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ABSTRACT 

 
Microalgal lipid is a major natural feedstock for biodiesel production. However, microalgae-based biofuel technology 
comes with obstacles to production, such as high investment and operating costs. To overcome these problems, 
nowadays some strategies have been used during cultivation stage of the microalgae for enhancing biomass and 
accumulate lipids and carbohydrates which could be used for biofuel production. The most common methods applied 
to microalgae are classified as nutrient stress and changes in growth conditions that lead to increase the lipid content 
in the species without decreasing the growth rate of their potential strains or by simultaneously increasing both of 
these. Scenedesmus sp. are considered to be the most appropriate microalgae to culture commercially due to their high 
biomass, lipid and carbohydrate yield. The purpose of this review was to describe nutrient stress strategy to develop 
biofuels as a sustainable alternative to fossil fuels and, in particular, with respect to nitrogen nutrient limitations, the 
lipid yield and biomass development in Scenedesmus sp. microalgae. The nitrogen starvation/limitation strategy that 
will increase the general economic feasibility of microalgal lipid production and affect the fatty acid composition was 
presented. 
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1. INTRODUCTION 

 
Biofuels have been considered to be a clean 
alternative to fossil fuels in recent years because of 
their sustainability, nontoxicity, biodegradability, and 
low greenhouse gas emissions [1-3]. Microalgae have 
a 30% lipid content, which is higher than that in either 
palm oil or soybean oil, which are currently used in 
biodiesel production (<5% of dry biomass) [4, 5]. The 
lipid content in microalgae varies from 20 to 40% on a 
dry-weight basis; whereas, some microalgae have 
lipid contents as high as 85% [6, 7]. Microalgae offer 
many advantages over traditional oil crop biofuels 
and chemicals of high value because of their 
properties of high lipid productivity and 
photosynthetic efficiency, robust environmental 
adaptation, failure to compete with nutrients or 
arable lands, rapid fixation of environmental carbon, 
and ease of cultivation in media similar to wastewater 
and other media [8]; however, the biggest obstacle to 
obtaining biofuels from algae is the high cost of 
biodiesel production from oleaginous microalgae and 

the need for and cost of pilot-scale studies [9, 10]. 
Optimizing the conditions under which microalgae 
strains can be cultivated is crucial to creating enough 
lipid production to enable biofuel production on an 
economically significant scale [11]. Stimulating stress 
responses by limiting nutrients and controlling 
cultivation is one of the methods by which the lipid 
content in microalgae can be improved [12-14]. 

Microalgae are rich in tri- and diglycerides, phospho- 
and glycolipids, hydrocarbons, and other lipids [6], 
[15]. Under suitable environmental conditions, 
microalgae synthesize fatty acids to produce 
membrane glycerolipids, mainly glycolipids and 
phospholipids; however, several microalgae alter 
their lipid biosynthetic pathways to produce a large 
amount of neutral lipids in the form of triglycerides 
(TAGs), stored mostly in cytosolic lipid bodies under 
stress conditions [16]. Under these conditions, 
microalgae cell division will stop, and TAGs will be 
stored in their cells as a survival approach to 
withstand these adverse conditions [17]. These TAGs, 
which are generally found in a cell as storage lipids, 
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can be converted into biodiesel [18]. Lipids are stored 
in microalgae cells when accessible nutrients are 
consumed and depleted from a culture medium and 
become growth-limiting factors [19]. In addition, the 
amount and type of lipids are different in different 
species; therefore, the growth and cultivation 
conditions of the microalgae species are altered to 
affect their fatty acids [20]. Scenedesmus sp. is 
considered to be one of the most important 
microalgae for producing biofuel raw material 
because of their high biomass, high lipid and 
carbohydrate content, and ability to grow under 
various wastewater conditions [21]. 

Fatty acid ratios and lipid contents in microalgae 
differ according to environmental and cultural 
parameters, such as nitrogen and phosphorus 
concentrations, light intensity, growth phase, light-
receiving period, temperature, salinity, and carbon 
dioxide (CO2) concentration [22, 23]. Among these, 
nitrogen starvation is the most important technique 
reported in the literature that increases microalgae 

biomass and biochemical components, such as lipids 
and carbohydrates [24]. The purpose of this review 
was to investigate biomass productivity in the 
Scenedesmus sp., a species with a high lipid content, to 
enable improvement of the economic feasibility of 
microalgae-based biofuels and to examine the 
methods by which nitrogen starvation or limitation 
increase the lipid yield and carbohydrate production; 
and also to guide researchers in understanding the 
reaction of Scenedesmus sp. against its cultivation in 
nitrogen-limited nutrient media. 

 
2. MICROALGAE CULTURE CONDITIONS 

 
The growth characteristics and composition of 
microalgae depend largely on four fundamental 
cultivation conditions—photoautotrophic, 
heterotrophic, mixotrophic, and photoheterotrophic 
[25]-[26]. Table 1 provides the characteristics of these 
different conditions. 

Table 1. Characteristics of the different microalgae culture conditions [27] 

Culture conditions Energy source Carbon source 

Photoautotrophy Light 

 

Inorganic  

Heterotrophy Organic carbon Organic  

Photoheterotrophy Light 

 

Organic  

Mixotrophy Light and organic carbon Inorganic and organic  

Microalgae are divided into two groups—autotrophic 
and heterotrophic. Autotrophic microalgae use 
sunlight to convert CO2 into lipids without the need 
for carbon; however, cultivation requires a large area, 
and lipid accumulation is slow [28]. On the contrary, 
heterotrophic microalgae have a high lipid content 
and rapid growth rate and lipid accumulation; 
therefore, they have a high capacity for lipid 
production. Photoautotrophic cultivation, in which 
microalgae utilize inorganic carbon (such as CO2) and 
solar energy to generate chemical energy, is the most 
widespread technique [29]. In heterotrophic 
cultivation, microalgae can grow in the absence of 
light by utilizing glucose and other similar organic 
carbon sources [30]. Although the heterotrophic 
system provides higher lipid output than the 
autotrophic system, the need for organic substrates 
and their cost prevent its industrial-scale production 
and commercialization [31]. 

Mixotrophic cultivation combines both autotrophic 
and heterotrophic systems because both CO2 and 
organic carbon are simultaneously absorbed [32]. In 
photoheterotrophic cultivation, microalgae need both 
organic carbon and light. The difference between the 
two is that photoheterotrophs use light and 
mixotrophs use organic carbon as an energy source.  

When comparing different microalgae species with 
different carbon sources, autotrophs generally have 
satisfactory lipid content, but because their growth 
rate is low, subsequent lipid production efficiency is 
also low. The opposite is true for heterotrophs, in 
which lipid content is low but the growth rate is very 

high, resulting in higher biomass and lipid production. 
Mixotrophs utilize both inorganic and organic carbon 
sources; these conditions result in the highest 
biomass and lipid yield among all cultivation methods 
[14]. 
 

3. MICROALGAL LIPID CLASSIFICATION 
AND ACCUMULATION STRATEGIES  

 
Microalgae-based biodiesel technologies contain the 
conditions that determine optimum microalgae 
growth, define economically feasible and efficient 
culturing media, harvest and separate microalgae 
biomass, and produce biodiesel (Fig 1). Biodiesel 
production from microalgae comprise the following 
four basic steps: isolating and characterizing the 
microalgae, producing microalgae biomass, 
harvesting, and processing [33]. 

Lipids are not only the energy sources in microalgae 
cells but also a promising raw material for biodiesel 
production [37]. When energy input (photosynthesis 
rate) exceeds energy output (cell growth and 
division), microalgae synthesize lipids [38]. These 
microalgae contain refined lipids that can be extracted 
to create fuel oils [39]. There are more than 300,000 
known microalgae species, of which 70% have a high 
lipid content and a fuel yield of 9500–35000 liters per 
1000 m2 [40]. Microalgae have advantages over other 
microorganisms in biofuel production because of their 
greater biomass productivity and ability to 
accumulate high amounts of lipids [42]. 
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Fig 1. Overall process of biodiesel production from microalgae [34-36] 

The biochemical composition of microalgae comprises 
four main components—proteins, carbohydrates, 
nucleic acids in varying ratios among species, and 
lipids. Lipids are the highest energy source at 37.6 kJ 
g-1, which can be either polar or nonpolar, followed 
by proteins at 16.7 kJ g-1 and carbohydrates at 15.7 kJ 
g-1. Depending on the metabolic rate, the ratio of 
these lipids changes during different microalgae 
growth periods [43]. Neutral lipids are composed of 
glycerol and free fatty acids (FFAs) and because of 
their low degree of unsaturation, they are more suited 
for producing biodiesel [44]. Polar lipids, such as 
phospholipids (PL) and glycolipids (GL), are structural 
[45] and are important components of the outer 

membranes of chloroplasts. Nonpolar (neutral) lipids, 
such as TAGs, diglycerides (DAGs), monoglycerides 
(MAGs), FFAs, pigments (e.g., chlorophylls), and 
hydrocarbons, are stored. Algae store lipids 
differently depending on the species, their growth 
periods, and environmental conditions. FFA 
components also vary with different microalgae 
strains. In most cases, polyunsaturated fatty acids 
(PUFAs) are located in the structural lipids, while 
monounsaturated fatty acids (MUFAs) and saturated 
fatty acids (SFAs) are located in the stored lipids [46]-
[48]. Table 2 presents the lipid classifications in 
microalgae. 

Table 2. Lipid classifications in microalgae [49] 

Neutral Lipids 

Polar Lipids 

Glycolipids Phospholipids  

Triglycerides  Phosphatidylcholine Polymerized triglyceride 

Wax esters Phosphatidylethanolamine  Monogalactosyl diglyceride 

Hydrocarbons Phosphatidylserine Digalactosyl diglyceride 

Free fatty acids Phosphatidylglycerol 

  
Sterols   Phosphatidylinositol     

Algae growth has five different phases [50] as follows: 
1) lag or acclimation, 2) logarithmic, 3) decreasing, 4) 
stationary, and 5) death. To obtain the highest 
biomass yield, the growth rate in the media should 
always be within the logarithmic growth phase. The 
highest lipid synthesis takes place during the 
transition between the lag and the stationary growth 
phases (i.e., stages 2 and 3) [51]. 

Microalgae harvested during the stationary phase 
have less polar lipids and more neutral lipids (e.g., 
TAGs) than those harvested during the logarithmic 
growth phase, so harvesting at the stationary phase is 
more suitable for biodiesel production [47]. 

The most well-known lipids are TAGs formed by one 
glycerol and three fatty acids, and PLs (and GLs), 
formed by two fatty acids and one phosphate (and 
carbohydrate). The natural lipids produced by 
microalgae are TAGs, which makes them the main 
focal point because of having the necessary molecular 
structure for biodiesel production [52]. TAG 
molecules function as electron pools when the 
electron supply of energy and carbon storage 
compounds and photosynthesis cannot meet the 
demand of growing cells [47]. The common methyl 
esters used in biodiesels are methyl palmitate (C16:0), 
methyl stearate (C18:0), methyl oleate (C18:1), 
methyl linoleate (C18:2), and methyl linolenate 
(C18:3). In other words, microalgae lipids are 
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generally composed of neutral lipids with a lower 
amount of unsaturation [43], which is the natural fatty 
acid profile of microalgae [53]. The optimum fatty acid 
ratio from microalgae for producing biodiesel is 5:4:1 
for C16:1, C18:1, and C18:2, respectively, which gives 
biodiesel its distinguishing properties, such as high 
cetane number (CN), low iodine value (IV), and low 
cold filter plugging point (CFPP) [11].  

The reaction of fatty acids in 1 mole of triglycerides 
and 3 moles of alcohol during biodiesel production 
yields fatty acid methyl esters (FAME) and glycerol 
(side product) (Fig 2). The glycerol can be separated 
from the biodiesel using phase separation techniques 
or “transesterification”, in which glycerol is displaced 
by methanol in the presence of a catalyst [6].  

 

Fig 2. Algae biodiesel production using transesterification [54] 

The efficiency of lipid production is related to overall 
lipid composition (i.e. percentage of dry cell weight 
[DCW] and biomass yield [daily dry mass growth L-1]), 
which are the two crucial parameters to be 
considered for optimizing overall microalgae lipid 
yield [37]. Without these, reporting lipid content, the 
basic indicator both in terms of yield in unit volume 
and time, would be misleading. For example, a rapidly 
growing species might yield more lipids over a given 
period of time compared to a more lipid-containing 
species [55]. 

Because they contain a high fraction of PUFAs, 
microbial lipids have a large potential as a 
transportation fuel [56]; therefore, to realize higher 
economic performance, the lipid content in the 
microalgae must be higher [57]. Under stressful 
conditions, microalgae tend to accumulate more 
neutral lipids to protect themselves from 
photooxidation [58, 59]. These neutral lipids, 
especially TAGs, are used the most for biodiesel 
production [47].  

There are two main stress types—nutritional and 
physical—exerted on microalgae. Nutritional stresses 
include restrictions on nitrogen and phosphorus or an 
altered source of carbon. Physical stresses are related 
to the processing conditions, such as high light 
intensity, salinity, electromagnetic fields, metals, CO2 
levels, and oxidative stresses [32, 60, 61]. The key 
factors in lipid metabolism in microalgae that increase 
biodiesel yield are as follows: (1) stress can increase 
lipid content; (2) manipulation of the growth media 
can increase biomass yield; (3) some microalgae can 
survive marginal environmental conditions in which 
managing production and preventing contamination 
are easier; (4) lipid metabolism is completely known; 
and (5) some microalgae can also produce valuable 
chemicals, such as astaxanthin, lutein, and β-carotene 
[62].  

Under specific conditions after inducing stresses and 
depending on the species, the lipid content in the 
microalgae can change to between 1 and 90% of their 
dry weight [6]. Table 3 lists the parameters to which 
changes can induce lipid accumulation. 

Table 3. Parameters that affect lipid production in microalgae  [37] 

Physicochemical Properties Species-Dependent Factors Culture System Improvement 

*Light 

  

*Lipid productivity 

 

*Photosynthetic efficiency 

–Intensity 

  

‒Biomass productivity ‒Light penetration 

‒Spectral quality 

 

‒Lipid contents 

 

‒Light distribution 

*Temperature 

 

*Fatty acid profiles 

 

*Mass transfer rate 

‒Reactive oxygen species level 

 

‒Optimal fatty acid ratio ‒Aeration rate 

‒Fatty acid composition *Harvesting method 

 

*Nutrient control 

*Carbon dioxide (CO2) and pH 

 

‒Cell size 

  

‒Semipermeable membrane 

‒CO2 concentration 

 

‒Cell density 

  ‒ Bicarbonate ion (HCO3-) concentration ‒Surface property 

  *Nutrient starvation 

 

‒Medium condition 

  ‒Nitrogen starvation 

(two-stage or continuous nitrogen limitation)   
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The cost of the microalgae-based biodiesel is 
comparable to that of petroleum diesel, and this has 
driven many researchers to study how to increase 
lipid production in microalgae to further decrease the 
cost of producing biodiesel [63-66]. Put simply, by 
following new methods by which high biomass yields, 
the desired lipid content, and the desired lipid 
composition can be generated, the overall efficiency of 
lipid production and other valuable chemicals 
produced by microalgae can increase [16, 43]. 

Because most microalgae accumulate a considerable 
amount of lipids under stress, lipid production can be 
highly efficient under specific conditions leading 
stresses. On the other hand, under these stress 
conditions in which lipids and TAGs are 
biosynthesized, cell growth and biomass yield are 
jeopardized, which also leads to protein 
decomposition and can affect the overall lipid yield 
differently depending on the species [36]. 

General properties of Scenedesmus sp. 

 
The success of mass cultivation of microalgae, 
especially considering a low-value product, such as 
biodiesel, depends on selecting the correct species 
[55]. Even though there are many ways suggested in 
the literature by which to improve lipid production in 
microalgae, if the appropriate species is not used, 
several limitations can arise [37]. Nannochloropsis 
sp., Chlorella sp., Chlamydomonas sp., Scenedesmus 
sp., Dunaliella sp., Isochrysis sp., and Botryococcus 
braunii are multifunctional microalgae that 
accumulate lipids between 10 and 75% of their dry 
weights [21]. Among these, Scenedesmus sp. are 
considered to be the most appropriate microalgae for 
producing biodiesel because of their high biomass, 
lipid and carbohydrate yield and ability to grow in 
various wastewater environments, and short doubling 
time [21, 67, 68]. 
 

 

Fig 3. Scenedesmus sp. (a) Freshwater green microalgae Scenedesmus sp.1, (b) Scanning electron micrographs of S. quadricauda2 
1[69]; 2[70] 

Different Scenedesmus species show differences in the 
number of cell spikes and the texture of their cell 
walls. Morphologic changes in Scenedesmus species 
result from changes in nutrient concentrations, pH, 
and/or allelochemicals [71, 72]. 

 
Nutrient stress 

 
Nitrogen, iron, phosphorus, magnesium, sulfur, and 
silicon are important for photosynthesis, cell division, 
respiration, intercellular transport, and protein 
synthesis in microalgae [73]. In particular, nitrogen 
and phosphorus are the two basic macronutrients for 
microalgae growth. Nitrogen is required for the 
synthesis of growth metabolites and protein, which 
are limiting factors on the overall growth rate, and is 
part of the chemical structure of nucleic acids, 
proteins, and other biomolecules [74]. Theoretically, 
these elements in the microalgae growth media 
should be within a stoichiometric ratio of 
C106H181O45N16P for optimum growth (C for carbon, H 
for hydrogen, O for oxygen, N for nitrogen, P for 
phosphorus). When the nitrogen: phosphorous ratio is 
5:1, the environment is classified as nitrogen limiting, 
and when the ratio is 30:1, the environment is 
phosphorus limiting [43].  

Rapid growth rate increases the biomass yield of 
microalgae, and stress conditions increase their lipid 
contents [75, 76]. Microalgae have a tendency to 
accumulate polysaccharides and/or neutral lipids 
under stress. This defense mechanism is exploited in 
the production of various metabolites; such as neutral 
lipids, carotenoids, and polysaccharides [77]. Fig 4 
illustrates the increase in the lipid content in 
microalgae under different stress conditions.  

While a nutrient efficiency ceases cell growth, it helps 
in channeling metabolic fluxes towards fatty acid 
biosynthesis. It is resulted in accumulation of storage 
lipid in the form of triacylglycerols (TAGs). Under the 
nutrient starvation-driven lipid accumulation concept, 
the activation of diacylglycerol acyltransferase 
enzyme is thought to convert acyl-CoA to triglyceride 
(TAG) that results in lipid accumulation [78].  

A large amount of lipids can be accumulated in 
microalgae under nitrogen-limiting conditions [79]; 
however, the challenge is to find the balance between 
increased lipid production and biomass yield. 
Nitrogen has a huge impact on both processes and is 
directly proportional to biomass yield and negatively 
proportional to lipid content [80]. As a result, both 
high biomass yield and high lipid content cannot be 
attained at concurrently [81]. Stresses adversely affect 
microalgae growth and, in the end, reduce output of 



Environmental Research & Technology, Vol. 2 (3), pp. 158-170, 2019                  Dogdu Okcu 

163 

the desired product; however, doubling the biomass 
yield can reduce biodiesel prices by 41–42% [82]. 
Under nutrient-limiting conditions, microalgae 
relocate their carbon resources into energy-rich lipid 
and starch compounds [79]. The proportion of polar 

and nonpolar lipids can be controlled by changing the 
ratio of nitrogen, phosphorus, and inorganic carbon in 
the growth media [83]. 

 

 

 

Fig 4. Effective lipid production in microalgae under various stress conditions [37] 

 

There are three degrees of microalgae sensitivity to 
the manipulation of nutrient concentration—
starvation, limitation, and depletion. Khozin-Goldberg 
and Cohen [84] presented three possible reasons for 
lipid accumulation under nitrogen starved conditions: 
(1) decreased in cellular content of thylakoid 
membrane, (2) activation of acyl hydrolase and (3) 
stimulation of phospholipids hydrolysis [78, 85, 86]. 
Conventional process biochemistry approaches 
involving nutrient limitation/deprivation or 
physiological stress conditions might be useful for 
enhancing lipid content on dry weight basis. However, 
the increment in lipid content happens at the cost of 
biomass. So, it fails to enhance lipid productivity 
significantly. Therefore, the proportion of lipid 
productivity versus biomass formation remains same 
[78]. In Fig 5, the effects of physico-chemical 
parameters on lipid accumulations was given in a 
microalgal cell factory. As a nitrogen stress condition, 
nitrate starvation was defined in the algal cell. Other 
physico-chemical stress conditions also affect lipid 
accumulation in the algal cell but the probable 
mechanism for lipid accumulation is not known. 
Therefore, the knowledge of the biochemical 
mechanisms and molecular insights for lipid 
accumulation influenced by the environmental 
conditions might be improved by metabolic and 
molecular engineering.  

During starvation, the microalgae are first grown in a 
nutrient-rich environment and then transferred into a 
nutrient-depleted environment. This nutrient 
deficiency results in the generation of high-energy 
compounds and their accumulation. In nutrient-
limited media, one nutrient that limits maximum 
biomass production and induces a physiological 
reaction is limited while the others are abundant. The 
fundamental idea behind this condition is called “the 
law of the minimum”, which assumes that there is 
usually one nutrient lacking in a media and that limits 
biomass growth while all other nutrients are in 

excess. This method is sequentially conducted in a 
culture medium. First, the cells are cultivated in a 
nutrient-rich environment and cell density and 
growth rate increase until the nutrients are depleted. 
Then, with changes in some metabolic processes, 
energy-rich compounds increase and growth rate and 
photosynthesis decrease [43]. 

 
Nitrogen starvation 

 
Nitrogen is not only a significant element found in the 
structure of proteins and genetic material, but also 
one of the most prevalent elements in the entire 
structures, after carbon, hydrogen and oxygen; 
therefore, cells require nitrogen to grow and multiply 
[87]. Nitrogen deficiency in the microalgae growth 
media is applied as either nitrogen depletion or 
limitation (Fig 6). In nitrogen depletion, microalgae 
grow in a media without a nitrogen source; in 
nitrogen limitation, there is a specific nitrogen source 
but it is limited compared to that of other nutrients 
[88]. When nitrogen is limited more than other 
nutrients, photosynthesis will continue, but the 
chemicals produced in microalgae will have less 
nitrogen and be more energy rich (e.g., will contain 
more lipids and carbohydrates). Moreover, when the 
nitrogen in the cell is depleted, microalgae begin to 
decompose nitrogen-containing nonlipid cellular 
chemicals and free the nitrogen [89]. Nitrogen 
deficiency is the cheapest and easiest method by 
which to enhance lipid production; therefore, 
utilization of this method is widespread and is 
trustworthy and effective for many species [83]. 
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Fig 5. Description of physico-chemical parameters leading towards lipid accumulations in a microalgal cell factory. (Probable 
reasons for lipid accumulation: i) Nitrate starvation results in activation of acyltransferases, acylhydrolases and decrease in 
thylakoid membrane cellular content; (ii) Phosphate starvation results in storage lipid accumulation by activation of enzymes 
namely DGTS and DGDG and alteration in phosphate transporter may also lead to TAG synthesis; (iii) Increase in salt and iron 
content results in TAG formation but the exact mechanism is unknown) [78] 

 

 

Fig 6. General overview of nitrogen stress in microalgae culture (Notes: N, nitrogen) [32] 

 

Nitrogen is quantitatively important in growth media 
and its limitation, depending on the species, inhibits 
microalgae growth [90]. Declining cell multiplication 
changes the route through which lipids are 
synthesized from membrane lipids to neutral lipids 
[91]. 

Nitrogen limitation or starvation causes an increase in 
lipid and carbohydrate content while decreasing 
growth rate, protein synthesis, photosynthesis, and 
cell size [92]. Some examples for nitrogen starvation 
effect on lipid production of Scenedesmus sp. were 
shown in Table 4.  Schnurr et al. [93] have researched 
the possibility of increasing the neutral lipid content 
in a nutrient-deficient algae biofilm using S. obliquus 
and Nitzschia palea. Although the neutral lipid content 
in suspensions of the same species was doubled, there 

was no concentration increase observed in their 
biofilms. 

Many researchers have reported that nitrogen 
starvation decreases photosynthesis and protein 
synthesis but increases lipid and carbohydrate 
synthesis [92]. In addition, environmental conditions, 
especially nitrogen-rich nutrients, play a significant 
role in the amount and quality of the lipids produced 
in the microalgae [47, 93].  

Lipid production in microalgae increases with 
nitrogen deficiency [95]-[96], and changes in the fatty 
acid chain length and unsaturation results in more 
suitable TAG production for biodiesel. Many 
microalgae species can similarly adapt their 
metabolism under nitrogen deficiency [47, 97]. During 
the stationary growth phase, nutrient starvation is the 
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most well-known method by which to improve lipid 
content. In addition, temperature, salinity, light, and 
changes during the growth phase also impact 
microalgae metabolism [98]. Breuer et al. [99] have 
found that the highest lipid content, independent of 
light intensity, was observed in S. obliquus and 
changed from 18 to 40% of dry weight with changes 
in pH and temperature. This lipid accumulation stores 
the energy to be allocated for growth to prevent a 
decline in growth rate and, subsequently, in biomass 
and lipid production [100].  Toledo-Cervantes et al. 

[101] have evaluated CO2, aeration, and light intensity 
impacts on the growth of and lipid production in S. 
obstusiusculus under nitrogen-limiting conditions. 
Without any nutrient limitations, in 20% nonpolar 
algae–containing culture with 5% CO2 and 134 µmole 
m-2 s-1 light intensity, biomass productivity was 500 g 
m-3 d-1 and maximum biomass concentration was 
6000 g m-3. Under nitrogen-limiting conditions with 
5% CO2, lipid accumulation was 55.7% of the dry 
weight.  

Table 4. Effect of nitrogen limitation/deprivation on lipid production of Scenedesmus sp. 

Strain of Scenedesmus sp.  Lipid productivity References 

S. obliquus 0.18 g m-2 d-1 lipid productivity  [93] 

S. obliquus 322 mg L-1 d-1 lipid productivity  [99] 

S. obstusiusculus For the inlet CO2 concentrations of 0.04% and 5% CO2, the maximum 
lipid productivities were 51 and 200 g m-3 d-1 respectively. 

 [101] 

S.obliquus CNW-N 45.48 mg L-1 d-1  lipid productivity  [103] 

S. acutus The amount of lipid in the 50% nitrogen-limited media was 19.48% 
higher than that in the control group 

 [104] 

S. dimorphus 0.17 g L-1 d-1 lipid productivity  [106] 

S. abundans 5.999 g L-1 d-1 lipid productivity  [107] 

S. quadricauda 25.13 mg L-1 d-1 lipid productivity  [108] 

S. obtusiusculus  0.34 g L-1 d-1 lipid productivity  [109] 

Scenedesmus sp. LX1 204 mg L-1 d-1 lipid productivity  [85] 

Although these nutrient-starvation conditions are 
generally considered for systems with long turnover 
periods, in recent studies, there have also been 
satisfactory results for systems with short-turnover 
periods [102]. The lipid content of Scenedesmus sp. 
changes with three different phases. The biomass on 
day 2 during the nitrogen-consuming logarithmic 
phase is dark green with 20% lipid content. During 
the early stress phase (5–7 d), the biomass is greenish 
yellow with ~35% lipid content. During the late stress 
period (10–14 d), the biomass is brownish with ~45% 
lipid content. Ho et al. [103] have applied nitrogen 
starvation to Scenedesmus obliquus and observed 
that the highest lipid content was 22.4% on day 5. 
Agirman and Cetin [104] have investigated the 
development of Scenedesmus acutus and changes in 
its protein and lipid contents under nitrogen stress. 
According to their results, at <50% nitrogen 
limitation, the lipid content was 19.48% higher than 
that of the control group. In addition, an inverse 

correlation was observed among cell development, 
lipid content, and nitrogen concentration.  

Nitrogen starvation triggers several reactions in 
microalgae from the decomposition of nitrogen-
containing compounds, such as proteins, chlorophyll, 
and DNA, to the accumulation of energy-rich 
compounds, such as carbohydrates [72]. The critical 
point here is that nitrogen-rich chlorophyll supports 
biomass growth and cellular development. Microalgae 
synthesize chlorophyll in huge amounts when 
nitrogen is plentiful and within their reach; however, 
when the opposite is true, they begin to use 
chlorophyll to obtain free nitrogen [101]. Because 
chlorophyll is green in microalgae, its decomposition 
results in microalgae becoming first greenish yellow 
and then brown when nearly all chlorophyll has been 
decomposed [32].  Wu et al. [105] have reported that 
in Scenedesmus sp., the concentration of nitrogen and 
phosphorus is highest during the exponential growth 
phase and lower during the stationary phase. 
Similarly, Wang et al. [106] have set up a 
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photobioreactor that is open to the atmosphere, and 
under nitrogen starvation, observed that over a 10-d 
period, the protein content in Scenedesmus sp. 
decreased from 33 to 10% and the total lipid content 
increased from 8 to 37%. 

 
4. CONCLUSIONS 

 
Microalgae are promising candidates for replacing 
fossil fuels because of their rapid growth, uniquely 
highly efficient solar energy conversion, sustainability 
and renewability, high lipid content, and high 
potential for biofuel production. Microalgae use has 
been increasing as feedstock for biofuel in response to 
the energy crisis. In particular, the energy stores in 
microalgae are the raw materials for the biodiesel 
used in the transportation sector, and enhancement of 
microalgae’s lipid content and its subsequent 
production have gained considerable attention among 
researchers. This review has illustrated that limiting 
nitrogen in the culture of high lipid-accumulating 
Scenedesmus sp. is a feasible strategy by which to 
increase lipid production. 
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