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A Note on Ring Source over Semi-Infinite Rigid Pipe
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Abstract

In this study, semi-infinite rigid pipe is considered. An analytical solution is presented for the diffraction problem of acoustic waves spread-
ing from a ring source by semi-infinite pipe. Applying the boundary and continuity conditions in conjunction with the Fourier transform 
technique, the boundary value problem is solved analytically. The influence of the problem parameters on the diffraction phenomenon is 
displayed graphically.
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Öz

Bu çalışmada, yarı sonsuz rijit bir boru ele alınmıştır. Bir halka kaynaktan yayılan akustik dalgaların yarı sonsuz boru ile kırınımı problemi 
için analitik bir çözüm sunulmuştur. Sınır ve süreklilik koşullarını Fourier dönüşüm tekniği ile birlikte uygulayarak, sınır değer problemi 
analitik olarak çözülmüştür. Problem parametrelerinin kırınım fenomeni üzerindeki etkisi grafiksel olarak gösterilmiştir.

Anahtar Kelimeler: Halka Kaynak, Kırınım, Fourier Dönüşümü, Boru

I. INTRODUCTION

Diffraction of acoustic waves is an important problem which has been extensively studied in the literature so far. In particu-
lar, the problem of diffraction of sound waves by semi-infinite pipes has been used as a model for many engineering applica-
tions, such as noise reduction in architectural and experimental aerodynamics, in road transportation, in modern aircraft jet 
and turbofan engines, etc. For this reason, it is essential to investigate more accurate mathematical models for such engine-
ering problems.

Levine & Schwinger was the first who considered the problem of sound radiation from a semi-infinite circular unflanged 
duct of infinitely thin hard walls [1]. An analytical solution was obtained based on the Wiener-Hopf technique [2]. Later, dif-
ferent geometries were investigated rigorously by the help of Wiener-Hopf technique [3-6]. Acoustic absorbing material was 
used in some of these studies for reducing noise.

The goal of this work is to consider the diffraction of acoustic waves emanating from a ring source by semi-infinite ri-
gid pipe. Pipe walls are assumed to be infinitely thin. The ring source is located out of the pipe ( ). 
The total field have angular symmetry which makes the problem simpler than the asymmetric case because of the ring source 
[7,8]. By applying the Fourier transform, we obtain a Wiener-Hopf equation which depends on the boundary conditions and 
continuity relations. Then, numerical solution is obtained approximately for various values of the problem parameters such as 
pipe radius, pipe extension, ring source location etc. The influence of these factors on the diffraction phenomenon is presen-
ted graphically. At the end of the analysis same geometry is considered with infinite pipe for validation of the results. Time 
dependency is assumed to be  and suppressed throughout this work, where  is the angular frequency.
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II. ANALYSIS

2.1.Problem Formulation

We consider the diffraction of acoustic waves by se-
mi-infinite rigid pipe (Fig. 1). The total field will be inde-
pendent of azimuth θ everywhere in cylindrical coordinate 
system  due to the symmetry of the problem geo-
metry and of the ring source. The velocity potential  will 
be used to obtain acoustic pressure  and velocity  via 

 and , where  is the density 
of the medium.

Figure 1. Geometry of the problem

It is suitable to state the total field as follows for analysis intents

	   (2.1)
The unknown fields  satisfy the wave 

equation for 

with wave number  and the speed of sound . 
For the determination of unknown fields, we need boundary 
conditions and continuity relations, one can write these equ-
ations from the geometry of the problem.

		    (2.4)

		    (2.5)

		    (2.6)

		    (2.7)

		    (2.8)

		    (2.9)

where  is dirac delta function.

2.2. Derivation of the Wiener-Hopf Equation

Consider the Fourier transform of the wave equation sa-
tisfied by the diffracted field in the region , 
for , namely,

	 (2.10)

where  is a square root function

	 (2.11)

Figure 2. Complex -plane

which as defined in the complex -plane cut as shown 
in Fig. 2 and  is the Fourier transform of the field 

 defined to be

		  (2.12)

The solution of equation (2.10) reads

	 (2.13)

where  is spectral coefficient to be determined 
and  is the Hankel function of first type. In the re-
gion ,  satisfies the wave equation in the 
range . In a similar way the solution can be 
given as

(2.3)

	 (2.14)

(2.2)



A Note on Ring Source� Int. J. Adv. Eng. Pure Sci. 2019, 2: 133-139

135

where

		  (2.15)

		  (2.16)

Owing to analytical properties of Fourier integrals, 
 and  are regular functions in the upper 

half plane  and in the lower half plane 
, respectively. Consider now the Fourier 

transform of (2.5)

		  (2.17)
where the dot specifies the derivative with respect to . 

From the definition of ring source given in (2.3) and (2.4) 
we get

	 (2.19)

One can obtain the relation  and  from (2.18) 
and (2.19).

		  (2.20)

By taking the derivative of (2.14) with respect to  and 
using (2.17), we obtain

 	(2.21)

In the region  the field  satisfies the 
wave equation for . By taking Fourier transform 
we get

	 (2.22)
where

	 (2.23)

In (2.22),  is a regular function in the upper half 
of the complex -plane which is defined as

		  (2.24)
Particular solution to (2.22) can be found easily by using 

Green’s function which satisfies the wave equation

(2.18)

where

The left hand side of (2.25) is analytic in the upper half 
plane, the right hand side have poles at 

In order that the right hand side of (2.25) be also regular 
at , we should have

	 (2.28)

	 (2.29)

where

		  (2.30)

	 (2.31)

 (2.32)

	 (2.33)

Using the continuity relation (2.6) and taking into ac-

count (2.14), (2.20) and (2.25), we obtain the following Wie-

ner-Hopf equation:
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2.3. Solution of the Wiener-Hopf Equation

Multiplying (2.34) with  and 

decomposition of the resulting equation, we get

 (2.34)
where

(2.35)

 (2.36)

where

	(2.37)
Integration lines  and  are depicted in Fig. 2. Ac-

cording to Jordan’s Lemma, the integration line  can be 
deformed into the branch cut  through the branch 
point . By using the property of Hankel function 
and making the following substitution:

	 (2.38)

the integral can be reduced simple form. When  is 
large, the main contribution to the integral comes from 
the end point  [9]. Hence  can be approxima-
ted by

	 (2.39)

where

 (2.40)

 and  are the split functions regular and free 
of zeros in the upper and lower halves of the complex  – 
plane, respectively.

	 (2.41)
The explicit expression of  is given in [10] as fol-

lows

 (2.42)

where  is the Euler’s constant and  
is given by

The coefficients  and  which are required in the evaluation 
of , are obtained from (2.8) – (2.9) and (2.28) – (2.29).

 (2.43)
2.4. Far Field

In the region  total field can be evaluated from 

(2.12)

	 (2.44)

where  is a straight line parallel to the real -axis, lying 

in the strip Using (2.14), (2.20)

	 (2.45)

where
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(2.47)

and replacing  by its following asymptotic exp-

ression valid for .

	 (2.48)

and applying the saddle point technique, we get

	 (2.49)

 (2.46)

with

	 (2.50)

 (2.51)

where  and  are the spherical coordinates

	 (2.52)

and

	 (2.53)

III. RESULTS AND DISCUSSION

In this section, some graphs showing the effect of the pa-
rameters of the problem on the diffracted field are presen-
ted. Numerical results are produced for the diffracted field 
as  with the observation angle  changing 
from  to .

Figure 3. Field of diffraction with different values of 

Figure 4. Field of diffraction with different values of 

Fig. 3 and Fig. 4 show the variation of the diffracted field 

amplitude against the observation angle for different values 

of the pipe radius and ring source radius, respectively. Dif-

fracted field amplitude increases with increasing values of 

pipe and ring source radius, as expected.
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Figure 5. Field of diffraction with different values of 

Figure 6. Field of diffraction with different values of 

Fig. 5 and Fig. 6 display the same effect to the diffracted 
field for different values of  and . Diffracted field amp-
litude decreases with increasing values of  and .

Figure 7. Ring source with an infinite pipe

Figure 8. Comparison of the total field with Fig. 7

Fig. 8 depicts an excellent agreement between the Fig. 1 
 and Fig. 7. In addition, Fig. 8 shows that the mat-

hematical problems encountered are rigorously examined.

IV. CONCLUSION
In the present work, diffraction of sound waves emanating 
from a ring source by semi-infinite rigid pipe has been in-
vestigated by using the Fourier transform technique in con-
junction with the Wiener-Hopf technique. The problem is 
modelled two dimensional due to symmetry of the geo-
metry. An analytical solution is derived by solving the Wie-
ner-Hopf equation. To a better understanding the effect of 
the parameters of the problem on the diffracted field, grap-
hics are presented.
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