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STABILITY OF THE RECONSTRUCTION DISCONTINUOUS
STURM-LIOUVILLE PROBLEM

AHU ERCAN AND ETIBAR PANAKHOV

ABSTRACT. In this work, we study stability of the inverse spectral problem for
the Sturm-Liouville operator —D? + ¢ with discontinuity boundary conditions
inside a finite closed interval. We use the method which is given by Ryabushko
for regular Sturm-Liouville operator in [22] to obtain stability results. These
results give a bound for the difference between the spectral functions of asso-
ciated problems. In addition, we give asymptotic representation of the eigen-
values and a formula for the representation of the norming constants by two
spectra.

1. INTRODUCTION

The inverse problems of spectral analysis imply the restoration of a linear op-
erator from some of its spectral characteristics. Such characteristics are spectra,
spectral functions, scattering data etc. Inverse problems of Sturm-Liouville opera-
tors have been worked in detail by a lot of mathematicians (see [1]-[10]).

Boundary value problems with discontinuity conditions inside the interval of-
ten appear in mathematics, mechanics, physics, geophysics and other branches of
natural properties. Such problems are connected with discontinuous material prop-
erties. Inverse problems for Sturm-Liouville operators with discontinuities inside
the interval were investigated in ([I1]-[18]).

The local or global predictions mean that ensure a small variation of the po-
tentials under a small variation of the spectral data and vice versa. The study of
the local stability is a long-running problem. The study of the uniform stability
has been studied relatively recently in [20]. Uniform stability of the problem in
question for potentials in the scale of Sobolev spaces Ws* with a@ = —1, is solved
by a different method in [2I]. The stability conclusions are rather popular, in fact
with entire spectral data. Ryabushko [22] indicated the variation of the difference
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between two spectral functions p; and p, when a finite number of eigenvalues co-
incide. Another result is given by McLaughlin [19]: if the medium values of the
potentials are zero, then we have the relation of local diffeomorphism between po-
tentials in Ly [0,1] and sequences {X,, — n?72,p,} in Iy x lo, where {p,} are the
norming constants. Marchenko and Maslov dealt with the stability problem for
Sturm-Liouville operators in the case of the spectral functions p; () coincide on
given interval [23].

The meaning of the stability problem of differential operators is to estimate the
difference between the spectral functions, solutions and potentials when a finite
number of the eigenvalues of operators overlap. As far as we know, the stability
problems for discontinuous Sturm-Liouville operators have not been studied yet.
But these type problems for different types of regular and singular operators have
been studied by [22]-[25]. Our approach is much more difficult than the method
given in [22], because we apply this method for discontinuous Sturm-Liouville prob-
lem. The main aim of this study is to show the stability of the reconstruction
discontinuous Sturm-Liouville problem from two spectra on (0, ).

2. PRELIMINARIES
Consider the following Sturm-Liouville operator L; defined by
Liy=—y"+q(@)y= My, (2.1)
on the interval 0 < x < 7 with the boundary conditions

yl (07 >‘) - hly (Oa A) = Oa

y (m,\) + Hy (m,\) =0, (2.2)
with the jump conditions
v(3+0) = av(5-0)
Y (g + 0) — oty (g _ 0) . (2.3)

Consider the second problem defined by equation (2.1) with boundary conditions

y/ (07 >‘) - h2y (Oa A) = Oa

Y (m,\) + Hy (m,\) = 0, (2.4)

with the jump conditions , where A is a spectral parameter, a # 1, a > 0, hq,
hs and H are real constants with h1# hy and ¢; (z) is a real valued function and
has bounded derivative in L; (0, ).

Let Ad1o < A1 < ..and py g < py; < ... be the eigenvalues of the problems
, , and , , , respectively. It is easily seen that numbers
A, are real and simple. Moreover in the next section they will be proven that the
sequences {A1,,,}-  and { Ml,n}:O:O satisfy the following asymptotic relations for
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n — 00, by using classical method

2 H 2 1
S =+ a‘hi+H+oq(m)/ 10 <2> 7 (2.5)
™ n
2h H 2 1
g et o (@) +0<2>, (2.6)
? ™ n

respectively, where o1 (x) = f:/g q (t) dt.
Let us consider new problems

Loy=—y"+q@@y=X\y, (0<z<m) (2.7)

with the conditions (2.2), (2.3) and (2.3), (2.4), where the real potential g5 () has

bounded derivative in L; (0, 7).
Let the sequences {/\2 n}n o and {py ,} , De the sets of eigenvalues of Ly satis-

fying conditions 2.3) and ( . respectlvely The sequences {A2n},

and {fy,} satlsfy the following asymptotlc relations for n — oo,

mn+a2h1+ﬂ+02(ﬂ)/2+0<1), (2.8)

™ n?

and

PhatH+oa(m) /2 <1>

p— 3 (2.9)

\/:ul,n =n-+

where o ( f /2 q2 () dt.

Let the functlons % (:r A) and ¢ (z, A) be the solutions of ([2.1)) and (2.7)), respec-
tively, which satisfy the initial conditions

0 (0,\) =1, ¢ (0,\) = hy (2.10)

and the jump conditions (2.3). It can be proven that ¢ (X, ) is also the solution of
the following integral equations:
For z < 3

h
o (z,A) = cos VAz + —

. e .
\f)\sm\ﬂx—&— \F)\O/smxf)\(:v—t) @ () p (t,A)dt;  (2.11)
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forx > §
o(x,\) = at (cosﬁx+\};%sin\f>\x)
. hy .
+a (cosx[\(w—x)—l—\/xmn\[\(w—x))
at | )
+ﬁb/sm\&(x —t)q () p(t,N)dt
+\/X0/sinﬁ(7r—x—t)q1 (£) o (£, A) dt
1
+ﬁ/51nﬁ(x —t)qu (£) o (£, \) dt (2.12)
where

1 1
+
= +—.
o= (ax )

Set the norming constants and spectral functions of the problems (2.1)), (2.2)), (2.3)
and (2.2), (2.3), (2.7) by

50 ) T, 1
tn= [ ¢ @ n)dr+ [ ¢ (@, n)ds, ppt(N)= )
0 40 Arn <A A1,n
and
70 T 1
a2 pn = f 7/) (‘77,>\2,n)d-77+ f T/J (xa)\Q,n)dxxa D2 ()‘): Z 5
0 310 Aam<r X2
respectively.

3. MAIN RESULTS

In this study, we apply Ryabushko’s method given in [22] for Sturm-Liouville
operator with discontinuity conditions inside an interval. By this method, we obtain
a bound for variation of the spectral functions p; (A) and py (\) when the eigenvalues
{\jn} and {Nj,n} coincide the numbers of N +1 forn =1,2,.., N +1. In addition,
we derive a formula for the norming constants of problem , , with
respect to two spectra.

Theorem 1. Following equality holds
h2 - hl o ’ Al,k’ - Al,n
H1n = A o M1k — Aln

A1n =

)
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for n € N, where the symbol H/ means that the factor with the number k = n has
been omitted from the infinite product.

Proof. The functions ¢ (z,A) and ¢ (x,\) are the solutions of equation (2.1)) satis-
fying conditions

e(0,N) =1, ¢ (0,\) = hy (3.1)

¢ (07 >‘) =1, CI (07 >‘) = ha, (3‘2)

respectively. The eigenvalues {A1,} and {y, ,} coincide with the zeros of the
functions

01 (A) =/ (m,A) + Hep (7, ),

Dy (N) = (m, \) + H (m, N,

respectively. In this proof, for briefly denote by A1, = A, and p,, = u,. The
functions ®; (A) and @5 (\) are entire in A for fixed z. It’s clear from that &4 (\)
and ®» (A) are entire functions of order one half and therefore are determined by
their zeros, to within a constant multiplying factor. Therefore,

k=0

& (\) = O ] <1—;k>
and

By (N) = Oy [] (1—A>

k=0 1233

where C7 and Cy are constants. Put
[, A) = (@, A) +m (X ¢ (z, )
and f (x, \) satisfy the boundary condition
f () + Hf (m,\) =0. (3.3)
It follows from

m()\) = — CI(W’/\)_FHC(T“)‘) _ _(I)Q ()\)
O (m,\) + Hp (1, \) o (N

It can be seen from this formula that m (A) is a meromorphic function, its poles

and zeros coinciding with the eigenvalues of problem (2.1)), (2.2)), (2.3) and (2.1)),
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(2.3)), (2.4), respectively. It follows from Green’s formula that
%7

) [ @) F(zAe)de+ (M —A2) [ f(z, A1) f(z,Ae)de
0 +0

m\:!

z_9

= [ {=f"(@X ) f(@ )+ f(@ ) f(2,2)} det

0

T @A) () + f (0 £ (@ M) ) da
30

= (/@) f @A) = f (@ M0) f (@ 20)|§
+ (f (2, 22) f (2, 00) = f' (2, M) f (2, 22)]5 40
= [m(\) —mA2)] (h1 = h2). (3.4)
If we get Ay =\, Ao =\ in |D we obtain

370 - m — Imm (X)
[ f@A)f(zA)de+ [ f(a:,)\)f(a:,)\)darz(hl—hg)w.
0 240

It can be seen from this formula that if hy > hq, then the function m (\) maps the
upper half-plane onto itself (for ho < h; this holds for the lower half-plane). Hence,
the zeros and poles of the function m (\), i.e. the eigenvalues of problems (2.1),

(2.2), (2.3) and (2.1), (2.3), (2.4) alternate. Applying Green’s formula again, we

have
70 m
) [ f@ N (@ A)de+A=N,) [ f (2, \p) do
0 +0

w\:l

0

= (f@N ¢ (@A)~ f (@A) e (@ ))lE
+ (f (@ N (@) = £ (2,0 9 (2, M) 3 40
= hy — hy.

Assuming that A — A,,, we have the formula

o :%fowz(xA)dx+ fgog(x)\)dm: he — I .
0 ’ sho Jim O = A m ()

The distribution of the zeros of entire function m () as follows:

mow = G B0 (%)

- e I(5) 0 (e
B 01]};[() Ak kl;lo Ak — A
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here we must show the equality C' = g—f | o (i—i) =1 [2]. The asymptotics of

the solutions yield that
D (N
1
)\~1>1;noo (I)Q ()\)

50 -1
tim &L (1_A) (1_A)
A——00 02 k=0 )\k M

. ] (Mk> | ] (Ak = )\)
_ | I 1 I | =1 3.6
CQ )\k /\—1>IE100 . — A ( )

k=0

:]_7

that is

It can be easily seen that

oo oo
lim <A’f - A) = lim (1 4 “’“) . (3.7)
)\—>—ook:0 K — A A——o00 =0 M — A
Now, considering the following series
S
i

and using the asymptotic formulas of the eigenvalues in (2.5) and (2.6]), we obtain
Ak — i, = O (1) and the series
i Ak = Bg | Ao~ o
+
= Me A to — A

converges uniformly in a neighbourhood of the point A = —oo. Therefore the limit
in each term of the infinite product (3.7) can be approached, that is,

o0 )\ o
lim <1 + ’“‘X“) —1.
A— —00 fralies /’Lk —

Considering (3.6) and (3.7)), we show that C = 1. Then we can rewrite (3.5) as

Qy =

 ha— My ﬁ Ak = An
)\lin)}n (A=) o Mk — An
where the factor with the number £ = n has been omitted from the infinite product

which denotes the symbol H/.
Hence, we denote the representation of the norming constants of problem (2.1)),

(2.2), (2.3) with respect to two spectra by
ho —hi 17k — Ain

Hin — Al o M1k — Al

Q1 n =

for every n € N. So, the proof is completed.
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Next we give main theorem in this study. O

Theorem 2. Let the eigenvalues {\1 1}, {Aax} and {py 1.}, {po,} coincide num-
bers of N + 1 with each other, that is, Mk = A2 and py, = pgy for k =
2,...., N +1, then

8A (1 + 2) 3A(1+22132)
Ve my <o (Of) 20 aw) s,

fork>N+1n< ,andNES\/there

A= e -ala+o (),

MHH:‘

Before giving the proof of the main theorem let us give some necessary lemmas.

Lemma 3. Let ¢ () € Ly (0,7) and Im X > 0, then the following inequalities hold

for VA > o ()

M r< T (3.8)

’( (A, z) — cos VAz — \ﬂ—a ’

smxfx) ivae

7

‘(90 (A z) = (O‘+ - Of) cos VAz — (Ol+ +Of) %sin \F)\m) eVAT| o
w5 (1125 2 o)onr(eneh)

23] (V3] -0 @) (|v3] = ru @) i

at —a~) eV A sin vz r
( ) /fh (t) dt

T\ zx) — Wi J
at 4+ a” T at — T
< Wa (Z)+ ( ‘\F‘ ) o1 (2) + 0 (i) 2>2 (310

where o (x) = / lg1 ()| dt and 011 (z) = / lg1 (t)] dt.
0 il

Proof. For x < 5, consider the function defined by

T(\z) = |:<p()\,x) — cos V Az — %sin \F)\w} eV Im VA > 0.
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It is clear that 7 (A, ) can be written as follows:

_ i x‘in r— - efiﬁt eiﬁm
fOva) = \f/\o/s VA=t (1) [r () e V] eV Rear

17 4 .
_,_7/ sin VA (z — t) g1 (£) cos VAte™Y A @ iVt gy
VA

1 [ . hy iV (z—t) iVt
+—/smﬁ(x—t) Q1 () —= sin VAte?VAE VA g (3.11)
ﬁo VA

Let introduce
m(\x) = [ax |7 (A 1))

It is known that by [22], we have

sin VA (z — t) VA=)

VA
‘COS \E\teiﬁt’

1
—, ImA>0, z>t>0),
VA

IN

1, (ImA >0, t>0). (3.12)

The equation (3.12)) yields that

m(\z) < ij (1) dt + ‘%‘jm (t)] dt + |";|O/I|q1 (8)] dt

Hence, the last inequality gives the equation 1] for ‘ﬁ > o (z). Let us prove
equation (3.9). Let’s define the function for z > %, by (2.12)

t o ,
Fhz)=|e\z)— (at —a7) cos VA — hl(a\f:\’—a)sinﬁx] e’ﬁgc, Im VA > 0.
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It is clear that 7 (A, z) can be written as

VA

+ H ) .
T(Az) = %/ sin VA (x—1t)q1 (t) {7‘ (A1) e~V + cos VAt + ﬂ sin ﬁt:| ez\/ert
0

+%/ sin VA (z 4 t) q1 (t) |:T (A1) eV 4 cos VAL + Uy sin \F)\t} eVt
0

VA

+— [ sinVA(z—t )T (At e~ ViV gy
> / (= t)ar ()7 (1)

x

M sin T — cos Ve
HE [sin VAt = a0 cos Vare R

2

M msin T — ﬂsin 6i\/Xz
5 / VA ( t)ql(t)\[\ VeV dt,

[NE]

Denote

m (A z) = max. 17 (A D)

[ME)

Considering last equality with (3.12), we can rewrite (3.13)) as:

’%‘x)/ g1 ()| dt. (3.14)

(3.13)
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Writing (3.8]) into (3.14)), desired result is obtained. Now let’s consider the integral
to obtain (3.10))

x

W\A(JZ)/ sin VA (z — t) cos VAtqy (t) dt

2

hi(at +a7) [ . .
+\f>\w/smﬁ(x — t)sin V\tqy (t) dt

_ (af —a7)sin \/Xx/lh () dt — (ot +a™)hy cosxﬁx/q1 () dt

2/ J 2\ s
(at —a™) [ .
+M/s1n VA (z—2t) gy (t)dt
Jalta)h [es VA -2 m @t (8.15)

[NE

Combining (3.15]) with (3.9), we have

. (at — ™) eV sin vz [
FO0a) — s /m@ﬁ

[NE]

+
< Ol +Ol /|q1 )\tdt+u/‘ql |dt
(Oé++Oé hl/ 1j 5
+ \ MMMM+¢&|mwwu@a

at+a-) [ at +a~ r
+%/|Q1 (t)|dt+%/|fh ()| dt

w3

(et —a ) i

Substituting (3.8) and ( into , we obtain the inequality (3.10] - So the
proof is Completed O
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Lemma 4. The eigenvalues A1, of problem , , satisfy the asymp-

totic formula

2h, + H 1
\/A1m:n+ah1+ +01(ﬁ)+0< ) (3.17)

™ 2mn n?
as n — 0o.

Proof. From (3.10)), one can easily seen that
hi(at +a~
eNz) = (aF —a7)cosViz + (e +a7) sin vV Az
VA
at —a ) sinyVz at +a” 7
( ) o1 (2) + ¢ ), (%)
2vA VA

+ 2
+Mgn () + 0 (1> (3.18)

and

/

e (M) = M (a+ + a_) cos VAz — VA (a+ — a_) sin vV \z +
(0* —a7)sinVieq (@) | (0" —a)qi (@)
2V/A 2V/A
(at —a7) cosVAzoy () Lo (1) .
2
Putting and into boundary condition
QDI (m,A) + Hep(m,A) =0

and making classical calculations, we can easily obtain (3.17).
Now we give the proof of the main theorem in this study. O

_|_

(3.19)

Proof of the Main Theorem. Consider the difference between the spectral functions

PN -p = o (12

X <A a1n a2.n
where
L Ak = M) (Han = A2n)
a2.n E=N-+2 (A2,k - )\Q,TL) (,UJLk- - )\l,n)
From the definition of the variation, we have
a1.n 1
Var A) — A < 1—-—=
_Jar A = (V) < max 1= 2 —
AR <o ’
= p; (Ao) max |1 — n (3.20)
n<Ao OéQ)n
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for Ay < An42. Therefore, let’s consider the absolute value of the term at the right
side of ([3.20) to assess the difference between the spectral functions as follow:

= (AMx—An — Ao
max |1 — 2| = max 1 — e = Avn) (20 = an) | (3.21)
n<% Qz.n n<% k=N+2 ()\27k - )\2,’”) (lu’l,k - )\1:”)
Considering the infinite product
Ak — Arn) (Hop — A2n)
v (An) = ’
k=N-2 (A2k — A2.n) (,ul’k - >\1,n)
it follows that
- Mk — Ain - Ho e — A2,n
¥ \,) = [ Y In ( + ) I
k=N-+2 Aok = Az pine NPk ALn
oo
Aok — A1 k) ‘
< Y |m (1 J e
e A2k — A1
i Z ln(l M1k f;Qk)‘
k=N+2 Hig = Aln
It can be easily seen
Aok — A — ok
‘ 2.k 1,k <1 and ‘Ml,k M2 g <1
Aok — Ain Pk — A
fork>N+1,n< % It is well known that the following inequality holds
In(l1-2)< 2
114
for |z| < 1. The last inequality implies that
o A2,k —A1,k K1k —Hak
A2 Ana | M1 —A1,n
S R S R M A
k=N+2 )\2 k— A1 n k=N+2 ,Ufl,k_)\l,n
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Here, by the asymptotic estimates of the eigenvalues, we can obtain

‘)\2,1@ — k| A
A2k — Alyn Ao (1 _ /;;k)
- A
By
2 L&
(-1 (1- L2
B A
o1y (1o )
(k—1) (1 RS
4A (1+ 525
M (3.23)
3N?2
and 5
— 4A (14 52+
’Nl,k Ha < ( +22N2) (3.24)
/‘Ll,k? - )\17774 3N
fork>N+1,n< % Substituting 1) and 1) into 1 , we have
4A(14535)
3N2
InW¥(\,)| <2 (i)
3N?
Considering the last inequality for N > 3v/A4, it can be obtained that
8A (1+ 52>
I (A,)] < 8A(L+ 5ya) (3.25)

3N?2
If we put (3.25)) into (3.21)) and use the serial expansion of the exponential function,
the following inequality holds

a1t 8)
< e 3Nn? -1

1— Q1n
ag.n

max
n<%

e M (3.26)

for N > 3v/A. Finally, if we put the inequality (3.26) into (3.20)), it yields that
N2> 8A (1+ 21%,2)63/*(1;22%)

4 3N?2

—00< A< Ao 4
for N > 3v/A. Therefore the proof is completed. ([l

Var  {o/ ()~ ps (N} <y (

Conclusion 5. In this study, we have emphasized the importance of the certain sta-
bility of the inverse discontinuous Sturm-Liouville problem. Applying Ryabushko’s
method, we show the approximity of the difference between the spectral functions
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of the problems , , and , , whose eigenvalues {\j i}
and {uj,k}, coincide the numbers of N +1. We give some asymptotic estimates for
the eigenvalues and the eigenfunctions of discontinuous eigenvalue problem ,
, and give a formula determining the norming constants according to two
spectra.
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