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STABILITY OF THE RECONSTRUCTION DISCONTINUOUS
STURM-LIOUVILLE PROBLEM

AHU ERCAN AND ETIBAR PANAKHOV

Abstract. In this work, we study stability of the inverse spectral problem for
the Sturm-Liouville operator −D2+ q with discontinuity boundary conditions
inside a finite closed interval. We use the method which is given by Ryabushko
for regular Sturm-Liouville operator in [22] to obtain stability results. These
results give a bound for the difference between the spectral functions of asso-
ciated problems. In addition, we give asymptotic representation of the eigen-
values and a formula for the representation of the norming constants by two
spectra.

1. Introduction

The inverse problems of spectral analysis imply the restoration of a linear op-
erator from some of its spectral characteristics. Such characteristics are spectra,
spectral functions, scattering data etc. Inverse problems of Sturm-Liouville opera-
tors have been worked in detail by a lot of mathematicians (see [1]-[10]).
Boundary value problems with discontinuity conditions inside the interval of-

ten appear in mathematics, mechanics, physics, geophysics and other branches of
natural properties. Such problems are connected with discontinuous material prop-
erties. Inverse problems for Sturm-Liouville operators with discontinuities inside
the interval were investigated in ([11]-[18]).
The local or global predictions mean that ensure a small variation of the po-

tentials under a small variation of the spectral data and vice versa. The study of
the local stability is a long-running problem. The study of the uniform stability
has been studied relatively recently in [20]. Uniform stability of the problem in
question for potentials in the scale of Sobolev spaces Wα

2 with α = −1, is solved
by a different method in [21]. The stability conclusions are rather popular, in fact
with entire spectral data. Ryabushko [22] indicated the variation of the difference
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between two spectral functions ρ1 and ρ2 when a finite number of eigenvalues co-
incide. Another result is given by McLaughlin [19]: if the medium values of the
potentials are zero, then we have the relation of local diffeomorphism between po-
tentials in L2 [0, 1] and sequences

{
λn − n2π2, ρn

}
in l2 × l2, where {ρn} are the

norming constants. Marchenko and Maslov dealt with the stability problem for
Sturm-Liouville operators in the case of the spectral functions pj (λ) coincide on
given interval [23].
The meaning of the stability problem of differential operators is to estimate the

difference between the spectral functions, solutions and potentials when a finite
number of the eigenvalues of operators overlap. As far as we know, the stability
problems for discontinuous Sturm-Liouville operators have not been studied yet.
But these type problems for different types of regular and singular operators have
been studied by [22]-[25]. Our approach is much more diffi cult than the method
given in [22], because we apply this method for discontinuous Sturm-Liouville prob-
lem. The main aim of this study is to show the stability of the reconstruction
discontinuous Sturm-Liouville problem from two spectra on (0, π) .

2. Preliminaries

Consider the following Sturm-Liouville operator L1 defined by

L1y = −y′′ + q1 (x) y = λy , (2.1)

on the interval 0 < x < π with the boundary conditions

y′ (0, λ)− h1y (0, λ) = 0,
y′ (π, λ) +Hy (π, λ) = 0,

(2.2)

with the jump conditions

y
(π

2
+ 0
)

= αy
(π

2
− 0
)

y′
(π

2
+ 0
)

= α−1y′
(π

2
− 0
)
. (2.3)

Consider the second problem defined by equation (2.1) with boundary conditions

y′ (0, λ)− h2y (0, λ) = 0,
y′ (π, λ) +Hy (π, λ) = 0,

(2.4)

with the jump conditions (2.3), where λ is a spectral parameter, α 6= 1, α > 0, h1,
h2 and H are real constants with h1 6= h2 and q1 (x) is a real valued function and
has bounded derivative in L1 (0, π).

Let λ1,0 < λ1,1 < .. and µ1,0 < µ1,1 < ... be the eigenvalues of the problems
(2.1), (2.2), (2.3) and (2.1), (2.3), (2.4), respectively. It is easily seen that numbers
λn are real and simple. Moreover in the next section they will be proven that the
sequences {λ1,n}∞n=0 and

{
µ1,n

}∞
n=0

satisfy the following asymptotic relations for
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n→∞, by using classical method

√
λ1,n = n+

α2h1 +H + σ1 (π) /2

πn
+O

(
1

n2

)
, (2.5)

√
µ1,n = n+

α2h2 +H + σ1 (π) /2

πn
+O

(
1

n2

)
, (2.6)

respectively, where σ1 (x) =
∫ x
π/2

q1 (t) dt.
Let us consider new problems

L2y = −y′′ + q2 (x) y = λy, (0 < x < π) (2.7)

with the conditions (2.2), (2.3) and (2.3), (2.4), where the real potential q2 (x) has
bounded derivative in L1 (0, π).
Let the sequences {λ2,n}∞n=0 and

{
µ2,n

}∞
n=0

be the sets of eigenvalues of L2 satis-
fying conditions (2.2), (2.3) and (2.3), (2.4), respectively. The sequences {λ2,n}∞n=0
and

{
µ2,n

}∞
n=0

satisfy the following asymptotic relations for n→∞,

√
λ2,n = n+

α2h1 +H + σ2 (π) /2

πn
+O

(
1

n2

)
, (2.8)

and

√
µ1,n = n+

α2h2 +H + σ2 (π) /2

πn
+O

(
1

n2

)
, (2.9)

where σ2 (x) =
∫ x
π/2

q2 (t) dt.
Let the functions ϕ (x, λ) and ψ (x, λ) be the solutions of (2.1) and (2.7), respec-

tively, which satisfy the initial conditions

ϕ (0, λ) = 1, ϕ′ (0, λ) = h1 (2.10)

and the jump conditions (2.3). It can be proven that ϕ (λ, x) is also the solution of
the following integral equations:
For x < π

2

ϕ (x, λ) = cos
√
λx+

h1√
λ

sin
√
λx+

1√
λ

x∫
0

sin
√
λ (x− t) q1 (t)ϕ (t, λ) dt; (2.11)
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for x > π
2

ϕ (x, λ) = α+
(

cos
√
λx+

h1√
λ

sin
√
λx

)
+α−

(
cos
√
λ (π − x) +

h1√
λ

sin
√
λ (π − x)

)

+
α+√
λ

π
2∫
0

sin
√
λ (x− t) q1 (t)ϕ (t, λ) dt

+
α−√
λ

π
2∫
0

sin
√
λ (π − x− t) q1 (t)ϕ (t, λ) dt

+
1√
λ

x∫
π
2

sin
√
λ (x− t) q1 (t)ϕ (t, λ) dt (2.12)

where

α± =
1

2

(
α± 1

α

)
.

Set the norming constants and spectral functions of the problems (2.1), (2.2), (2.3)
and (2.2), (2.3), (2.7) by

α1,n =

π
2−0∫
0

ϕ2 (x, λ1,n) dx+
π∫

π
2+0

ϕ2 (x, λ1,n) dx, p1 (λ) =
∑

λ1,n<λ

1

α1,n

and

α2,n =

π
2−0∫
0

ψ2 (x, λ2,n) dx+
π∫

π
2+0

ψ2 (x, λ2,n) dxx, p2 (λ) =
∑

λ2,n<λ

1

α2,n
,

respectively.

3. Main Results

In this study, we apply Ryabushko’s method given in [22] for Sturm-Liouville
operator with discontinuity conditions inside an interval. By this method, we obtain
a bound for variation of the spectral functions p1 (λ) and p2 (λ) when the eigenvalues
{λj,n} and

{
µj,n

}
coincide the numbers of N + 1 for n = 1, 2, .., N + 1. In addition,

we derive a formula for the norming constants of problem (2.1), (2.2), (2.3) with
respect to two spectra.

Theorem 1. Following equality holds

α1,n =
h2 − h1

µ1,n − λ1,n

∞∏
k=0

′ λ1,k − λ1,n
µ1,k − λ1,n



488 AHU ERCAN AND ETIBAR PANAKHOV

for n ∈ N, where the symbol
∏′

means that the factor with the number k = n has
been omitted from the infinite product.

Proof. The functions ϕ (x, λ) and ζ (x, λ) are the solutions of equation (2.1) satis-
fying conditions

ϕ (0, λ) = 1, ϕ′ (0, λ) = h1 (3.1)

ζ (0, λ) = 1, ζ ′ (0, λ) = h2, (3.2)

respectively. The eigenvalues {λ1,n} and
{
µ1,n

}
coincide with the zeros of the

functions

Φ1 (λ) = ϕ′ (π, λ) +Hϕ (π, λ) ,

Φ2 (λ) = ζ ′ (π, λ) +Hζ (π, λ) ,

respectively. In this proof, for briefly denote by λ1,n = λn and µ1,n = µn. The
functions Φ1 (λ) and Φ2 (λ) are entire in λ for fixed x. It’s clear from that Φ1 (λ)
and Φ2 (λ) are entire functions of order one half and therefore are determined by
their zeros, to within a constant multiplying factor. Therefore,

Φ1 (λ) = C1
∞∏
k=0

(
1− λ

λk

)
and

Φ2 (λ) = C2
∞∏
k=0

(
1− λ

µk

)
where C1 and C2 are constants. Put

f (x, λ) = ζ (x, λ) +m (λ)ϕ (x, λ)

and f (x, λ) satisfy the boundary condition

f ′ (π, λ) +Hf (π, λ) = 0. (3.3)

It follows from (3.3)

m (λ) = − ζ
′ (π, λ) +Hζ (π, λ)

ϕ′ (π, λ) +Hϕ (π, λ)
= −Φ2 (λ)

Φ1 (λ)
.

It can be seen from this formula that m (λ) is a meromorphic function, its poles
and zeros coinciding with the eigenvalues of problem (2.1), (2.2), (2.3) and (2.1),
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(2.3), (2.4), respectively. It follows from Green’s formula that

(λ1 − λ2)
π
2−0∫
0

f (x, λ1) f (x, λ2) dx+ (λ1 − λ2)
π∫

π
2+0

f (x, λ1) f (x, λ2) dx

=

π
2−0∫
0

{
−f ′′ (x, λ1) f (x, λ2) + f (x, λ1) f

′′
(x, λ2)

}
dx+

+
π∫

π
2+0

{
−f ′′ (x, λ1) f (x, λ2) + f (x, λ1) f

′′
(x, λ2)

}
dx

= (f ′ (x, λ2) f (x, λ1)− f ′ (x, λ1) f (x, λ2))|
π
2−0
0

+ (f ′ (x, λ2) f (x, λ1)− f ′ (x, λ1) f (x, λ2))|ππ
2+0

= [m (λ1)−m (λ2)] (h1 − h2) . (3.4)

If we get λ1 = λ, λ2 = λ in (3.4), we obtain
π
2−0∫
0

f (x, λ) f
(
x, λ

)
dx+

π∫
π
2+0

f (x, λ) f
(
x, λ

)
dx = (h1 − h2)

Imm (λ)

Imλ
.

It can be seen from this formula that if h2 > h1, then the function m (λ) maps the
upper half-plane onto itself (for h2 < h1 this holds for the lower half-plane). Hence,
the zeros and poles of the function m (λ), i.e. the eigenvalues of problems (2.1),
(2.2), (2.3) and (2.1), (2.3), (2.4) alternate. Applying Green’s formula again, we
have

(λ− λn)

π
2−0∫
0

f (x, λ)ϕ (x, λn) dx+ (λ− λn)
π∫

π
2+0

f (x, λ)ϕ (x, λn) dx

= (f (x, λ)ϕ′ (x, λn)− f ′ (x, λ)ϕ (x, λn))|
π
2−0
0

+ (f (x, λ)ϕ′ (x, λn)− f ′ (x, λ)ϕ (x, λn))|ππ
2+0

= h2 − h1.

Assuming that λ→ λn, we have the formula

αn =

π
2−0∫
0

ϕ2 (x, λn) dx+
π∫

π
2+0

ϕ2 (x, λn) dx =
h2 − h1

lim
λ→λn

(λ− λn)m (λn)
. (3.5)

The distribution of the zeros of entire function m (λn) as follows:

m (λn) = −C2
C1

∞∏
k=0

(
1− λn

µk

)(
1− λn

λk

)−1
= −C2

C1

∞∏
k=0

(
µk
λk

) ∞∏
k=0

(
µk − λn
λk − λn

)
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here we must show the equality C = C2
C1

∏∞
k=0

(
µk
λk

)
= 1 [2]. The asymptotics of

the solutions yield that

lim
λ→−∞

Φ1 (λ)

Φ2 (λ)
= 1,

that is

lim
λ→−∞

C1
C2

∞∏
k=0

(
1− λ

λk

)(
1− λ

µk

)−1
=

C1
C2

∞∏
k=0

(
µk
λk

)
lim

λ→−∞

∞∏
k=0

(
λk − λ
µk − λ

)
= 1 (3.6)

It can be easily seen that

lim
λ→−∞

∞∏
k=0

(
λk − λ
µk − λ

)
= lim
λ→−∞

∞∏
k=0

(
1 +

λk − µk
µk − λ

)
. (3.7)

Now, considering the following series
∞∑
k=0

λk − µk
µk − λ

and using the asymptotic formulas of the eigenvalues in (2.5) and (2.6), we obtain
λk − µk = O (1) and the series

∞∑
k=1

λk − µk
µk − λ

+
λ0 − µo
µ0 − λ

converges uniformly in a neighbourhood of the point λ = −∞. Therefore the limit
in each term of the infinite product (3.7) can be approached, that is,

lim
λ→−∞

∞∏
k=0

(
1 +

λk − µk
µk − λ

)
= 1.

Considering (3.6) and (3.7), we show that C = 1. Then we can rewrite (3.5) as

αn = − h2 − h1
lim
λ→λn

(λ− λn)

∞∏
k=0

λk − λn
µk − λn

where the factor with the number k = n has been omitted from the infinite product
which denotes the symbol

∏′
.

Hence, we denote the representation of the norming constants of problem (2.1),
(2.2), (2.3) with respect to two spectra by

α1,n =
h2 − h1

µ1,n − λ1,n

∞∏
k=0

′ λ1,k − λ1,n
µ1,k − λ1,n

for every n ∈ N. So, the proof is completed.
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Next we give main theorem in this study. �

Theorem 2. Let the eigenvalues {λ1,k} , {λ2,k} and
{
µ1,k

}
,
{
µ2,k

}
coincide num-

bers of N + 1 with each other, that is, λ1,k = λ2,k and µ1,k = µ2,k for k =
1, 2, ..., N + 1, then

V ar
−∞<λ<(N2 )

2
{ρ1 (λ)− ρ2 (λ)} < ρ1

(
N2

4

)
8A
(
1 + 3

2N2

)
3N2

e
3A(1+ 3

2N2 )
N2 ,

for k > N + 1, n < N
2 , and N ≥ 3

√
A where

A =
1

π

π∫
π
2

|q2 (t)− q1 (t)| dt+O

(
1

k2

)
.

Before giving the proof of the main theorem let us give some necessary lemmas.

Lemma 3. Let q′1 (x) ∈ L1 (0, π) and Imλ ≥ 0, then the following inequalities hold
for
√
λ > σ (x)∣∣∣∣(ϕ (λ, x)− cos

√
λx− h1√

λ
sin
√
λx

)
ei
√
λx

∣∣∣∣ ≤ σ (x)
(

1 + h√
λ

)
∣∣∣√λ∣∣∣− σ (x)

, x <
π

2
(3.8)

∣∣∣∣(ϕ (λ, x)−
(
α+ − α−

)
cos
√
λx−

(
α+ + α−

) h1√
λ

sin
√
λx

)
ei
√
λx

∣∣∣∣ <
2α2σ

(
π
2

)
|λ|
(

1 + h1√
λ

)
+ 2

(∣∣∣√λ∣∣∣− σ (x)
)
σ11 (x)

(
α2h1 +

∣∣∣√λ∣∣∣)∣∣∣α√λ∣∣∣ (∣∣∣√λ∣∣∣− σ (x)
)(∣∣∣√λ∣∣∣− σ11 (x)

) , x >
π

2
(3.9)

∣∣∣∣∣∣∣τ̃ (λ, x)− (α+ − α−) ei
√
λx sin

√
λx

2
√
λ

x∫
π
2

q1 (t) dt

∣∣∣∣∣∣∣
<

(α+ + α−)∣∣∣√λ∣∣∣ σ
(π

2

)
+

(α+ − α−)

2
∣∣∣√λ∣∣∣ σ11 (x) +O

(
1

λ

)
, x >

π

2
(3.10)

where σ (x) =

x∫
0

|q1 (t)| dt and σ11 (x) =

x∫
π
2

|q1 (t)| dt.

Proof. For x < π
2 , consider the function defined by

τ (λ, x) =

[
ϕ (λ, x)− cos

√
λx− h1√

λ
sin
√
λx

]
ei
√
λx, Im

√
λ ≥ 0.
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It is clear that τ (λ, x) can be written as follows:

τ (λ, x) =
1√
λ

x∫
0

sin
√
λ (x− t) q1 (t)

[
τ (λ, t) e−i

√
λt
]
ei
√
λxdt

+
1√
λ

x∫
0

sin
√
λ (x− t) q1 (t) cos

√
λtei

√
λ(x−t)ei

√
λtdt

+
1√
λ

x∫
0

sin
√
λ (x− t) q1 (t)

h1√
λ

sin
√
λtei

√
λ(x−t)ei

√
λtdt. (3.11)

Let introduce

m (λ, x) = max
0≤t≤x

|τ (λ, t)| .

It is known that by [22], we have

∣∣∣∣∣ sin
√
λ (x− t) ei

√
λ(x−t)

√
λ

∣∣∣∣∣ ≤ 1√
λ
, (Imλ ≥ 0, x ≥ t ≥ 0) ,∣∣∣cos

√
λtei

√
λt
∣∣∣ ≤ 1, (Imλ ≥ 0, t ≥ 0) . (3.12)

The equation (3.12) yields that

m (λ, x) ≤ m (λ, x)∣∣∣√λ∣∣∣
x∫
0

|q1 (t)| dt+
1∣∣∣√λ∣∣∣

x∫
0

|q1 (t)| dt+
h1
|λ|

x∫
0

|q1 (t)| dt

Hence, the last inequality gives the equation (3.8) for
∣∣∣√λ∣∣∣ > σ (x). Let us prove

equation (3.9). Let’s define the function for x > π
2 , by (2.12)

τ̃ (λ, x) =

[
ϕ (λ, x)−

(
α+ − α−

)
cos
√
λx− h1 (α+ + α−)√

λ
sin
√
λx

]
ei
√
λx, Im

√
λ ≥ 0.
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It is clear that τ̃ (λ, x) can be written as

τ̃ (λ, x) =
α+√
λ

π
2∫
0

sin
√
λ (x− t) q1 (t)

[
τ (λ, t) e−i

√
λt + cos

√
λt+

h1√
λ

sin
√
λt

]
ei
√
λxdt

+
α−√
λ

π
2∫
0

sin
√
λ (x+ t) q1 (t)

[
τ (λ, t) e−i

√
λt + cos

√
λt+

h1√
λ

sin
√
λt

]
ei
√
λxdt

+
1√
λ

x∫
π
2

sin
√
λ (x− t) q1 (t) τ̃ (λ, t) e−i

√
λtei
√
λxdt

+
(α+ − α−)√

λ

x∫
π
2

sin
√
λ (x− t) q1 (t) cos

√
λtei

√
λxdt

+
(α+ + α−)√

λ

x∫
π
2

sin
√
λ (x− t) q1 (t)

h1√
λ

sin
√
λtei

√
λxdt. (3.13)

Denote

m̃ (λ, x) = max
π
2≤t≤x

|τ̃ (λ, t)| .

Considering last equality with (3.12), we can rewrite (3.13) as:

m̃ (λ, x) ≤ (α+ + α−)m (λ, x)∣∣∣√λ∣∣∣
π
2∫
0

|q1 (t)| dt+
α+∣∣∣√λ∣∣∣

π
2∫
0

|q1 (t)| dt

+
(α+ + α−)h1

|λ|

π
2∫
0

|q1 (t)| dt+
(α+ + α−)∣∣∣√λ∣∣∣

π
2∫
0

|q1 (t)| dt+

+
(α+ − α−)∣∣∣√λ∣∣∣

x∫
π
2

|q1 (t)| dt+
(α+ + α−)h1

|λ|

x∫
π
2

|q1 (t)| dt

+
m̃ (λ, x)∣∣∣√λ∣∣∣

x∫
π
2

|q1 (t)| dt. (3.14)
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Writing (3.8) into (3.14), desired result is obtained. Now let’s consider the integral
to obtain (3.10)

(α+ − α−)√
λ

x∫
π
2

sin
√
λ (x− t) cos

√
λtq1 (t) dt

+
h1 (α+ + α−)√

λ

x∫
π
2

sin
√
λ (x− t) sin

√
λtq1 (t) dt

=
(α+ − α−) sin

√
λx

2
√
λ

x∫
π
2

q1 (t) dt− (α+ + α−)h1 cos
√
λx

2λ

x∫
π
2

q1 (t) dt

+
(α+ − α−)

2
√
λ

x∫
π
2

sin
√
λ (x− 2t) q1 (t) dt

+
(α+ + α−)h1

2λ

x∫
π
2

cos
√
λ (x− 2t) q1 (t) dt. (3.15)

Combining (3.15) with (3.9), we have∣∣∣∣∣∣∣τ̃ (λ, x)− (α+ − α−) ei
√
λx sin

√
λx

2
√
λ

x∫
π
2

q1 (t) dt

∣∣∣∣∣∣∣
<

(α+ + α−)√
λ

π
2∫
0

|q1 (t)| τ (λ, t) dt+
(α+ + α−)√

λ

π
2∫
0

|q1 (t)| dt

+
(α+ + α−)h1

λ

π
2∫
0

|q1 (t)| dt+
1√
λ

x∫
π
2

|q1 (t)| τ̃ (λ, t) dt

+
(α+ + α−)

2λ

x∫
π
2

|q1 (t)| dt+
(α+ + α−)h1

2λ

x∫
π
2

|q1 (t)| dt

+
(α+ − α−)h1

2
√
λ

x∫
π
2

|q1 (t)| dt. (3.16)

Substituting (3.8) and (3.9) into (3.16), we obtain the inequality (3.10). So the
proof is completed. �
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Lemma 4. The eigenvalues λ1,n of problem (2.1), (2.2), (2.3) satisfy the asymp-
totic formula √

λ1,n = n+
α2h1 +H

πn
+
σ1 (π)

2πn
+O

(
1

n2

)
, (3.17)

as n→∞.

Proof. From (3.10), one can easily seen that

ϕ (λ, x) =
(
α+ − α−

)
cos
√
λx+

h1 (α+ + α−)√
λ

sin
√
λx

+
(α+ − α−) sin

√
λx

2
√
λ

σ1 (x) +
(α+ + α−)√

λ
σ
(π

2

)
+

(α+ − α−)

2
√
λ

σ11 (x) +O

(
1

λ

)
(3.18)

and

ϕ
′
(λ, x) = h1

(
α+ + α−

)
cos
√
λx−

√
λ
(
α+ − α−

)
sin
√
λx+

(α+ − α−) sin
√
λxq1 (x)

2
√
λ

+
(α+ − α−) q1 (x)

2
√
λ

+
(α+ − α−) cos

√
λxσ1 (x)

2
+O

(
1

λ

)
. (3.19)

Putting (3.18) and (3.19) into boundary condition

ϕ′ (π, λ) +Hϕ (π, λ) = 0

and making classical calculations, we can easily obtain (3.17).
Now we give the proof of the main theorem in this study. �

Proof of the Main Theorem. Consider the difference between the spectral functions

ρ1 (λ)− ρ2 (λ) =
∑
λn<λ

1

α1,n

(
1− α1,n

α2,n

)
where

1− α1,n
α2,n

= 1−
∞∏

k=N+2

(λ1,k − λ1,n)
(
µ2,k − λ2,n

)
(λ2,k − λ2,n)

(
µ1,k − λ1,n

) .
From the definition of the variation, we have

V ar
−∞<λ<λ0

{ρ1 (λ)− ρ2 (λ)} ≤ max
λn<λ0

∣∣∣∣1− α1,n
α2,n

∣∣∣∣ ∑
λn<λ0

1

α1,n

= ρ1 (λ0) max
λn<λ0

∣∣∣∣1− α1,n
α2,n

∣∣∣∣ (3.20)
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for λ0 < λN+2. Therefore, let’s consider the absolute value of the term at the right
side of (3.20) to assess the difference between the spectral functions as follow:

max
n<N

2

∣∣∣∣1− α1,n
α2,n

∣∣∣∣ = max
n<N

2

∣∣∣∣∣1−
∞∏

k=N+2

(λ1,k − λ1,n)
(
µ2,k − λ2,n

)
(λ2,k − λ2,n)

(
µ1,k − λ1,n

) ∣∣∣∣∣ . (3.21)

Considering the infinite product

Ψ (λn) =

∞∏
k=N+2

(λ1,k − λ1,n)
(
µ2,k − λ2,n

)
(λ2,k − λ2,n)

(
µ1,k − λ1,n

) ,
it follows that

|ln Ψ (λn)| =

∣∣∣∣∣
∞∑

k=N+2

ln

(
λ1,k − λ1,n
λ2,k − λ2,n

)
+

∞∑
k=N+2

ln

(
µ2,k − λ2,n
µ1,k − λ1,n

)∣∣∣∣∣
≤

∞∑
k=N+2

∣∣∣∣ln(1− λ2,k − λ1,k
λ2,k − λ1,n

)∣∣∣∣
+

∞∑
k=N+2

∣∣∣∣ln(1−
µ1,k − µ2,k
µ1,k − λ1,n

)∣∣∣∣ .
It can be easily seen

∣∣∣∣λ2,k − λ1,kλ2,k − λ1,n

∣∣∣∣ < 1 and

∣∣∣∣µ1,k − µ2,kµ1,k − λ1,n

∣∣∣∣ < 1

for k > N + 1, n < N
2 . It is well known that the following inequality holds

ln (1− z) ≤ |z|
1− |z|

for |z| < 1. The last inequality implies that

|ln Ψ (λn)| <
∞∑

k=N+2

∣∣∣ λ2,k−λ1,kλ2,k−λ1,n

∣∣∣
1−

∣∣∣ λ2,k−λ1,kλ2,k−λ1,n

∣∣∣ +

∞∑
k=N+2

∣∣∣µ1,k−µ2,kµ1,k−λ1,n

∣∣∣
1−

∣∣∣µ1,k−µ2,kµ1,k−λ1,n

∣∣∣ . (3.22)



STABILITY OF STURM-LIOUVILLE PROBLEM 497

Here, by the asymptotic estimates of the eigenvalues, we can obtain∣∣∣∣λ2,k − λ1,kλ2,k − λ1,n

∣∣∣∣ =

∣∣∣∣∣∣ A

λ2,k

(
1− λ1,n

λ2,k

)
∣∣∣∣∣∣

<
A(

k − 1
2

)2(
1−

λ
1,[N2 ]
λ2,N+2

)
=

A(
k − 1

2

)2(
1− (N2 +

1
2 )

2

(N+2− 1
2 )

2

)
<

4A
(
1 + 3

2N2

)
3N2

(3.23)

and ∣∣∣∣µ1,k − µ2,kµ1,k − λ1,n

∣∣∣∣ < 4A
(
1 + 3

2N2

)
3N2

(3.24)

for k > N + 1, n < N
2 . Substituting (3.23) and (3.24) into (3.22), we have

|ln Ψ (λn)| < 2

4A(1+ 3
2N2 )

3N2

1− 4A(1+ 3
2N2 )

3N2

.

Considering the last inequality for N ≥ 3
√
A, it can be obtained that

|ln Ψ (λn)| <
8A
(
1 + 3

2N2

)
3N2

(3.25)

If we put (3.25) into (3.21) and use the serial expansion of the exponential function,
the following inequality holds

max
n<N

2

∣∣∣∣1− α1,n
α2,n

∣∣∣∣ < e
8A(1+ 3

2N2 )
3N2 − 1

<
8A
(
1 + 3

2N2

)
3N2

e

3A(1+ 3
2N2 )

N2

(3.26)

for N ≥ 3
√
A. Finally, if we put the inequality (3.26) into (3.20), it yields that

V ar
−∞<λ<λ0

{ρ1 (λ)− ρ2 (λ)} < ρ1

(
N2

4

)
8A
(
1 + 3

2N2

)
3N2

e
3A(1+ 3

2N2 )
N2

for N ≥ 3
√
A. Therefore the proof is completed. �

Conclusion 5. In this study, we have emphasized the importance of the certain sta-
bility of the inverse discontinuous Sturm-Liouville problem. Applying Ryabushko’s
method, we show the approximity of the difference between the spectral functions
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of the problems (2.1), (2.2), (2.3) and (2.2), (2.3), (2.7) whose eigenvalues {λj,k}
and

{
µj,k

}
, coincide the numbers of N +1. We give some asymptotic estimates for

the eigenvalues and the eigenfunctions of discontinuous eigenvalue problem (2.1),
(2.2), (2.3) and give a formula determining the norming constants according to two
spectra.
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