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Abstract. In this paper, the ratio of maximized likelihood and Minimized Kullback-Leibler Divergence 
methods are discussed for discrimination between log-normal and Weibull distributions. The progressive Type-
II right censored sample is considered in the study. The probability of correct selections is simulated and 
compared to investigate the performance of the procedures for different censoring schemes and parameter 
settings. 

Keywords: Discrimination, Log-normal distribution, Power analysis, Simulation, Progressive type-II right 
censoring. 

İlerleyen Tür Sansür Altında Lognormal ve Weibull Dağılımlarının 
Ayrımı 

Özet. Bu çalışmada, log-normal ve weibull dağılımları arasında ayırım için en çok olabilirlik oran ve Kullback-
Leibler uzaklık metotları tartışılmıştır. Çalışmada, ilerleyen tür sansürlü veri durumu ele alınmıştır. Doğru 
seçim oranları hesaplanmış ve farklı parametre ve sansür şemaları altında testlerin performansları 
karşılaştırılmıştır. 

Anahtar Kelimeler: Ayırım, Log-normal dağılım, Güç analizi, Simülasyon, İlerleyen tür sansürleme. 

 

1. INTRODUCTION  

A discrimination procedure focus on making suitable selection from two or more distributions based 
sample. In other words, discrimination procedure tries to get decision on which distribution is more 
effective to modeling the data. A lot of papers in the literature on discrimination two or three distributions. 
Most of them are based on Kullback-Leibler Divergence (KLD) and ratio of maximized log-likelihood 
(RML). There are a lot of works in this area. Some of them are Alzaid & Sultan [1], Kundu & Manglick 
[2], Bromideh and Valizadeh [3], Dey and Kundu [4], Dey and Kundu [5], Kundu [6], Kantam et al. [7], 
Ngom, et al. [8], Ravikumar and Kantam, [9], Qaffou and Zoglat, [10] and Algamal [11]. 

In this study, we consider on discrimination between log-normal and Weibull distributions. The 
probability density function (pdf) of log-normal and Weibull distribution are given, respectively, by 



 

   

Kuş et al. / Cumhuriyet Sci. J., Vol.40-2 (2019) 493-504 

   
   xI

x

x
xf 



















 

 ,0

2
log

2

1
exp

2

1
1 


  

and 

    xI
x

xxg 






















 ,0

1 exp
2





  

where  xI A  is an indicator function on set A  and   ,1  and    ,2  are distribution 
parameter vectors. 

Some papers related the discrimination between log-normal and Weibull distributions are Quesenberry & 
Kent [12], Dumonceaux & Antle [13], Pasha et al. [14], Dey & Kundu [4,5], Bromideh [15], Raqab, et al. 
[16] and Elsherpieny et al [17]. Quesenberry & Kent [12], proposed selection statistic that is essentially 
the value of the density function of a scale transformation maximal invariant. They considered include 
the exponential, gamma, Weibull, and lognormal. Note that this method works only complete sample 
case. Dumonceaux & Antle [13] used the difference of the RML, in discriminating between the Weibull 
or Log-Normal distribution based on complete sample. Kundu & Manglick [18] obtained the asymptotic 
distribution of the discrimination statistic RML and determined the probability of correct selection (PCS) 
by using asymptotic distribution in this discrimination process. Dey and Kundu [19] extended the Kundu 
& Manglick [18]'s results to Type-II censored sample case. Pasha et al. [14] used RML and most powerful 
invariant for discriminating these distributions based on complete sample. Kim & Yum [20] extended to 
Pasha et al. [14]'s results to Type-I and Type-II censored sample cases. Dey & Kundu [4, 5] used the 
RML, in discriminating between the Weibull, Generalized Exponential Distributions or Log-Normal 
distribution based on complete and Type-I censored sample. They obtained the asymptotic distribution of 
the discrimination statistic and determined the PCS by using asymptotic distribution in this discrimination 
process. Bromideh [15] examined the use the KLD in discriminating either the Weibull or Log-Normal 
distribution based on complete sample. Raqab, et al. [16] used the RML, in discriminating between the 
Weibull, Log-logistic or Log-Normal distribution based on doubly censored sample. Elsherpieny et al. 
[17] considered test based RML and Ratio Minimized Kullback-Leibler Divergence RMKLD for 
discrimination between Gamma and Log-logistic Distributions based on progressive Type-II right 
censored data. The model of progressive Type-II right censoring is of importance in the field of reliability 
and life testing. 

Table 1. The papers related to discrimination between lognormal and Weibull distribution 

 

 

 Type of Data Schemes 
Discrimination and test 
statistics 

Complete 
Data 

Type-I 
Censored 

Type-II 
Censored 

Doubly 
Censored 

Progressively Type-II 
Right Censored 

Kullback-Leibler 
(KLD) 

Bromideh 
(2012) 

   

Elsherpieny et al. (2017) 

Ratio of 
the Maximized 
Likelihood 
(RML) 

Kundu & 
Manglick 

(2004) 

Dey & 
Kundu 
(2009) 

Dey & 
Kundu 
(2012) 

Raqab, et al. 
(2018) 

Dumonceaux & 
Antle (1973) 

   
 

Pasha et al. 
(2006) 

Kim & Yum (2008)   
 

Scale Invariant 
Test (SI) 

Quesenberry& 
Kent (1982) 
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All the papers except for Elsherpieny et al. [17], consider complete or Type-I and Type-II censored 
sample. In this work, we consider discrimination under progressive Type-II right censored schemes. 
Progressive Type-II right censoring scheme is explained as follows: Let n  identical units are subject to a 

lifetime test. ir  surviving units are randomly withdrawn from the test, mi 1  as soon as i -th failure 

is occured. Hence, if m  failures are observed then mrr 1  units are progressively Type-II right 

censored; Thus, mrrmn  1 . Let 1: : 2: : : :m n m n m m nX X X  r r r  be the progressively Type-II 

right censored failure times, where  mrr ,,1 r  denotes the censoring scheme for the life test. As a 

special case if  0,,0 r , ordinary order statistics are obtained[21]. If  0,...,0,mr , the progressive 

Type-II right censoring becomes type-II censoring. For more details please see [22,23,24]. 

In this paper, the discrimination methods are given in Section 2. In Section 3, PCS are simulated by Monte 
Carlo methods and results are discussed. Finally, a numerical example is provided to illustrate the 
methodology.  

2. RULES OF DISCRIMINATION 

Let 1: : 2: : : :m n m n m m nX X X  r r r  are progressive Type-II right censored sample from log-normal  ,  

distribution. Then log-likelihood function [26] is given by 
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where   and   denotes the pdf and cdf of a standard normal distribution. Hence, ML estimate (it is 

denoted by  ˆ ˆ ˆ1θ = μ,σ ) of 1 can be obtained numerically which maximize the likelihood function (1). 

Let 1: : 2: : : :m n m n m m nX X X  r r r  are progressive Type-II right censored sample from Weibull   ,  

distribution. Then the log-likelihood function (see [27]) is given by 
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Hence, maximum likelihood (ML) estimate of 2 (it is denoted by  2
ˆ ˆˆ, θ ) can be obtained 

numerically which maximize the likelihood function (2). 

One of the rules of discrimination is ratio of the maximized likelihood  .RML The ratio of maximized 
likelihood is defined as follows 

   ˆ ˆ
LN WRML L L 1 2θ θ  
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where  1LNL  and  2WL  are defined by (1) and (2), respectively and ˆ
1θ  and ˆ

2θ are ML estimates of 

1  and 2 . If the 0RML  then log-normal distribution is selected for the modeling data otherwise 
Weibull distribution is selected against log-normal distribution. 

Second one is based on Kullback-Leibler divergence. The KLD is a non-symmetric measure of the 
difference (dissimilarity) between two probability distributions

1
f and

2
g . Kullback-Leibler divergence 

between models is defined by 
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surely [28], [29]. Furthermore,  
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,  gfD  denotes the "information lost when 
2
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1

f . Namely, KLD is a 
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2
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1
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1
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Let 
1

f  and 
2

g  are probability density functions of log-normal and Weibull distribution respectively. 

Then  
21

,  gfD  and  
2 1
,D g f   are given by 
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21

,  gfD  and  
2 1
,D g f   were given by Bromideh [15] but they cannot read clearly in their paper. 

Therefore, these equations are obtained using by Maple. Second method for discrimination is the ratio of 

Minimized Kullback-Leibler Divergence  RMKLD  rule (Elsherpieny et al., [17]) which is defined by 
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If ,0RMKLD  then we select the log-normal distribution for modeling data otherwise we select the 

Weibull distribution for modeling data. 

3. SIMULATION STUDY 

In this section, the PCS of RML and RMKLD methods are obtained and compared for different censoring 
schemes. The censoring schemes used in simulation are given in Table 2. Probabilities of correct selection 
of rules are simulated and given in Table 3-4. 

Table 2. The censoring schemes used in simulation 

Scheme m   mrr ,,1 r  

1 10 (5,9*0) 
2 10 (9*0,5) 
3 10 (5*1,5*0) 
4 10 (5*0,5*1) 
5 10 (4*0,5,5*0) 
6 13 (2,12*0) 
7 13 (12*0,2) 
8 13 (2*1,11*0) 
9 13 (11*0,2*1) 
10 13 (4*0,2,8*0) 
11 15 (15*0) 
12 30 (15,29*0) 
13 30 (29*0,15) 
14 30 (15*1,15*0) 
15 30 (15*0,15*1) 
16 30 (14*0,15,15*0) 
17 40 (5,39*0) 
18 40 (39*0,5) 
19 40 (5*1,35*0) 
20 40 (35*0,5*1) 
21 40 (19*0,5,20*0) 
22 45 (45*0) 

 
Let us consider the data come from log-normal distribution. From Fig. 1 and Fig. 2 the PCS of the RML 
and RMKLD are similar in general but the PCS of RML and KLD is slightly better than the PCS of other 
for some schemes. The selection of parameter values does not affect to the PCS so much. 
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Secondly, the PCS of the RML and RMKLD are better when the censoring is made at the beginning of 
the life test. 

Now let us consider the data come from Weibull distribution. From Fig. 3 and Fig. 4 the PCS of RMKLD 
is better than the power of RML for all schemes. Secondly, the PCS of the KLD are better when the 
censoring is made at the end of the life test. The PCS of the RML are better when the censoring is made 
at the beginning of the life test.  

Table 3. Probability of Correct Selection of RML and RMKLD rule when the data come from log-normal distribution 
 

 RML  RMKLD 
 (µ=0.5,σ=1) (µ=1,σ=1) (µ=2,σ=1)  (µ=0.5,σ=1) (µ=1,σ=1) (µ=2,σ=1) 

Scheme1 0.6763 0.6764 0.6802  0.7004 0.7012 0.6999 

Scheme2 0.6565 0.6572 0.6568  0.5906 0.5909 0.5853 

Scheme3 0.6721 0.6826 0.6737  0.6883 0.6922 0.6914 

Scheme4 0.6421 0.6416 0.6384  0.6391 0.6461 0.6437 

Scheme5 0.6831 0.6791 0.6820  0.6770 0.6881 0.6887 

Scheme6 0.7019 0.7102 0.7116  0.7192 0.7249 0.7129 

Scheme7 0.6960 0.6850 0.6920  0.6596 0.6559 0.6509 

Scheme8 0.7092 0.7037 0.7054  0.7107 0.7165 0.7165 

Scheme9 0.6931 0.7007 0.6950  0.6583 0.6649 0.6555 

Scheme10 0.7127 0.7058 0.7054  0.7086 0.7093 0.7109 

Scheme11 0.7318 0.7349 0.7235  0.7277 0.7187 0.7282 

Scheme12 0.8496 0.8469 0.8499  0.8601 0.8583 0.8526 

Scheme13 0.7763 0.7693 0.7654  0.7221 0.7241 0.7236 

Scheme14 0.8473 0.8523 0.8486  0.8457 0.8467 0.8536 

Scheme15 0.7771 0.7859 0.7868  0.7874 0.7857 0.7837 

Scheme16 0.8448 0.8467 0.8378  0.8448 0.8503 0.8503 

Scheme17 0.8766 0.8743 0.8790  0.8860 0.8808 0.7618 

Scheme18 0.8398 0.8411 0.8371  0.8209 0.8194 0.7616 

Scheme19 0.8781 0.8776 0.8772  0.8783 0.8847 0.7660 

Scheme20 0.8533 0.8381 0.8394  0.8242 0.8335 0.7665 

Scheme21 0.8764 0.8800 0.8798  0.8776 0.8819 0.7816 

Scheme22 0.8857 0.8918 0.8859  0.8897 0.8832 0.8121 
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Figure 1. Probability of Correct Selection of RML rule when the data come from log-normal distribution 

 
 
 
 

 
Figure 2. Probability of Correct Selection of RMKLD rule when the data come from log-normal distribution 
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Table 4. Probability of Correct Selection of RML and RMKLD rule when the data come from Weibull distribution 
 

 RML  RMKLD 
 (α=1.8,β=1.5) (α=2,β=1.5)  (α=5,β=1.5)   (α=1.8,β=1.5) (α=2,β=1.5)  (α=5,β=1.5) 

Scheme1 0.7004 0.7012 0.6999  0.8074 0.8202 0.8130 

Scheme2 0.5906 0.5909 0.5853  0.9990 0.9988 0.9992 

Scheme3 0.6883 0.6922 0.6914  0.8115 0.8188 0.8170 

Scheme4 0.6391 0.6461 0.6437  0.9636 0.9678 0.9650 

Scheme5 0.6770 0.6881 0.6887  0.8229 0.8323 0.8259 

Scheme6 0.7192 0.7249 0.7129  0.7604 0.7644 0.7609 

Scheme7 0.6596 0.6559 0.6509  0.9183 0.9152 0.9184 

Scheme8 0.7107 0.7165 0.7165  0.7694 0.7631 0.7681 

Scheme9 0.6583 0.6649 0.6555  0.9094 0.9113 0.9028 

Scheme10 0.7086 0.7093 0.7109  0.7738 0.7644 0.7741 

Scheme11 0.7277 0.7187 0.7282  0.7350 0.7345 0.7292 

Scheme12 0.8601 0.8583 0.8526  0.9286 0.9224 0.9266 

Scheme13 0.7221 0.7241 0.7236  1.0000 1.0000 1.0000 

Scheme14 0.8457 0.8467 0.8536  0.9409 0.9417 0.9403 

Scheme15 0.7874 0.7857 0.7837  0.9970 0.9965 0.9974 

Scheme16 0.8448 0.8503 0.8503  0.9503 0.9520 0.9535 

Scheme17 0.8860 0.8808 0.7618  0.8954 0.8961 0.8991 

Scheme18 0.8209 0.8194 0.7616  0.9838 0.9866 0.9865 

Scheme19 0.8783 0.8847 0.7660  0.8992 0.8979 0.8957 

Scheme20 0.8242 0.8335 0.7665  0.9816 0.9788 0.9798 

Scheme21 0.8776 0.8819 0.7816  0.9186 0.9123 0.9127 

Scheme22 0.8897 0.8832 0.8121  0.8776 0.8797 0.8818 
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Figure 3. Probability of Correct Selection of RML rule when the data come from Weibull distribution 

 
 
 
 

 
Figure 4. Probability of Correct Selection of RMKLD rule when the data come from Weibull distribution 
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4. Numerical Example 
 
4.1. First Example 
 
Let us consider the real data which is given by [30]. This data given arose in tests on endurance of deep 
groove ball bearings. The data are the number of million revolutions before failure for each of the lifetime 
tests. The progressively Type-II right censored data are obtained from complete data and it is given by 

17.88 28.92 33.00 41.52 42.12 45.60 48.80 51.84 51.96 54.12 55.56 67.80 68.44 68.64 68.88 84.12 93.12 

98.64 105.12 105.84 127.92 128.04 173.40 with  013,5 r  and .18m   

Discrimination procedure is performed to get decision whether the data come from a Weibull or a Log-
Normal. Using R code with nlm command (it uses Newton type algorithm), ML estimates of lognormal 

parameters are obtained by ̂ = 4.3079, ̂ = 0.5886, ML estimates of Weibull parameters are obtained 

by ̂ = 2.1122, ̂ = 95.3497. Test statistics are calculated as RML=0.3321 and  
21

ˆˆ ,


gfD = 0.1688 and

( )
2 1
ˆ ˆ,D g f  = 0.0924.  

Since the RML=0.3321>0 then lognormal distribution is selected for modeling this real data. 
On the other hand, since the RMKLD=0.6028>0 then Weibull distribution is selected for modeling this 
real data. 
 
4.2. Second Example 
 
Let us consider well-known data in reliability theory. This data was analyzed by many authors included 
in [31] and [27]. The progressive Type-II right censored data is given by 

0.19 0.78 0.96 1.31 2.78 4.85 6.50 7.35 with r  (0, 0, 3, 0, 3, 0, 0, 5) and .8m   
Discrimination procedure is performed to get decision whether the data come from a Weibull or a Log-
Normal. Using R code with nlm command (it uses Newton type algorithm), ML estimates of lognormal 

parameters are obtained by ̂ = 1.8821,̂ = 1.6152 , ML estimates of Weibull parameters are obtained 

by ̂ = 0.9745, ̂ = 9.2253. Test statistics are calculated as RML=-0.1519 and  
21

ˆˆ ,


gfD = 0.9369 and 

( )
2 1
ˆ ˆ,D g f  = 0.1395 

Since the RML=-0.1519<0 then Weibull distribution is selected for modeling this real data. 
Since the RMKLD=1.9042>0 then Weibull distribution is selected for modeling this real data. 
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