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A Note on Ring Source over Semi-Infinite Rigid Pipe

Yar1 Sonsuz Rijit Boru Uzerindeki Halka Kaynak Uzerine Bir Not

Burhan TIRYAKIOGLU!
'Marmara University, Department of Mathematics, Kadikoy, 34722, Istanbul, Turkey

Abstract

In this study, semi-infinite rigid pipe is considered. An analytical solution is presented for the diffraction problem of acoustic waves spread-
ing from a ring source by semi-infinite pipe. Applying the boundary and continuity conditions in conjunction with the Fourier transform
technique, the boundary value problem is solved analytically. The influence of the problem parameters on the diffraction phenomenon is
displayed graphically.
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Oz

Bu calismada, yar1 sonsuz rijit bir boru ele alinmistir. Bir halka kaynaktan yayilan akustik dalgalarin yar1 sonsuz boru ile kirmimi problemi
icin analitik bir ¢6ziim sunulmustur. Sinir ve siireklilik kosullarini Fourier doniisiim teknigi ile birlikte uygulayarak, sinir deger problemi
analitik olarak ¢6ziilmistiir. Problem parametrelerinin kirinim fenomeni tizerindeki etkisi grafiksel olarak gosterilmistir.

Anahtar Kelimeler: Halka Kaynak, Kirinim, Fourier Doniisiimii, Boru

L. INTRODUCTION

Diffraction of acoustic waves is an important problem which has been extensively studied in the literature so far. In particu-
lar, the problem of diffraction of sound waves by semi-infinite pipes has been used as a model for many engineering applica-
tions, such as noise reduction in architectural and experimental aecrodynamics, in road transportation, in modern aircraft jet
and turbofan engines, etc. For this reason, it is essential to investigate more accurate mathematical models for such engine-
ering problems.

Levine & Schwinger was the first who considered the problem of sound radiation from a semi-infinite circular unflanged
duct of infinitely thin hard walls [1]. An analytical solution was obtained based on the Wiener-Hopf technique [2]. Later, dif-
ferent geometries were investigated rigorously by the help of Wiener-Hopf technique [3-6]. Acoustic absorbing material was
used in some of these studies for reducing noise.

The goal of this work is to consider the diffraction of acoustic waves emanating from a ring source by semi-infinite ri-
gid pipe. Pipe walls are assumed to be infinitely thin. The ring source is located out of the pipe (p = b = a.z = —c.c = 0).
The total field have angular symmetry which makes the problem simpler than the asymmetric case because of the ring source
[7,8]. By applying the Fourier transform, we obtain a Wiener-Hopf equation which depends on the boundary conditions and
continuity relations. Then, numerical solution is obtained approximately for various values of the problem parameters such as
pipe radius, pipe extension, ring source location etc. The influence of these factors on the diffraction phenomenon is presen-
ted graphically. At the end of the analysis same geometry is considered with infinite pipe for validation of the results. Time

—iwt

dependency is assumed to be & and suppressed throughout this work, where & is the angular frequency.
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Il. ANALYSIS

2.1.Problem Formulation

We consider the diffraction of acoustic waves by se-
mi-infinite rigid pipe (Fig. 1). The total field will be inde-
pendent of azimuth 0 everywhere in cylindrical coordinate
system (2 &.2) due to the symmetry of the problem geo-
metry and of the ring source. The velocity potential u will
be used to obtain acoustic pressure P and velocity 1 via
p = —pp (88t and v = gradu, where gy is the density
of the medium.

Ring Source

z=—c, c>0

Figure 1. Geometry of the problem

It is suitable to state the total field as follows for analysis intents

u,(p.z), p=h
- u.lp.z), a<p<h,
u?(p.2) = uglp.z), p<a z=1I
uylp.z), p<a. z=| Q.1

The unknown fields z:j-{_ﬂ.z] J =1 — 4 satisty the wave
equation for z € (—t2, 02

[1 i ( a] 7 a"] (p.z2 =0 1—4
——\p |tz ET|ulpz) = i=1-
2 ﬂ_ﬂ 3 ﬂ_ﬂ dz- 4 J (22)

with wave number & = w /¢, and the speed of sound &p.
For the determination of unknown fields, we need boundary
conditions and continuity relations, one can write these equ-
ations from the geometry of the problem.

d a (2.3)
gul{b.z]—guz{b.z]:L’:T'f,z+c] —00 <z <00
u,(b.z) = u,(b,z) — 00z (2.4)
d

EHE{RIZ) z<l @.5)
u.la, z) = uyla, z) z> 1 (2.6)

e (G (pa) + G (p.a)) = Bla)J,(Kp) + Cla)¥,(Kp)

a%u:{n.z] :ﬁ%u,(n.z] z> @7

uzlp. ) =uylp.l) . p<a (2.8)
d

Eu,(p. Nn= Ez:_t(p. ) p<a (2.9)

where & is dirac delta function.

2.2. Derivation of the Wiener-Hopf Equation

Consider the Fourier transform of the wave equation sa-
tisfied by the diffracted field %3 (2.2} in the region 7 = b,
for Z € (—9. %] namely,

L5 (e5)+ P@]reo
;E PE + K-(a)|Flp.a) =0 (2.10)
where K () is a square root function
Kl(a) = k*—a’ (2.11)
Ima
_________ - k-
Rea
—k L+

Figure 2. Complex &-plane

which as defined in the complex «-plane cut as shown
in Fig. 2 and F (g, &) is the Fourier transform of the field
u;(p.z) defined to be

W

Flp,a) = j uy (p. )™ dz
A (2.12)

The solution of equation (2.10) reads

Flp,a) = A{a]HE”(ﬁ’p] (2.13)

where Alet) is spectral coefficient to be determined
and H |';.LI is the Hankel function of first type. In the re-
giona = p =<k us(p. z) satisfies the wave equation in the
range Z € (—%.%) In a similar way the solution can be
given as

(2.14)
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where
i

G_':P. a) = J‘ H:{p.z]gfmx"—'dz

—=

(2.15)
J‘ H:{P.Z] gl'l:t'lx—l'ldz

Owing to analytical properties of Fourier integrals,

G*(p. )

(2.16)

G*(p.a) and G~ {p.a) are regular functions in the upper
half plane (Ime = Im(—k)}) and in the lower half plane
(Ime < I m.'i:]’ respectively. Consider now the Fourier
transform of (2.5)

G lg.al=0 @.17)

where the dot specifies the derivative with respect to 2.
From the definition of ring source given in (2.3) and (2.4)
we get

Ale)H," (kB) = Bla) J,(KD) + Cla)V,(Kb) — e /K (a)
(2.18)

Ale)H " (Kb) = Bla) ], (KD) + Cla) ¥,(Kb) (2.19)

One can obtain the relation Ble) and Cla) from (2.18)
and (2.19).

a

i) — iBla)

b ,
——H," (Kp)e~iee
2 (2.20)

By taking the derivative of (2.14) with respect to  and
using (2.17), we obtain

gl'm' G+{n ) n.] -

In the region 2 < @.Z = [ the field u;(p. z) satisfies the
wave equation for = € (I, %), By taking Fourier transform

—Bla)K],(Ka) — Cla)KY,(Ka)

2.21)

we get
18 B
[;ﬂ_ﬂ(ﬂ? + K (a) ]H (p. ) = fla) — iag(a) 02
where
d
flp) = —u;(ﬂ ) glp) =uz(p. D)
(2.23)

In(2.22), H (g,
of the complex #-plane which is defined as

er) is a regular function in the upper half

H*p,a) = J‘ uylp, zle =gz
i (2.24)
Particular solution to (2.22) can be found easily by using
Green’s function which satisfies the wave equation

. 1 . ) s
+ - _{_(+ ) » —i oy o) r9.25°
H*(p,a) —K]L(Ka_){ G¢*a.a)],(Kp) +!(f(_t) ag(t) )Q(t.p a)tdt} (2.25)
where
_ o T (oK) U, (K)o (KE) — ¥, (Ka)[,(KD],  p<t e
2¢t.p.a) = K(x) {]D(Kt)[]i(lx’a)yo(l\'o) Y,(Ka)o(Kp)l, p>t (2.26)

The left hand side of (2.25) is analytic in the upper half
plane, the right hand side have poles at & = &y, = 1,2, ...

J:Gm) =0 . ap = k5= (n/a)?
+ - d
6*la.k) =1 — kgl (2.28)
a
6% ay) = S 1ol lfir = 10 g (2.29)
where
—Z-rf (plpdp
] J (2.30)
m= _EEo 4 (p) pdp
fn= 7S ff Jn( o) (231)

In order that the right hand side of (2.25) be also regular
at @ = tt,,, we should have

ay =k ., Ima,, > Imk (2.27)
a
ZJ p
F'D (Plpdp (2.32)
=== | gip) pdp
Im= f‘JnUn J(‘g j” p] (2.33)

Using the continuity relation (2.6) and taking into ac-
count (2.14), (2.20) and (2.25), we obtain the following Wie-

ner-Hopf equation:
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a il (o ) el G*(a,a)
B @@t M@

where

M(a) = in],(Ka)H," (Ka)

2.3. Solution of the Wiener-Hopf Equation

b H," (Kb)
-lac _ — -
2KH," (Ka)

miﬁ N M —
€ 2 Z aZ —a’ [frr 'agrv:]
m=e (2.34)

(2.35)

decomposition of the resulting equation, we get

Multiplying  (2.34) with e~ % (k —a)M_(a) and
¢*(a, a) (k + ap )M, (ap)]oUm ) fin + i@ mgm]
a) +— Z
&k + )M, (a) (@ 2ap(a + ap,) (2.36)
where E+r=fe" 71 (2.38)

- L1l - o
1) JLJ‘HD {*flﬁ]ﬂf_':r]':ﬁ o)
'H'H]_ (Kal(z — a)

—irle+D)
e dr
22mi

L. (2.37)
Integration lines L, and L_ are depicted in Fig. 2. Ac-
cording to Jordan’s Lemma, the integration line L+ can be

the integral can be reduced simple form. When [ is
large, the main contribution to the integral comes from
the end point t = 0 [9]. Hence I{e) can be approxima-
ted by

deformed into the branch cut ) + C» through the branch 1z} = ’H (k) e™ e+l tla, b, e, I: )
point T = —k_ By using the property of Hankel function (2.39)
and making the following substitution: where
bt = f 2K +it Hy) (K)H (Ka) — HY K HS (D) oy,
fab.ela Tl ktita KHYKa)H® (Ka) (2.40)
M, () and M_{x) are the split functions regular and free ~ M{a) = M, (a)M_(a) . M_la) =M, (-a) (2.41)

of zeros in the upper and lower halves of the complex & —
plane, respectively.

The explicit expression of M. (e} is given in [10] as fol-
lows

M, () = m L{-'in]H '{anﬁl’[ﬂ I_ [L —rt lﬂ(z:] T lg] B l%}

<o [E2%0( D) [+ 2o (55

where ¥ = 0.37721 ..,
is given by

is the Euler’s constant and g (e}

-
=2 |1
o

2.4. Far Field

In the region g = & total field can be evaluated from

(2.12)

N | |
u,(p.2) = E]‘ A(H]HI':,L' (Kple **da
o (2.44)

=1 m

M;Lm e {.r:l]m(

(2.42)

The coefficients fim and &m which are required in the evaluation
of 6™ (a. &) are obtained from (2.8) — (2.9) and (2.28) — (2.29).

oo ]
J kel — %7

where L is a straight line parallel to the real e-axis, lying

(2.43)

in the strip Im{—k) = Ima < Imk.Using (2.14), (2.20)

u,(p.z) = u;lp. z) + u, (p.z) + uylp.z) (2.45)

where



A Note on Ring Source

Int. J. Adv. Eng. Pure Sci. 2019, 2: 133-139

b [ [V, (Ka) J,(KB) — ], (Ka)¥,(KB)] :
ui{p.2) +u,(p.2) = EJ‘ e o J. - HY (Kple==+)dq w
z H, = (Ka) (2.46)
.
1 Grla,e) | o o l 2 .
uglp.2) = —o— | —5——H, ' (Kple *=dq Hy (Kp)~ | ——g'®p=/3)
2w ) kH™(Ka) J wKp
L L (2.47) (2.48)
(L . . . d applying the saddle point technique, t
and replacing H I':,L (K p) by its following asymptotic exp- anc applying He saddic potit technique, we ge
ression valid for k."} w5l EIL{P-Z] = Ug '::"'L . EL] + Hf{?": . 9::' + Hr':?": . E: ] (2.49)
with
i G*(a, —kcos 8,) ™M
z{d{rl.ﬁj_]=— - i - - p
Tsing H = (kasing,) &7 (2.50)
kb |V, (kasin 8, )] (kbsin 8, ) — ], (kasin 8, )V, (kbsin 8,)] ™™
uilr, 82) +u, (2,8, =5 - o o, JTL — ) kr
£t H (kasin &,) 2 2.51)
where "1-51 and 2+ 2 are the spherical coordinates and
P =1 sing, z—1 =1 cos8, Q52) P=n sinf, z+ ¢ =mncosh, (2.53)

I1l. RESULTS AND DISCUSSION

In this section, some graphs showing the effect of the pa-
rameters of the problem on the diffracted field are presen-
ted. Numerical results are produced for the diffracted field
as 20logluy (. 8, )1 with the observation angle & changing

from 0 to .
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Figure 3. Field of diffraction with different values of ka

137

-30

ka=1,ke=6 k=10 kr, =40

-T0

Amplitude of the Diffracted Field

-80

-90

0 20 40 80 80 100

Observation Angle

120 140 160 180

Figure 4. Field of diffraction with different values of kb

Fig. 3 and Fig. 4 show the variation of the diffracted field
amplitude against the observation angle for different values
of the pipe radius and ring source radius, respectively. Dif-
fracted field amplitude increases with increasing values of

pipe and ring source radius, as expected.
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Figure 5. Field of diffraction with different values of ke
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Figure 6. Field of diffraction with different values of kI

Fig. 5 and Fig. 6 display the same effect to the diffracted
field for different values of K¢ and ki. Diffracted field amp-
litude decreases with increasing values of k¢ and kI,

Ring Source
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Figure 7. Ring source with an infinite pipe
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Figure 8. Comparison of the total field with Fig. 7

Fig. 8 depicts an excellent agreement between the Fig. 1
(kI = @) and Fig. 7. In addition, Fig. 8 shows that the mat-
hematical problems encountered are rigorously examined.

IV. CONCLUSION

In the present work, diffraction of sound waves emanating
from a ring source by semi-infinite rigid pipe has been in-
vestigated by using the Fourier transform technique in con-
junction with the Wiener-Hopf technique. The problem is
modelled two dimensional due to symmetry of the geo-
metry. An analytical solution is derived by solving the Wie-
ner-Hopf equation. To a better understanding the effect of
the parameters of the problem on the diffracted field, grap-
hics are presented.
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