF, € V,.

Thus, V,, is a subspace of the vector space of all n x n matrices.
Let 1, be an n-tuple such that its sth element is one and the others are zero. For example, 15 = (0,0, 1,0, ...,0).
Then for every Fy, € V,,, we have
Fa = Z asFls
s=1

and the matrices Fy,, Fi,,..., F, are linear independent. Then the n matrices F},, Fi,,..., Fi_ form a basis for V,,.
That is, the dimension of V,, is n.
O

The question is while the matrix F is generalized to the matrix F,, how we can generalize the determinant,
inverse, LU decomposition and characteristic polynomial formulas given in the study of Hake [4]? In the present
paper, we seek answer to this question.

To characterize our results, we use the term ay in this paper. Our readers should know that ag = 0 throughout
this paper.

Next section presents our results.

3. Main Results

Theorem 3.1. The determinant of the n x n matrix Fy is

det (Fo) = [ (ai —ai—1).

i=1

Proof. According to equation (5), we obtain

det(F,) = det(I) det(A) det(P) det(I).

Since det(I) = F1 and det (P) = 1, we get

det(F,) = det(A) =ai(az —a1)(az —az)...(ap — ap-1)
(ai —ai,l).

K2
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Corollary 3.1. Fj, is invertible if and only if a; # a;,—1 for i =1,2,...,n.
Theorem 3.2. Let the matrix (Bg), = (Bij)?; j—1 be the inverse of the n x n matrix F,. Then, we have

1 O
ap—an_1’ t=J=
An42—i P
(ant2—i—any1—i) (Gny1—i—an—i)’ t=1J # 1
1 .
5” _ T Gnt2—i—Gnt1-i’ 1=+ 1
iy —
0, i>j4+1
j—i
1\t Ant1—i—k . .
( 1) Hﬁ“ (@nt1—i—k—an—i—k)’ <y
k=1

where a; # a;—1 (1 =1,2,...,n).

Proof. We use principle of mathematical induction on n. It is clear that the result is true for n = 2, that is,

as ap
F =
and
1 1 —aq
a —a az—ay  (az—ai)ay
(B = —p| 0|2
aza1 — ay —a1 as —1 as
az—a; (az—ai)ax
1 —aq
. az—a;  (az—a1)(a1—ag)
- —1 as
az—a1  (az—a1)(a1—ao)
Assume that the result is true for n — 1, then
1 L

Ap—1—Gp_2"’ i=j=1

Ant1—i .
(ant1—i—an—i) (@n—i—Gn_1-4)’ t=1J 7& 1

1 . .
_ - T AR 1= + 1

(Ba)n—1 = (611)71:11 = i
0, i>j+1
Jj—1
_ Jj—t An—i—k . .
( 1) Hﬁ” Ap—i—k—An—1—i—k t <
k=1

Now, we must show that the result is true for n. Let the matrices F, and (B,),, be partitioned as

All A12 Bll BIQ
Fa = and Ba n — )
[ Ay Az (Ba) Ba1 Bz
where
A = [an] )
Alg = [an,1 0 0 0 ce O] 5
T
Aoy = [ an-1 QAp-2 Gp-3 -+ 042 41 ]
and ~ _
Ap—1 Anp—2 0 0 e 0 O
ap—2 04p—2 Gp-3 0 e 0 0
Gp—3 0ap—-3 Gp-3 0ap—4 " 0 0
A22 =
ao ao ag a2 G2 ax
L ay a1 al a1 oA aq i




174 E.O. Mersin, M. Bahsi & A.D. Maden

Using the assumption, we have /12_21 = (Bg)n—1. Then, the equation
Ar A Biin B2 | _ |1 O
10 I

Agr Az Ba1 Bao
yields
1
—1 —1
Biy = (A1 — A Ay Any) ™ = ———,
Ap — Ap—1
—1
Bz = —Bi1Ai1245;
ria ria a 1 n-l
_ ___Ti1Gn-—1 1n—1An—2 . _1\n— a;
- Ap—1—Gn—2 (an—1—an—2)(an—2—an—_3) (=1)" e 11:11 a;—a;—1
where 1, = —+—,
Ap —Aan—1
T
By = —A5 Ay By = | —— 00 -+ 0
21 = 22 4121011 = p—0n_1
and
—1 —1 —1
B22 = A22 - A22 A21311A12A22
I Toa Toa a 2 n-2 !
_ 20n—2 20n—20n—3 _1\n— a;
Z2 Ap—2—0n—3 (a7172_anf3)(an73_anfél) ( 1) L2 21:11 A;—Qi—1
1 e 3 n—3
- _ _*3%n-3 e —1\— i
Ap—1—Qp—2 3 Qp—3—Qp—4 ( 1) 3 21:[1 a;—a;—1
= N 4 n—4
s — ... —_— n— a7
0 Ap—2—0an -3 $4 ( 1) 1'4 21:[1 a; —Qi—1
| 0 0 0 Tn |
where z, = Ont2-s . Thus,
(ant2—s—ant+1—5)(@nt1—s—an—s)
2<s<n
[ Tri1a ri1a a 1 n-t 1
__TiGn-—1 1Gn—10n—2 _1\n— a;
1 an—1—an-2 (@n—1—an—2)(an—2—an—3) (=1) 1 zl:ll ai—a;—1
1 zoa 5 n—2
[ S __*20n—-2 A —1\)"— ai
Ap—Qn—1 L2 Anp—2—0n-3 ( 1) 2 il:ll ;i —ai—1
(Ba)n = 1 3 n—3
[ S ce —1\— a;
0 ap—1—0Qn—2 3 ( 1) 3 41_[1 a;—a;—1
i=
0 0 0 T

Theorem 3.3. The LU decomposition of F, exists for all n. Its factors L = (1;;) and U = (u;;) are given by

n, t=7=1
0, i<J s e R
lij = " 1, 1= and Ujj = ) )
n+l—1q s . S —
Ty otherwise An_i, 1=45—1
0, otherwise.

Proof. Matrix multiplication yields the result.
Theorem 3.4. The characteristic polynomial of F, satisfies the recurrence relation
PoA)=A—an+an-1)Po1(N) —an_1APr—2(N),
Py(N) =X —agand Py(\) = A\ — (a1 + a2) A + ayas — a?.
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Proof. For the characteristic polynomial of F,,, we have

A — Qp, —Aanp—1 0 0
—Qp—1 A— an—1 —Qp—2 0
—anp—-2 —ap—2 A— ap—2 0
Py, ()‘) -
—Aas —a9 —asg A — a9
—ax —ai —ax —ax
A— an—1 —Qp—2 0
—0n—2 A— Ap—2 —Qp—3
—an-3 —anp-3 A— Gp—3
=A\—ay)
—asz —az —asz
—aq —aq —ay
—0an—-1 —anp—2 0
—0n—2 A— Qp—2 —an-3
—0n-3 —0n-3 A— Qp—
+ (an-1)
—a9 —a9 —ao
—ai —ai —a

The first determinant of the right hand side of the last equality corresponds to the P,_1()). Let g()\) denotes the

second determinant of the right hand side of the last equality. Then,

A— Gn—1
—an—-2
—an-3

—as
—aq

Thus, we have

P(})

Also, itis clear that P; (A\) = A — a3

Theorem 3.5. Let P, (\) = A" + v
Then,

n

(”)1 )\n—l +

—Q0p—2
A— Gp—2
—an-3

0
0

Pn—l(A) - )‘Pn—2()‘)'

0
—Qan—3
A— ap—3

o

—ay
A — aq

o

A — a9
—a

3

o

—a
A — al

A —

—a

o

—a
A— a1

o o

A — ag
—ay

o

a2
1

()\ — G,n)Pn_l(/\) + an_l(Pn_l(/\) — /\Pn_g()\))
()\ — ay, + an,l) P,_1 ()\) — Ap_1APp_2 ()\) .

and P, (\) = A2 — (a1 + az) A + a1as — a3.

n n—1 n
’Y(g )= (an—l - an)'}/(() = (_1) det(Fa)7
=2l — 0 = —tr(EL)
and 1 1 2
A =4 (@1 = an) 7Y = n 7Y

are valid for 1 <i <mn —2.

—ay
A — aq

o o

—ay

)\70,1

A+ 7((,") be the characteristic polynomial of the n x n matrix Fy,.
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Proof. By using the recurrence relation in Theorem 3.4 and the coefficients of P, ()), P,—1()) and P,,_2()), we have

AT A A = (A= an )T SN PN 4 Y)

_anfl)\()\n_2 + fy1(177'_;2))\n—3 + o+ fy§n*2))\ + ,yén72))

Comparison of the coefficients yields the desired formulas. Also, we have

and

’7((Jn) = (an-1— an)V(gnil) = (an-1 —an)(an—2 — anfl)'y(gniz)
= = () ] (i ar) = (1) det(F)
=1
AW =AY —an =AY e —an == (@ Fag o Fan) = —tr(F).

4. Conclusion

In this paper we introduced a new generalized Frank matrix. Then, we examined its algebraic structure,

determinant, inverse, LU decomposition and characteristic polynomial. We showed that the determinant, inverse,
LU decomposition and characteristic polynomial formulas of the generalized Frank matrix are the general forms
those of classical Frank matrix. When we take a; = ¢ (i = 1,2, ...,n), our results are reduced the results of Hake [4].
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