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Approximation Results for Urysohn Type Two Dimensional
Nonlinear Bernstein Operators

HARUN KARSLI*

ABSTRACT. In the present work, our aim of this study is generalization and extension of the theory of interpolation
of two dimensional functions to functionals or operators by means of Urysohn type nonlinear operators. In accordance
with this purpose, we introduce and study a new type of Urysohn type nonlinear operators. In particular, we investi-
gate the convergence problem for nonlinear operators that approximate the Urysohn type operator in two dimensional
case. The starting point of this study is motivated by the important applications that approximation properties of cer-
tain families of nonlinear operators have in signal-image reconstruction and in other related fields. We construct our
nonlinear operators by using a nonlinear form of the kernels together with the Urysohn type operator values instead
of the sampling values of the function.
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1. INTRODUCTION

For a function defined on the interval [0, 1], the Bernstein operators (Bnf) , n ≥ 1, are defined
by

(1.1) (Bnf) (x) =

n∑
k=0

f

(
k

n

)
pn,k(x) , n ≥ 1,

where pn,k(x) =

(
n
k

)
xk(1− x)n−k is the well-known Binomial distribution and called Bern-

stein basis (0 ≤ x ≤ 1). These polynomials were introduced by Bernstein [9] in 1912 to give the
first constructive proof of the Weierstrass approximation theorem.

For detailed approaches to this operator see the fundamental book of G.G. Lorentz [27].

In his Ph.D. thesis [12] written under the direction of G.G. Lorentz and afterwards in the pa-
per [11] , the famous German mathematician P.L. Butzer considered two dimensional Bernstein
polynomials on the square � := {(x, y) : 0 ≤ x, y ≤ 1} as follows:

Bn,m(f ;x, y) =

n∑
k=0

m∑
j=0

f

(
k

n
,
j

m

)
pn,k (x) pm,j (y)

where pn,k(t) =

(
n
k

)
tk(1− t)n−k.

At the beginning, the theory of approximation is strongly related with the linearity of the
operators. But, thanks to the approachs of the Polish mathematician Julian Musielak, see [29],
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and continuous works of C.Bardaro, G. Vinti and their research group, this theory can be ex-
tended to the nonlinear type operators, under some specific assumptions on its kernel func-
tions, see the fundamental book due to Bardaro, Musielak and Vinti [6]. For further reading
please see [1]- [5], [13], [14] as well as the monographs [33].

In view of the approaches due to Musielak [29], recently, Karsli-Tiryaki and Altin [23] intro-
duced the following type nonlinear counterpart of the well-known Bernstein operators (1.1);

(1.2) (NBnf)(x) =

n∑
k=0

Pn,k

(
x, f

(
k

n

))
, 0 ≤ x ≤ 1 , n ∈ N,

acting on bounded functions f on the interval [0, 1] , where Pn,k satisfy some suitable assump-
tions. They proved some existence and approximation theorems for the nonlinear Bernstein
operators.

Many problems in engineering and mechanics can be transformed into two-dimensional in-
tegral equations and corresponding two dimensional integral operators. Especially the integral
operators of Fredholm, Volterra, Hammerstein and Urysohn type are used frequently when
describing real problems which arise from different sciences, such as physics, engineering, me-
chanics, theory of elasticity, signal-image reconstruction and in the applications of mathemati-
cal physics. So, integral operators of various types form an important and unavoidable part of
linear and nonlinear functional analysis.

In 2000, Demkiv [15] and [16] defined and investigated some properties of the following
type one and two dimensional Bernstein operators, which are linear with respect to F defined
by (2.4);

(BnF )x (t) =

1∫
0

n∑
k=0

f

(
t, s,

k

n

)
pn,k (x(s)) ds,

and

(Bn,mF ) (x (.) , y(.)) =

1∫
0

1∫
0

n∑
i=0

m∑
j=0

f

(
t, z1, z2,

i

n
,
j

m

)
pn,i (x(z1)) pn,j (y(z2)) dz1dz2.

In 2017, the author [24] defined the following Urysohn type Meyer-König and Zeller operators;

(MnF )x(t) =

1∫
0

[ ∞∑
k=0

f

(
t, s,

k

k + n

)
mn,k (x(s))

]
ds

(MnF )1(t) = F1(t) = F (1),

where

mn,k (x(s)) =

(
n+ k − 1

k

)
(x(s))

k
(1− x(s))n,

n is a non-negative integer and 0 ≤ x(s) < 1, and obtained some positive results about the
convergence problem.
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Very recently in [25] and [26], the author defined and investigated the Urysohn type nonlin-
ear Bernstein operators, having the form

(NBnF )x (t) =

1∫
0

[
n∑
k=0

Pk,n

(
x(s), f

(
t, s,

k

n

))]
ds , 0 ≤ x(s) ≤ 1 , n ∈ N.

The central issue of this paper is to extend the theory of interpolation to functionals and oper-
ators by introducing the Urysohn type nonlinear counterpart of the two dimensional Bernstein
operators. Afterwards, we investigate the convergence problem for these nonlinear operators.

Due to this importance, in this paper we will deal with integral operators of the two dimen-
sional Urysohn type:

U (x(t), y(t)) =

b∫
a

b∫
a

k(t, s, z, x(s), y(z))dsdz, t ∈ [a, b] ,

where k is a known function and x and y are the unknown functions to be determined.

Let us consider a sequence NBF = (NBnF ) of operators, which we call it Urysohn type
nonlinear counterpart of the two dimensional Bernstein operators, having the form:

(NBnF ) (x (t) , y(t)) =

1∫
0

1∫
0

[
n∑
k=0

n∑
i=0

Pk,i,n

(
x(s), y(z), f

(
t, s, z,

k

n
,
i

n

))]
dsdz,

0 ≤ x(s), y(z) ≤ 1, n ∈ N,

acting on bounded functions f on [0, 1]
5

= [0, 1] ∗ [0, 1] ∗ [0, 1] ∗ [0, 1] ∗ [0, 1] , where Pk,i,n satisfy
some suitable assumptions. In particular, we will put Dom NBF =

⋂
n∈N

Dom NBnF, where

Dom NBnF is the set of all functions f : [0, 1]
5 → R for which the operator is well defined.

2. PRELIMINARIES AND AUXILIARY RESULTS

This section is devoted to collecting some definitions and results which will be needed fur-
ther on.

Here we consider the following type two dimensional Urysohn integral operator,

(2.3) F (x(t), y(t)) =

1∫
0

1∫
0

f(t, s, z, x(s), y(z))dsdz, t ∈ [0, 1]

with unknown kernel f : If such a representation exists, then the kernel function f(t, s, z, x(.), y(.))
is called the two dimensional Green’s function, which is strongly related to the functions x and
y.

Note that in the univariate case, the solution of the following differential equation

DG(x, y) = δ(x− y),

represents a Green function G(x, y), here D is a differential operator, δ is the Dirac Delta func-
tion and satisfying a boundary condition. Note that

δ(x) =
dH(x)

dx
,
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is true, where

H(x) =

{
1 , x ≥ 0
0 , x < 0

is the Heaviside function.

In view of the above relations, we assume that the two dimensional continuous interpolation
conditions hold:

(2.4) F (xi(t), yj(t)) =

1∫
0

1∫
0

f(t, s, z, xi(s), yj(z))dsdz, t ∈ [0, 1]

where

xi(s) =
i

n
H(s− ξ); ξ ∈ [0; 1],(2.5)

yj(z) =
j

n
H(z − ς); ς ∈ [0; 1]

and i, j = 0, 1, 2, ...n .

Taking into account (2.4) and (2.5), by a straightforward calculation the stated identities follow.

F

(
i

n
H(s− ξ), j

n
H(z − ς)

)
=

1∫
0

1∫
0

f(t, s, z,
i

n
H(s− ξ), j

n
H(z − ς))dsdz

=

1∫
ς

1∫
ξ

f(t, s, z,
i

n
,
j

n
)dsdz +

ς∫
0

1∫
ξ

f(t, s, z,
i

n
, 0)dsdz

+

ς∫
0

ξ∫
0

f(t, s, z, 0, 0)dsdz +

1∫
ς

ξ∫
0

f(t, s, z, 0,
j

n
)dsdz(2.6)

and hence

∂F
(
i
nH(s− ξ), jnH(z − ς)

)
∂ς

= −
1∫
ξ

f(t, s, ς,
i

n
,
j

n
)ds+

1∫
ξ

f(t, s, ς,
i

n
, 0)ds

+

ξ∫
0

f(t, s, ς, 0, 0)ds−
ξ∫

0

f(t, s, ς, 0,
j

n
)ds,

∂2F
(
i
nH(s− ξ), jnH(z − ς)

)
∂ξ∂ς

= f(t, ξ, ς,
i

n
,
j

n
)− f(t, ξ, ς,

i

n
, 0)

+ f(t, ξ, ς, 0, 0)− f(t, ξ, ς, 0,
j

n
).

Say

(2.7) F1

(
t, ξ, ς,

i

n
,
j

n

)
:=

∂2F
(
i
nH(s− ξ), jnH(z − ς)

)
∂ξ∂ς

.
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According to the above definition together with (2.6) and (2.7), it is possible to construct an ap-
proximation operator in order to generalize and extend the theory of interpolation of functions
to operators.

In view of (1.2) and (2.4), we introduce the following Urysohn type nonlinear Bernstein
operators;

(2.8) (NBnF ) (x (t) , y(t)) =

1∫
0

1∫
0

[
n∑
k=0

n∑
i=0

Pk,i,n

(
x(s), y(z), f

(
t, s, z,

k

n
,
i

n

))]
dsdz

where n is a non-negative integer, Pk,i,n satisfy some suitable assumptions.and 0 ≤ x(s), y(z) ≤
1.

Now, we assemble the main definitions and notations which will be used throughout the
paper.

Let X be the set of all bounded Lebesgue measurable functions f : [0, 1]5 → R+
0 = [0,∞).

Let Ψ be the class of all functions ψ : R+
0 → R+

0 such that the function ψ is continuous and
concave with ψ(0) = 0, ψ(u) > 0 for u > 0.

We now introduce a sequence of functions. Let {Pk,i,n}n∈N be a sequence of functions Pk,i,n :
[0, 1] x [0, 1] xR→ R defined by

(2.9) Pk,i,n (t, l, u) = pk,n(t)pi,n(l)Hn(u)

for every t, l ∈ [0, 1], u ∈ R, where Hn : R → R is such that Hn(0) = 0 and pk,n(•) is the
Bernstein basis. For simplicity we will write

Pk,i,n (t, l) := pk,n(t)pi,n(l).

In what follows, throughout the paper, we assume that µ : N → R+ is an increasing and
continuous function such that lim

n→∞
µ(n) =∞.

First of all we assume that the following conditions hold:

a ) Hn : R→ R is such that
|Hn(u)−Hn(v)| ≤ ψ (|u− v|) ,

holds for every u, v ∈ R, for every n ∈ N. That is, Hn satisfies a (L−Ψ) Lipschitz condition.

b ) Denoting by rn(u) := Hn(u)− u, u ∈ R and n ∈ N, such that for n sufficiently large

sup
u
|rn(u)| = sup

u
|Hn(u)− u| ≤ 1

µ(n)
,

holds.

Following our announced aim, in this part we recall results regarding the univariate and
linear case of the celerated Bernstein polynomials.

Lemma 2.1. For (Bnt
s)(x, y), s = 0, 1, 2, one has

(Bn1)(x, y) = 1

(Bnt)(x, y) = x

(Bnt
2)(x, y) = x2 +

x(1− x)

n
.
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For proof of this Lemma see [27].

By direct calculation, we find the following equalities:

(Bn (t− x)
2
)(x, y) =

x(1− x)

n
, (Bn (t− x))(x, y) = 0 .

Lemma 2.2. For the central moments of order m ∈ N0

Tn,m(x) :=

n∑
k=0

(k − nx)
m
pk,n (x) ,

for each m = 0, 1, ... there is a constant Am such that

0 ≤ Tn,2m(x) ≤ Amnm.

The presented well-known inequality can be found in [17].

3. CONVERGENCE PROPERTY

We now introduce some notations and structural hypotheses, which will be fundamental in
proving our convergence theorems.

Let C[0, 1] the Banach space of continuous functions u : [0, 1]→ R endowed with the norm

‖u‖ = sup{|u(x)| : x ∈ [0, 1]}.

Definition 3.1. Let f ∈ C
(

[a, b]
5
)

and δ > 0 be given. Then the complete modulus of continuity is
given by;

(3.10) ω (δ) = sup√
(u1−u2)

2+(v1−v2)2≤δ
|f(t, s, z, u1, v1)− f(t, s, z, u2, v2)| .

Further on, the first and second partial modulus of continuity are given by

ω1(δ1, 0) = sup
|u1−u2|≤δ1

|f(t, s, z, u1, v1)− f(t, s, z, u2, v1)| ,

ω2(0, η) = sup
|v1−v2|≤η

|f(t, s, z, u1, v1)− f(t, s, z, u1, v2)| .

Recall that ω (f ; δ) has the following properties;

(i) Let λ ∈ R+, then ω (f ;λδ) ≤ (λ+ 1)ω (f ; δ) ,

(ii) lim
δ→0+

ω (f ; δ) = 0,

(iii) |f(t, s, z, u1, v1)− f(t, s, z, u2, v2)| ≤ ω (δ)

(
1 +

√
(u1−u2)

2+(v1−v2)2
δ

)
,

Note that the same properties also hold for partial moduli of continuity.

We are now ready to establish one of the main results of this study:

Theorem 3.1. Let F be the Urysohn integral operator with 0 ≤ x(s), y(z) ≤ 1. Then (NBnF )
converges to F uniformly in x, y ∈ C[0, 1]. That is

lim
n→∞

‖(NBnF ) (x (t) , y(t))− F (x (t) , y(t))‖C([0,1]2) = 0.
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Proof. In view of the definition of the operator (2.8), by considering (2.4), (2.9), (2.6) and (2.7),
we have

|(NBnF ) (x (t) , y(t))− F (x (t) , y(t))|

=

∣∣∣∣∣∣
1∫

0

1∫
0

[
n∑
k=0

n∑
i=0

Pk,i,n

(
x(s), y(z), f

(
t, s, z,

k

n
,
i

n

))]
dsdz − F (x (t) , y(t))

∣∣∣∣∣∣
≤

1∫
0

1∫
0

n∑
k=0

n∑
i=0

Pk,i,n (x, y)

∣∣∣∣Hn

(
f

(
t, s, z,

k

n
,
i

n

))
−Hn (f (t, s, z, x(s), y(z)))

∣∣∣∣ dsdz
+

1∫
0

1∫
0

n∑
k=0

Pk,i,n (x, y) |Hn (f (t, s, z, x(s), y(z)))− f(t, s, z, x(s), y(z))| dsdz

:= I1 + I2.

By assumption b) I2 tends to zero as n→∞. In fact

I2 =

1∫
0

1∫
0

n∑
k=0

n∑
i=0

Pk,i,n (x, y) |Hn (f (t, s, z, x(s), y(z)))− f(t, s, z, x(s), y(z))| dsdz

≤
1∫

0

1∫
0

n∑
k=0

n∑
i=0

Pk,i,n (x, y)
1

µ (n)
dsdz

=
1

µ (n)
,

which tends to zero as n → ∞. Now, it is sufficient to evaluate the term I1. Using the defi-
nition of the function F1 (t, s, z, x(s), y(z)) , by concavity of the function ψ, and using Jensen
inequality, we obtain

I1 ≤
1∫

0

1∫
0

n∑
k=0

n∑
i=0

Pk,i,n (x, y)ψ

(∣∣∣∣f (t, s, z, kn , in
)
− f (t, s, z, x(s), y(z))

∣∣∣∣) dsdz
≤ ψ

 1∫
0

1∫
0

n∑
k=0

n∑
i=0

Pk,i,n (x, y)

∣∣∣∣f (t, s, z, kn , in
)
− f (t, s, z, x(s), y(z))

∣∣∣∣ dsdz

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≤ ψ


1∫

0

1∫
0

n∑
k=0

n∑
i=0

Pk,i,n (x, y)

∣∣∣∣F1 (t, s, z, x(s), y(z))− F1

(
t, s, z,

k

n
,
i

n

)∣∣∣∣ dsdz
+

1∫
0

1∫
0

∣∣∣∣∣f (t, s, z, x(s), 0)−
n∑
k=0

pk,n (x(s)) f

(
t, s, z,

k

n
, 0

)∣∣∣∣∣ dsdz
+

1∫
0

1∫
0

∣∣∣∣∣f (t, s, z, 0, y(z))−
n∑
i=0

pi,n (y(z)) f

(
t, s, z, 0,

i

n

)∣∣∣∣∣ dsdz


:≤ I1,1 + I1,2 + I1,3.

Let us divide the first term into four parts as;

I1,1 = ψ

 1∫
0

1∫
0

n∑
k=0

n∑
i=0

Pk,i,n (x, y)

∣∣∣∣F1 (t, s, z, x(s), y(z))− F1

(
t, s, z,

k

n
,
i

n

)∣∣∣∣ dsdz


:≤ I1,1,1 + I1,1,2 + I1,1,3 + I1,1,4,

where

I1,1,1

= ψ

 1∫
0

1∫
0

∑
| kn−x(s)|<δ1

∑
| in−y(z)|<δ2

Pk,i,n (x, y)

∣∣∣∣F1 (t, s, z, x(s), y(z))− F1

(
t, s, z,

k

n
,
i

n

)∣∣∣∣ dsdz
 ,

I1,1,2

= ψ

 1∫
0

1∫
0

∑
| kn−x(s)|<δ1

∑
| in−y(z)|≥δ2

Pk,i,n (x, y)

∣∣∣∣F1 (t, s, z, x(s), y(z))− F1

(
t, s, z,

k

n
,
i

n

)∣∣∣∣ dsdz
 ,

I1,1,3

= ψ

 1∫
0

1∫
0

∑
| kn−x(s)|≥δ1

∑
| in−y(z)|<δ2

Pk,i,n (x, y)

∣∣∣∣F1 (t, s, z, x(s), y(z))− F1

(
t, s, z,

k

n
,
i

n

)∣∣∣∣ dsdz
 ,

and

I1,1,4

= ψ

 1∫
0

1∫
0

∑
| kn−x(s)|≥δ1

∑
| in−y(z)|≥δ2

Pk,i,n (x, y)

∣∣∣∣F1 (t, s, z, x(s), y(z))− F1

(
t, s, z,

k

n
,
i

n

)∣∣∣∣ dsdz
 .
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Since x, y ∈ C[0, 1], then there exist δ1, δ2 > 0 such that∣∣∣∣F1 (t, s, z, x(s), y(z))− F1

(
t, s, z,

k

n
,
i

n

)∣∣∣∣ < ε

holds true when
∣∣ k
n − x(s)

∣∣ < δ1 and
∣∣ i
n − y(z)

∣∣ < δ2. So one can easily obtain

I1,1,1 < ψ (ε) .

As to the other terms ∣∣∣∣F1 (t, s, z, x(s), y(z))− F1

(
t, s, z,

k

n
,
i

n

)∣∣∣∣ ≤ 2M

holds true for some M > 0, when
∣∣ k
n − x(s)

∣∣ ≥ δ1 or
∣∣ i
n − y(z)

∣∣ ≥ δ2.
In view of Lemma 2, we obtain

I1,1,2 = ψ

 1∫
0

1∫
0

∑
| kn−x(s)|<δ1

∑
| in−y(z)|≥δ2

Pk,i,n (x, y)

∣∣∣∣F1 (t, s, z, x(s), y(z))− F1

(
t, s, z,

k

n
,
i

n

)∣∣∣∣ dsdz


≤ ψ

2M

1∫
0

1∫
0

∑
| kn−x(s)|<δ1

∑
| in−y(z)|≥δ2

(
i− ny(z)

δ2

)2

Pk,i,n (x, y) dsdz


≤ ψ

2M

1∫
0

1∫
0

∑
| kn−x(s)|<δ1

∑
| in−y(z)|≥δ2

(
i− ny(z)

δ2

)2

Pk,i,n (x, y) dsdz


≤ ψ

(
2M

δ22

A1

n

)
.

Similarly one has

I1,1,3 ≤ ψ
(

2M

δ2
A1

n

)
,

and

I1,1,4 ≤ ψ
(

2M

δ21δ
2
2

A2
1

n2

)
.

Collecting these estimates we have

|(NBnF ) (x (t) , y(t))− F (x (t) , y(t))| ≤ ψ (ε)+ψ

(
2MA1

nδ21

)
+ψ

(
2MA1

nδ22

)
+ψ

(
2M

δ21δ
2
2

A2
1

n2

)
+

1

µ (n)
.

That is
lim
n→∞

‖(NBnF ) (x (t) , y(t))− F (x (t) , y(t))‖C([0,1]2) = 0.

This completes the proof. �

Theorem 3.2. Let F be the Urysohn integral operator with x, y ∈ C[0, 1], and 0 ≤ x(s), y(z) ≤ 1.
Then

|(NBnF ) (x (t) , y(t))− F (x (t) , y(t))| ≤ 2ψ (ω (f ; δ)) +
1

µ (n)

holds true, where δ =
√

2A1

n .
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Proof. Clearly one has

|(NBnF ) (x (t) , y(t))− F (x (t) , y(t))|

≤
1∫

0

1∫
0

n∑
k=0

n∑
i=0

Pk,i,n (x, y)

∣∣∣∣Hn

(
f

(
t, s, z,

k

n
,
i

n

))
−Hn (f (t, s, z, x(s), y(z)))

∣∣∣∣ dsdz
+

1

µ (n)

: = In,1 (x) +
1

µ (n)
,(3.11)

say. Since x, y ∈ C[0, 1] we can re-write (3.11) as follows

In,1 (x) ≤
1∫

0

1∫
0

n∑
k=0

n∑
i=0

Pk,i,n (x, y)ψ

(∣∣∣∣f (t, s, z, kn , in
)
− f (t, s, z, x(s), y(z))

∣∣∣∣) dsdz
≤

1∫
0

1∫
0

n∑
k=0

n∑
i=0

Pk,i,n (x, y)ψ (ω (f ; δ)) dsdz

≤ ψ

 1∫
0

1∫
0

n∑
k=0

n∑
i=0

Pk,i,n (x, y)ω (f ; δ) dsdz


≤ ψ

 1∫
0

1∫
0

n∑
k=0

n∑
i=0

Pk,i,n (x, y)


√(

k
n − x(s)

)2
+
(
i
n − y(z)

)2
δ

+ 1

ω (f ; δ) dsdz


= ψ

ω (f ; δ)

1∫
0

1∫
0

n∑
k=0

n∑
i=0

Pk,i,n (x, y)

√(
k
n − x(s)

)2
+
(
i
n − y(z)

)2
δ

dsdz


+ ψ

ω (f ; δ)

1∫
0

1∫
0

n∑
k=0

n∑
i=0

Pk,i,n (x, y) dsdz


≤ ψ

ω (f ; δ)

δ

1∫
0

1∫
0

(
n∑
k=0

n∑
i=0

Pk,i,n (x, y)

[(
k

n
− x(s)

)2

+

(
i

n
− y(z)

)2
])1/2

dsdz


+ ψ (ω (f ; δ))

≤ ψ

(
ω (f ; δ)

δ

[
2A1

n

]1/2)
+ ψ (ω (f ; δ)) .

Taking into account that ω (f ; δ) is the modulus of continuity defined as (3.10). If we choose

δ =

√
2A1

n
,

then one can obtain the desired estimate, namely,

|(NBnF ) (x (t) , y(t))− F (x (t) , y(t))| ≤ 2ψ (ω (f ; δ)) +
1

µ (n)
.

Thus the proof is now complete. �
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Theorem 3.3. Let F be the Urysohn integral operator with x, y ∈ C[0, 1], and 0 ≤ x(s), y(z) ≤ 1.
Then

|(NBnF ) (x (t) , y(t))− F (x (t) , y(t))| ≤ 2

[
ψ

(
ω1

(
f ;

[
A1

n

]1/2))
+ ψ

(
ω2

(
f ;

[
A1

n

]1/2))]

+
1

µ (n)

holds true.

Proof. Clearly one has

|(NBnF ) (x (t) , y(t))− F (x (t) , y(t))|

≤
1∫

0

1∫
0

n∑
k=0

n∑
i=0

Pk,i,n (x, y)

∣∣∣∣Hn

(
f

(
t, s, z,

k

n
,
i

n

))
−Hn (f (t, s, z, x(s), y(z)))

∣∣∣∣ dsdz +
1

µ (n)

=

1∫
0

1∫
0

n∑
k=0

n∑
i=0

Pk,i,n (x, y)

∣∣∣∣ Hn

(
f
(
t, s, z, kn ,

i
n

))
−Hn

(
f
(
t, s, z, x(s), in

))
+Hn

(
f
(
t, s, z, x(s), in

))
−Hn (f (t, s, z, x(s), y(z)))

∣∣∣∣ dsdz +
1

µ (n)

≤
1∫

0

1∫
0

n∑
k=0

n∑
i=0

Pk,i,n (x, y)

∣∣∣∣Hn

(
f

(
t, s, z,

k

n
,
i

n

))
−Hn

(
f

(
t, s, z, x(s),

i

n

))∣∣∣∣ dsdz
+

1∫
0

1∫
0

n∑
k=0

n∑
i=0

Pk,i,n (x, y)

∣∣∣∣Hn

(
f

(
t, s, z, x(s),

i

n

))
−Hn (f (t, s, z, x(s), y(z)))

∣∣∣∣ dsdz
+

1

µ (n)

:= In,1 (x) + In,2 (x) +
1

µ (n)
,

say. Since x, y ∈ C[0, 1] we can re-write (3.11) as follows: By concavity of the function ψ, and
using Jensen inequality, we obtain

In,1 (x) =

1∫
0

1∫
0

n∑
k=0

n∑
i=0

Pk,i,n (x, y)

∣∣∣∣Hn

(
f

(
t, s, z,

k

n
,
i

n

))
−Hn

(
f

(
t, s, z, x(s),

i

n

))∣∣∣∣ dsdz
≤

1∫
0

1∫
0

n∑
k=0

n∑
i=0

Pk,i,n (x, y)ψ

(
ω1

(
f ;

∣∣∣∣kn − x(s)

∣∣∣∣)) dsdz
≤ ψ

 1∫
0

1∫
0

n∑
k=0

n∑
i=0

Pk,i,n (x, y)ω1

(
f ;

∣∣∣∣kn − x(s)

∣∣∣∣) dsdz

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Since ψ is non decreasing, then one has

In,1 (x) ≤ ψ

 1∫
0

1∫
0

n∑
k=0

n∑
i=0

Pk,i,n (x, y)


√(

k
n − x(s)

)2
δ1

+ 1

ω1 (f ; δ1) dsdz


≤ ψ

(
ω1 (f ; δ1)

δ1

[
A1

n

]1/2)
+ ψ (ω1 (f ; δ1)) .

Similarly

In,1 (x) ≤ ψ

(
ω2 (f ; η)

η

[
A1

n

]1/2)
+ ψ (ω2 (f ; η)) .

If we choose δ = η =
[
A1

n

]1/2
, so we get the desired estimate. �
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