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Abstract: In this paper, we investigate geometric properties of some curvature tensors of a four-dimensional Walker manifold. Some
characterization theorems are also obtained.
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1 Introduction

A Walker n-manifold is a pseudo-Riemannian manifold, which admits a field of parallel nullr-planes, withr ≤ n
2. The

canonical forms of the metrics were investigated by A. G. Walker [10]. Of special interest are the even-dimensional

Walker manifolds(n= 2m) with fields of parallel null planes of half dimension(r = m).

It is known that Walker metrics have served as a powerful toolof constructing interesting indefinite metrics which

exhibit various aspects of geometric properties not given by any positive definite metrics. Among these, the significant

Walker manifolds are examples of the non-symmetric and non-homogeneous Osserman manifolds [2,3]. Recently, it was

shown [4,6,7] that the Walker 4-manifolds of neutral signature admit a pair comprising an almost complex structure and

an opposite almost complex structure, and that Petean’s nonflat indefinite Kahler-Einstein metric on a torus was obtained

as an example of a Walker 4-manifold. Moreover, Banyaga and Massamba derived in [1] a Walker metric when studying

the non-existence of certain Einstein metrics on some symplectic manifolds.

Our purpose is to study restricted 4-Walker metrics by focusing on their curvature properties. The main results of this

paper are the characterization of Walker metrics which are Einstein, locally symmetric Einstein and locally conformally

flat. The paper is organized as follows. In section2, we recall some basic facts about Walker metrics by explicitly writing

its Levi-Civita connection and the curvature tensor. Walker metrics which are Einstein are investigated in section3

(Theorem1). In section4, we study the Walker metrics which are locally symmetric Einstein (Theorem2). Finally, we

discuss in section5, the conformally locally flat property of Walker metric (Theorem3).

2 The canonical form of a Walker metric

Let M be a pseudo-Riemannian manifold of signature(n,n). We suppose given a splitting of the tangent bundle in the

form TM = D1 ⊕ D2 where D1 and D2 are smooth subbundles which are called distribution. This define two

complementary projectionπ1 and π2 of TM onto D1 and D2. We say thatD1 is parallel distribution if∇π1 = 0.
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Equivalently this means that ifX1 is any smooth vector field taking values inD1, then∇X1 again takes values inD1. If M

is Riemannian, we can takeD2 = D
⊥
1 to be the orthogonal complement ofD1 and in that caseD2 is again parallel. In the

pseudo-Riemannian setting,D1∩D2 need not be trivial. We say thatD1 is a null parallel distribution ifD1 is parallel and

the metric restricted toD1 vanish identically. Manifolds which admit null parallel distribution are called Walker

manifolds.

A neutralg on an 4-manifoldM is said to be a Walker metric if there exists a 2-dimensional null distributionD on M

which is parallel with respect tog. From Walker theorem [10], there is a system of coordinates(u1,u2,u3,u4) with

respect to whichg takes the local canonical form

(gi j ) =

(

0 I2
I2 B

)

,

whereI2 is the 2×2 identity matrix andB is a symmetric 2×2 matrix whose the coefficients are the functions of the

(u1, · · · ,u4). Note thatg is of neutral signature(++−−) and that the parallel null 2-planeD is spanned locally by

{∂1,∂2}, where∂i =
∂
∂i
, i = 1,2,3,4.

Let Ma,b,c := (O,ga,b,c), whereO be an open subset ofR4 anda,b,c∈ C ∞(O) be smooth functions onO, then

(ga,b,c)i j =











0 0 1 0

0 0 0 1

1 0 a c

0 1 c b











,

wherea,b and c are functions of the(u1, · · · ,u4). We denote,hi =
∂h(u1,··· ,u4)

∂ui
and hi; j =

∂h(u1,··· ,u4)
∂ui∂u j

for any function

h(u1, · · · ,u4). In [3], Einsteinian, Osserman or locally conformally flat Walkermanifolds were investigated in the restricted

form of metrics whenc(u1,u2,u3,u4) = 0. In this paper, following [3], we consider the specific Walker metrics on a 4-

dimensional manifold with

a= a(u1,u2), b= b(u1,u2) and c= c(u1,u2), (1)

and investigate conditions for a Walker metric (1) to be Einsteinian, locally symmetric Einstein and locallyconformally

flat.

A straightforward calculation show that the Levi-Civita connection of a Walker metric (1) is given by

∇∂1
∂3 =

1
2

a1∂1+
1
2

c1∂2, ∇∂1
∂4 =

1
2

c1∂1+
1
2

b1∂2,

∇∂2
∂3 =

1
2

a2∂1+
1
2

c2∂2, ∇∂2
∂4 =

1
2

c2∂1+
1
2

b2∂2,

∇∂3
∂3 =

1
2
(aa1+ ca2)∂1+

1
2
(ba2+ ca1)∂2−

1
2

a1∂3−
1
2

a2∂4,

∇∂3
∂4 =

1
2
(ac1+ cc2)∂1+

1
2
(bc2+ cc1)∂2−

1
2

c1∂3−
1
2

c2∂4,

∇∂4
∂4 =

1
2
(ab1+ cb2)∂1+

1
2
(bb2+ cb1)∂2−

1
2

b1∂3−
1
2

b2∂4.
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From relations above, after a long but straightforward calculation we get that the nonzero components of the(0,4)-

curvature tensor of any Walker metric (1) are determined by

R1313=
1
2

a1;1, R1314=
1
2

c1;1, R1323=
1
2

a1;2, R1324=
1
2

c1;2,

R1334=
1
4
(a2b1− c1c2), R1414=

1
2

b1;1, R1423=
1
2

c1;2, R1424=
1
2

b1;2,

R1434=
1
4
(c2

1−a1b1+b1c2−b2c1), R2323=
1
2

a2;2, R2324=
1
2

c2;2,

R2334=
1
4
(−c2

2+a2b2+a1c2−a2c1), R2424=
1
2

b2;2, R2434=
1
4
(−a2b1+ c1c2),

R3434=
1
4
(ac2

1+bc2
2−aa1b1− ca1b2− ca2b1−ba2b2+2cc1c2). (2)

Next, letρ(X,Y) = trace{Z −→ R(X,Z)Y} andSc= tr(ρ), be the Ricci tensor and the scalarcurvature respectively.Then

from (2) we have

ρ13=
1
2
(a1;1+ c1;2), ρ14=

1
2
(b1;2+ c1;1),

ρ23=
1
2
(a1;2+ c2;2), ρ24=

1
2
(b2;2+ c1;2),

ρ33=
1
2
(−c2

2+a1c2+a2b2−a2c1+aa1;1+2ca1;2+ba2;2),

ρ34=
1
2
(−a2b1+ c1c2+ac1;1+2cc1;2+bc2;2),

ρ44=
1
2
(−c2

1+a1b1−b1c2+b2c1+ab1;1+2cb1;2+bb2;2) (3)

and

Sc=
4

∑
i, j=1

gi j ρi j = a1;1+b2;2+2c1;2. (4)

The nonzero components of the Einstein tensorGi j = ρi j −
Sc
4 gi j are given by

G13 =
1
4

a1;1−
1
4

b2;2, G14 =
1
2

c1;1+
1
2

b1;2,

G23 =
1
2

a1;2+
1
2

c2;2, G24 =
1
4

b2;2−
1
4

a1;1,

G33 =
1
4

aa1;1+ ca1;2+
1
2

ba2;2−
1
2

a2c1+
1
2

a1c2+
1
2

a2b2−
1
2

c2
2−

1
2

ac1;2−
1
4

ab2;2,

G34 =
1
2

ac1;1+
1
2

cc1;2−
1
2

a2b1+
1
2

c1c2+
1
2

bc2;2−
1
4

ca1;1−
1
4

cb2;2,

G44 =
1
2

ab1;1+ cb1;2−
1
2

c2
1+

1
2

a1b1−
1
2

b1c2+
1
2

b2c1+
1
4

bb2;2−
1
4

ba1;1−
1
2

bc1;2. (5)

3 Einstein Walker metrics

A Walker metric is said to be Einstein Walker metric if its Ricci tensor is a scalar multiple of the metric at each point i.e.,

there is a constantλ so thatρ = λg. We have the following result.

Theorem 1.Let (M,g) be a pseudo-Riemannian manifold of dimension4, where g is the metric given by (1). Then the

following holds:
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(1) If a = a(u1),b = b(u1),c = c(u1), then(M,g) is Einstein if and only if a= Au1 +B; c = Eu1 + F and b satisfy

ab1;1+a1b1− c2
1 = 0; where A,B,E,F are constants.

(2) If a= a(u1),b= b(u1),c= c(u2), then(M,g) is Einstein if and only if a= Au1+B; b=Cu1+D; c=Au1+F; where

A,B,C,D,F are constants.

(3) If a = a(u1),b= b(u2),c= c(u2), then(M,g) is Einstein if and only if a= Au1+B; b=Cu2+D; c= Au2+F where

A,B,C,D,F are constants.

(4) If a = a(u2),b = b(u2),c = c(u2), then(M,g) is Einstein if and only if b= Cu1 +D; c = Eu1 + F and a satisfy

ba2;2+b2a2− c2
2 = 0; where C,D,E,F are constants.

(5) If a = a(u1,u2), b = b(u1,u2) and c= 0 then (M,g) is Einstein if and only if a= Ku2
1 +Au1 + B(u2) and b=

Ku2
2+Cu2+D(u1); where K,A and C are constants and B,D are smooth functions satisfying the following PDE’s:

B2D1 = 0,

(D1(u
2
1K +u1A+B))1 = 0,

(B2(u
2
2K+u2C+D))2 = 0.

Proof. It follows that the Walker metric (1) is Einstein if and only if the defining functionsa,b andc are solutions of the

following PDES:

a1;1−b2;2= 0, b1;2+ c1;1= 0, a1;2+ c2;2= 0,

a1c2+a2b2−a2c1− c2
2+2ca1;2+ba2;2−ac1;2= 0,

a2b1− c1c2+ ca1;1−ac1;1− cc1;2+bc2;2= 0,

a1b1−b1c2+b2c1− c2
1+ab1;1+2cb1;2−bc1;2= 0. (6)

This system of partial differential equations (6) is hard to solve, for this reason we consider the special case in this section.

The four first statements are easy to obtain. We only prove thefifth statements. The Einstein condition is equivalent to the

following:

(i) a1;2 = 0 andb1;2= 0;

(ii) a1;1−b2;2= 0;

(iii) a2b1 = 0;

(iv) a1b1+ab1;1= 0 anda2b2+ba2;2= 0.

We divide the proof of the proposition into two steps.

Step 1. The PDE system (i) imply thata andb take the following forms:

a= ā(u1)+ â(u2) and b= b̄(u1)+ b̂(u2). (7)

Substituting these functionsa andb from (7) in the equation (ii), we get

ā1;1 = b̂2;2.

Therefore we have the following:

ā1;1(x) = K and b̂2;2(y) = K

whereK is a constant. Then ¯a (respectivelyb̂) is a quadratic function ofu1 (respectivelyu2). Therefore we have the

following

a= Ku2
1+Au1+B(u2) b= Ku2

2+Cu2+D(u1) (8)
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whereA andC are constants,B= â (respectivelyD = b̄) are smooth functions ofu2 (respectivelyu1).

Step 2. The functionsa andb in (8) satisfy the (i) and (ii) PDEs in the Einstein conditions. Wemust consider further

conditions fora andb to satisfy the (iii) and (iv) PDE in the Einstein condition.

(i) From the (iii) PDE’s in the Einstein condition, we get thefollowing condition:

B2D1 = 0.

(ii) From (iv), the two equationsa1b1+ab1;1= 0 anda2b2+ba2;2= 0 gives

(

D1(u
2
1K +u1A+B)

)

1 = 0,
(

B2(u
2
2K+u2C+D)

)

2 = 0,

which complete the proof.

In [8], the authors apply the Lie symmetry group method to determine the Lie point symmetry group and provide example

of solution of the system of partial differential equations(6).

Example 1.[8] Let (M,ga,b,c) be a Walker metric with

a=−
r1

r2
er1u1eu2

,b=−r1r2er1u1eu2
, and c= r2er1u1eu2

wherer i ’s are arbitrary constants. Then the Walker metric(M,ga,b,c) is Ricci flat and Einstein.

Note that four-dimensional Einstein Walker manifolds formunderling structures of many geometric and physical models

such as:hh-space in general relativity,pp-wave models and others areas.

4 Locally symmetric Einstein-Walker metrics

A pseudo-Riemannian manifold is locally symmetric if its curvature tensorR is parallel, that is∇R= 0, where∇ is the

Levi-Civita connection on pseudo-Riemannian extended to act on tensors as a derivation andR is the corresponding

curvature tensor. This class of manifolds contains one of manifolds of constant curvature.

Let us consider the Einstein-Walker metric given by

a= Ku2
1+Au1+B(u2) and b= Ku2

2+Cu2+D(u1), (9)

whereK,A andC are constants andB,D are smooth functions satisfying the following PDE’s:

B2D1 = 0,

(D1(u
2
1K+u1A+B))1 = 0,

(B2(u
2
2K +u2C+D))2 = 0.
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By a straightforward calculation, we can see that the condition for the Einstein-Walker metric (9) to be locally symmetric

is equivalent to the following PDEs

a1a2b2 = 0, a1b1b2 = 0, a1a2;2 = 0, a1b1;1 = 0,

a2b1;1 = 0, b1a2;2 = 0, b2a2;2= 0, b2b1;1 = 0,

aa1;1b1 = 0, ba2b2;2= 0.

From the previous PDEs, We have the following results

Theorem 2.The Walker metric given in (9) is locally symmetric Einstein if and only if the functions a(u1,u2) and b(u1,u2)

are constant.

5 Locally conformally flat Walker metrics

LetW denote the Weyl conformal curvature tensor given by

W(X,Y,Z,T) : = R(X,Y,Z,T)+
Sc

(n−1)(n−2)

{

g(Y,Z)g(X,T)−g(X,Z)g(Y,T)
}

+
1

n−2

{

ρ(Y,Z)g(X,T)−ρ(X,Z)g(Y,T)−ρ(Y,T)g(X,Z)+ρ(X,T)g(Y,Z)
}

.

A pseudo-Riemannian manifold is locally conformally flat ifand only if its Weyl tensor vanishes. The nonzero components

of Weyl tensor of the Walker metric defined by (1) are given by

W1313=
a1;1

6
+

b2;2

6
−

c1;2

6
, W1314=−

b1;2

4
+

c1;1

4
,

W1323=
a1;2

4
−

c2;2

4
, W1324=

c1;2

2
,

W1334=
ca1;1

12
−

ab1;2

4
−

cb2;2

6
+

5cc1;2

12
+

bc2;2

4
,

W1414=
b1;1

2
, W1423=−

a1;1

12
−

b2;2

12
+

c1;2

3
, W1424=

b1;2

4
−

c1;1

4
;

W1434=
ba1;1

12
+

ab1;1

4
+

cb1;2

4
+

bb2;2

12
−

cc1;1

4
−

bc1;2

12
,

W2323=
a2;2

2
, W2324=−

a1;2

4
+

c2;2

4
,

W2334=−
aa1;1

12
−

ca1;2

4
−

ba2;2

4
−

ab2;2

12
+

ac1;2

12
−

cc2;2

4
,

W2424=
a1;1

6
+

b2;2

6
−

c1;2

6
, W2434=

ca1;1

6
+

ba1;2

4
−

cb2;2

12
−

ac1;1

4
−

5cc1;2

12
,

W3434=
c2a1;1

6
+

aba1;1

12
+

bca1;2

2
+

b2a2;2

4
+

a2b1;1

4
+

acb1;2

2
+

c2b2;2

6
+

abb2;2

12

−
acc1;1

2
−

2c2c1;2

3
−

abc1;2

3
−

bcc2;2

2
+

ba1c2

4
−

ca1b2

4
+

ca2b1

4
−

ba2c1

4
−

ab1c2

4
+

ab2c1

4
. (10)

Now it is possible to obtain the form of a locally conformallyflat Walker metric as follows.
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Theorem 3.A Walker metric (1) is locally conformally flat if and only if the functions a= a(u1,u2),b = b(u1,u2) and

c= c(u1,u2) are as follows

a=
I
2

u2
1+ Ju1+Eu1u2+Fu2+K,

b=−
I
2

u2
2+Lu2+Mu1u2+Nu1+R,

c=
M
2

u2
1+Pu1+

E
2

u2
2+Gu2+(Q+H),

where the constants E,F,G,H, I ,J,K,L,M,N,P,Q and R satisfy the following relations

0= EN− JM+ IP,

0= EL−FM+ IG,

0= ER−KM+ I(H +Q),

0= K(LP−NG)+R(JG−FP)+ (Q+H)(FN− JL).

Proof.Sine the locally conformally flat is equivalently to the vanishing of the Weyl tensor, let consider (10) as a system of

PDEs. We will prove the theorem in three steps.

Step 1. Considering the following components of the Weyl tensor of (10):

W1324=
c1;2

2
= 0, W1414=

b1;1

2
= 0 and W2323=

a2;2

2
= 0. (11)

The PDEs (11) imply that the functionsa,b andc take the form

a(u1,u2) = u2ā(u1)+ â(u1),

b(u1,u2) = u1b̄(u2)+ b̂(u2),

c(u1,u2) = c̄(u1)+ ĉ(u2).

Considering the result of the step 1, the Weyl equations of (10) reduce to

W1313=
1
6
(a1;1+b2;2), W1314=

1
4
(−b1;2+ c1;1), W1323=

1
4
(a1;2− c2;2),

W1334=
ca1;1

12
−

ab1;2

4
−

cb2;2

6
+

bc2;2

4
, W1423=−

1
12

(a1;1+b2;2),

W1424=
1
4
(b1;2− c1;1), W1434=

b
12

(a1;1+b2;2)+
c
4
(b1;2− c1;1),

W2324=
1
4
(−a1;2+ c2;2), W2334=−

a
12

(a1;1+b2;2)−
c
4
(a1;2− c2;2),

W2424=
1
6
(a1;1+b2;2), W2434=

ca1;1

6
+

ba1;2

4
−

cb2;2

12
−

ac1;1

4
,

W3434=
c2

6
(a1;1+b2;2)+

ab
12

(a1;1+b2;2)+
bc
2
(a1;2− c2;2)+

ac
2
(b1;2− c1;1)

+
ba1c2

4
−

ca1b2

4
+

ca2b1

4
−

ba2c1

4
−

ab1c2

4
+

ab2c1

4
. (12)

Step 2. Considering the following components of the PDEs (12):

W1313= 0, W1314= 0, and W1323= 0. (13)
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The PDEs (13) imply that the functionsa,b andc take the form

a= u2(Eu1+F)+
I
2

u2
1+ Ju1+K,

b= u1(Mu2+N)−
I
2

u2
2+Lu2+R,

c=
M
2

u2
1+Pu1+Q+

E
2

u2
2+Gu2+H.

Considering the result of the step 2, the Weyl equations (12) reduce to

W1334=
ca1;1

12
−

ab1;2

4
−

cb2;2

6
+

bc2;2

4
,

W2434=
ca1;1

6
+

ba1;2

4
−

cb2;2

12
−

ac1;1

4
,

W3434=
ba1c2

4
−

ca1b2

4
+

ca2b1

4
−

ba2c1

4
−

ab1c2

4
+

ab2c1

4
. (14)

Step 3. From (14), after some straightforward calculations, the followingPDES

W1334= 0, W2434= 0 and W3434= 0

gives

0= EN− JM+ IP,

0= EL−FM+ IG,

0= ER−KM+ I(H +Q),

0= K(LP−NG)+R(JG−FP)+ (Q+H)(FN− JL).

This finish the proof.

Remark.From (4) and Theorem3, we see that the locally conformally flat metric (1) has vanishing scalar curvature.

6 Conclusion

Various geometric quantities are computed explicitly in terms of metrics coefficients, including the Christoffel symbols,

curvature operator, Ricci curvature and Weyl tensor. Usingthese formulas, we have obtained a large class of Walker

metrics which are Einstein, locally symmetric Einstein andlocally conformally flat.

Acknowledgments

The first author expresses his deepest gratitude for supportand hospitality of the University of KwaZulu-Natal.

Competing interests

The authors declare that they have no competing interests.

c© 2017 BISKA Bilisim Technology



NTMSCI 5, No. 3, 253-261 (2017) /www.ntmsci.com 261

Authors’ contributions

All authors have contributed to all parts of the article. Allauthors read and approved the final manuscript.

References

[1] Banyaga A, Massamba F (2016) Non-existence of certain Einstein metrics on some symplectic manifolds, Forum Math 28(3):527-

537.

[2] Brozos-Vázquez M, Garcı́a-Rio E, Gilkey P, Nikević S,Vázquez-Lorenzo R (2009) The Geometry of Walker Manifolds. Synthesis

Lectures on Mathematics and Statistics, 5. (Morgan and Claypool Publishers, Williston, VT).

[3] Chaichi M, Garcı́a-Rı́o E, Matsushita Y (2005) Curvature properties of four-dimensional Walker metrics. Classical Quantum

Gravity 22:559-577.

[4] Garcı́a-Rı́o E, Haze S, Katayama N, Matsushita Y (2008) Symplectic, Hermitian and Kahler structures on Walker 4-Manifolds. J.

Geom. 90: 56-65.

[5] S. I. Goldberg, Integrability of almost Kahler manifolds, Proc. Amer. Math. Soc. 21 (1969).

[6] Matsushita Y, (2004) Four-dimensional Walker metrics and symplectic structure. J. Geom. Phys. 52: 89-99.

[7] Matsushita Y, (2005) Walker 4-Manifolds with Proper Almost Complex Structure. J. Geom. Phys. 55: 385-398.

[8] Nadjafikhah M, Jafari M (2013) Some general new Einstein Walker manifolds. Adv Math Phys, Art. ID 591852, 8 pp.

[9] K. Sekigawa, On some compact Einstein almost Kahler manifolds, J. Math. Soc. Japan, 39 (1987), nÂ◦ 4, 677-684.
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