

Validity and Reliability of the Turkish Version of the Short Sports

Nutrition Knowledge Questionnaire for Athletes

Güleren SABUNCULAR^{1*}, Zehra Margot ÇELİK¹, Ayşe Hümeyra İSLAMOĞLU¹, Ali ÖZÜAK², Sema ARSLAN KABASAKAL³, Şule AKTAÇ¹ ¹Marmara Üniversitesi, Sağlık Bilimleri Fakültesi, Beslenme ve Diyetetik Bölümü, İstanbul/Türkiye <u>https://orcid.org/0000-0001-5922-295X</u> <u>https://orcid.org/0000-0002-4622-9252</u>

https://orcid.org/0000-0002-4622-9252 https://orcid.org/0000-0002-2138-5996 https://orcid.org/0000-0002-2158-5015

²Marmara Üniversitesi, Spor Bilimleri Fakültesi, Antrenörlük Eğitimi Bölümü, İstanbul/Türkiye

https://orcid.org/0000-0003-1453-4946

³Yalova Üniversitesi, Spor Bilimleri Fakültesi, Antrenörlük Eğitimi Bölümü, Yalova/Türkiye

https://orcid.org/0000-0002-4552-9640

ORJINAL MAKALE

Abstract

This study aims to assess the validity and reliability of the Short Sports Nutrition Knowledge Questionnaire for Athletes (NUKYA), which was developed to evaluate the nutrition knowledge levels of athletes, in the Turkish population. The study was conducted on 355 athletes registered in the faculties of sports sciences at universities. The study was conducted in three stages. In the first stage, the language verification of the NUKYA scale was carried out. The second stage involved the test-retest application of this scale to all participants. Finally, "The Nutrition for Sport Knowledge Questionnaire (NSKQ)" was applied to 103 athlete participants to determine its construct validity. The validity and reliability study of the scale was evaluated with the SPSS 29.0 package program. It was determined that there was a positive correlation between the total scores of the NSKQ and NUKYA questionnaires (r = 0.379, p < 0.01). The Cronbach α value of 59 items on the scale was below 0.888, no items were removed from the survey. When the test-retest reliability results of the scale were examined, a positive, moderate correlation was found for the total score (r = 0.599, p < 0.001). It seems that the NUKYA is a comprehensive measurement tool that includes 59 items and 4

sections. Based on its validity and reliability, it could be an effective way to assess the nutritional knowledge levels of Turkish athletes.

Keywords: sports, sports nutrition, athlete's nutrition knowledge, nutrition

Sporcular için Kısa Beslenme Bilgi Anketi'nin Türkçe Geçerlik ve Güvenirliği

Özet

Bu çalışma, sporcuların beslenme bilgi düzeylerini değerlendirmek amacıyla geliştirilen Sporculara Yönelik Kısa Sporcu Beslenme Bilgi Anketi'nin (NUKYA) Türk toplumunda geçerlilik ve güvenilirliğinin değerlendirilmesini amaçlamaktadır. Araştırma üniversitelerin spor bilimleri fakültelerine kayıtlı 355 sporcu üzerinde gerçekleştirilmiştir. Çalışma üç aşamada gerçekleştirildi. İlk aşamada NUKYA ölçeğinin dil doğrulaması yapıldı. İkinci asamada bu ölçeğin tüm katılımcılara test-tekrar test uygulaması yapılmıştır. Son olarak yapı geçerliliğini belirlemek amacıyla "Sporda Beslenme Bilgi Anketi (NSKQ)" 103 sporcu katılımcıya uygulandı. Ölçeğin geçerlik ve güvenirlik çalışması SPSS 29.0 paket programı ile değerlendirilmiştir. NSKQ ve NUKYA anketlerinin toplam puanları arasında pozitif korelasyon olduğu belirlendi (r=0,379, p<0,01). Ölçeğin Cronbach α katsayısı anketin geneli için 0,888 olarak hesaplanmıştır. Ölçekte yer alan 59 maddenin Cronbach α değeri 0,888'in altında olduğundan hiçbir madde anketten çıkarılmamıştır. Ölçeğin test-tekrar test güvenirlik sonuçları incelendiğinde toplam puan arasında pozitif yönde orta düzeyde bir korelasyon bulunmuştur (r=0,599, p<0,001). NUKYA'nın 59 madde ve 4 bölümden oluşan kapsamlı bir ölçme aracı olduğu görülmektedir. Geçerlik ve güvenirliğine dayanarak Türk sporcuların beslenme bilgi düzeylerini değerlendirmenin etkili bir yolu olabilir.

Anahtar Kelimeler: spor, sporcu beslenmesi, sporcu beslenme bilgisi, beslenme

Introduction

Athletes are known to have specific nutritional requirements to meet the demands of physical training and optimize sports performance (Kerksick et al., 2018). In general, athletes require higher amounts of energy, protein, and carbohydrates as a result of high activity levels, intense training, and increased amounts of lean body mass compared to the non-athlete population (Slater and Phillips, 2013). Due to increased energy and special nutritional requirements, athletes may seek nutritional diversity, follow different types of diets, and take supplements to improve their sporting performance (Calella et al., 2017). Previous literature has shown that athletes often fail to meet appropriate nutritional recommendations for their training intensity. These studies reveal the importance of having adequate nutritional knowledge for athletes for both healthy lives and long-term sports careers (Calella et al., 2017; Jagim et al., 2019).

Nutritional knowledge is a modifiable indicator of nutritional behaviour, and nutritional practices are known to affect athletic performance. Therefore, there is great interest in the assessment of athletes' general and sports nutrition knowledge levels (Trakman et al., 2017). The focus of assessing general and sports nutrition knowledge is to increase awareness of proper eating habits and improve nutritional knowledge, thus helping to eliminate myths and misbeliefs related to nutrition in athletes (Calella et al., 2017). Increasing the level of awareness of nutritional knowledge positively affects the performance of athletes. In this context, scientifically validated tools are needed to assess and determine the nutritional knowledge levels of athletes according to their characteristics, such as culture, religion, and nationality (Kutlu et al., 2022). In studies, questionnaires on sports nutrition have been developed and validated to evaluate the level of knowledge and to analyze the effectiveness of nutrition education programmes (Trakman et al., 2017; Tam et al., 2020; Karpinski et al., 2022).

Short Sports Nutrition Knowledge Questionnaire for Athletes (NUKYA) is one of the questionnaires developed to assess the nutritional knowledge of athletes. The questionnaire focuses on topics considered a priority in the education of athletes and consists of sections assessing macronutrients, micronutrients, hydration and periodization. Unlike other similar validated questionnaires on sports nutrition knowledge, the NUKYA is very short and requires less time to complete as it can be answered in an average of 12 minutes (Vázquez-Espino et al., 2020). This study aimed to evaluate the validity and reliability of the Short Sports Nutrition

Knowledge Questionnaire for Athletes developed by Vázquez-Espino et al. (2020) in the Turkish population.

Materials and Methods

Study Design and Participants

This cross-sectional study was conducted between October 2023 and December 2023 with athletes registered in the faculties of sports sciences at universities.

This study was carried out in three stages. In the first stage, language validation was performed, in the second stage, the scale was applied to 355 athletes as test and retest, and in the third stage, the "Short Sport Nutrition Knowledge Questionnaire for Athletes" and the "The Nutrition for Sport Knowledge Questionnaire (NSKQ)" were applied to 103 athletes to determine the construct validity.

Short Sports Nutrition Knowledge Questionnaire for Athletes

NUKYA which was developed in English and Spanish by Vázquez-Espino et al. (2020) in 2020 consists of 59 items and is divided into four sections: Macronutrients (29 items), micronutrients (19 items), hydration (8 items) and periodization (3 items). The questionnaire focuses on issues that are considered a priority in the training of athletes. The questionnaire does not include aspects such as supplement intake, weight control and alcohol consumption.

Scoring of the questionnaire: For questions 1-8, 10, and 16-20, each correct answer in the question options is scored as +1 point, an unanswered option is scored as 0 points and an incorrect answer is scored as -1 point. In multiple-choice questions (9, 11-15), the correct answer is evaluated as +1 point for the whole question, the wrong answer is evaluated as -1 point for the whole question is not answered. The maximum score is 59 points and the minimum score is -59 points. To convert this questionnaire into a scoring from 0 to 100 points, it is suggested to apply the following formula:

y = 100 * (x + 59) / 118

There are 4 sections in the questionnaire:

Macronutrients (questions 1 to 8): 29 points (49.1 points on a 100-point scale)

Micronutrients (questions 9 and 17 to 20): 19 points (32.2 points on a 100-point scale)

Hydration (questions 10 to 13): 8 points (13.6 points on a 100-point scale)

Periodization (questions 14 to 16): 3 points (5.1 points on a 100-point scale) (Vázquez-Espino et al., 2020).

Language Validity

In the process of adapting the questionnaire for language validity, the translationretranslation method was used (Prieto, 1992). The questionnaire was translated into Turkish by an academic who knew both languages well and then translated back into English by a native English-Turkish speaker who had not seen the original questionnaire. The translations were evaluated and the final version of the questionnaire was reviewed and approved by the researchers.

Content Validity

After the language adaptation of the questionnaire, the content validity of the questionnaire was carried out with the expert opinion method. For this, expert opinion was obtained from 10 academicians qualified in the field of sports nutrition. All the questionnaire items were evaluated by each expert through a 4-point Likert scale: relevance; 1 = 'not relevant' to 4 = 'truly relevant'; clarity; 1 = 'not clear' to 4 = 'very clear'. Necessary adjustments were made in line with expert opinions.

Convergent validity

For the determination of construct validity, the convergent validity method was used. The correlation between the "NUKYA" and the "NSKQ" was examined. For the correlation coefficient of at least 0.40 between the two variable to be significant with 80% power and 0.05 type I error, the scales were applied to 103 athletes (Bujang and Baharum, 2016).

The Turkish validity and reliability of the NSKQ scale developed by Trakman et al. (2017) was conducted by Çırak and Çakıroğlu (2019). The Nutrition for Sport Knowledge Questionnaire consists of 68 statements and 6 sub-dimensions titled weight control (3 statements), macronutrients (22 statements), micronutrients (12 statements), sports nutrition (11 statements), supplements (11 statements), and alcohol (9 statements). The items of the scale are multiple-choice and 3-point Likert type (agree-disagree-not sure; effective-not effective-not sure). Knowledge scores are calculated from the correct answers and the overall performance on the scale (68 statements were accepted as 100) is evaluated using the scoring system; "poor" knowledge (0-49%), "average" knowledge (50-65%), "good" knowledge (66-75%) and "excellent" knowledge (75-100%) (Çırak and Çakıroğlu, 2019).

In the examination of convergent validity, the relationship between the questionnaire scores was tested and evaluated by correlation analysis.

Extreme Group Comparison Analysis

To determine distinctiveness, t-values were calculated for the significance difference between the means of the questionnaire scores of the upper and lower groups for each section of the questionnaire. Total questionnaire scores ranged from low to high. The upper and lower groups were made up of 96 athletes, representing 27% of the total score. This method is often used to achieve greater statistical power in subsequent hypothesis testing. It can be used for power, standardized effect size, reliability, model specification and interpretability of results (Preacher et al., 2005).

Internal Consistency Reliability

After the questionnaire was adapted to Turkish, its internal consistency reliability was evaluated with Cronbach's α coefficient. The α coefficient should be at least 0-70, while values of 0-80 and above are considered very good and values of 0-90 and above are considered excellent (Kline, 2016). Test-retest measurement was evaluated for each section and the total score. Two weeks after the first application, the questionnaire was applied again to the same group. The intraclass correlation coefficient was calculated for the total score. Values less than 0.5, between 0.5 and 0.75, between 0.75 and 0.9, and greater than 0.90 are indicative of poor, moderate, good, and excellent reliability, respectively (Ercan and Kan, 2004; Koo and Li, 2016).

Ethical Approval

The study was conducted following the Declaration of Helsinki and approved by the Non-Interventional Clinical Studies Ethics Committee of Marmara University, Faculty of Health Sciences (Approval number: 28.09.2023/93). Written informed consent was obtained from all athletes who volunteered to participate in the study. During the current research, we acted within the framework of the "Higher Education Institutions Scientific Research and Publication Ethics Directive".

Statistical analysis

The data was evaluated with the SPSS 29.0 package program. The conformity to normal distribution was checked with the one-sample Kolmogorov-Smirnov test. Item scores from the scale are given as mean (\bar{x}) and standard deviation (SD) values. For the correlation between NUKYA and NSKQ scores, the Pearson correlation was used and for the correlation between

the test and retest scores, Spearman correlation was used. For reliability analysis, the intraclass correlation test and unpaired *t*-test were used. For all analyses, a significance level of p < 0.05 was used.

Results

To determine the reliability of the scale, 355 athletes were included. The mean age of these athletes was 20.0 ± 2.2 years and 55.2% of them were male. To determine the validity, 103 athletes were included. The mean age of these athletes was 20.0 ± 2.1 years and 61.2% were male.

Convergent validity

Convergent validity was assessed by determining the correlation coefficients between the NSKQ total scores and the NUKYA total scores. A positive correlation was found between the total scores (r = 0.379, p < 0.01). (Table 1)

Table 1

Correlation of the Short Sport Nutrition Knowledge Questionnaire for Athletes with the The Nutrition for Sport Knowledge Questionnaire (n=103)

Scale	r	р	%95 CI
NSKQ	0.379	< 0.001	0.201 - 0.534
D < 0.05 1 1 4	··· 11 · ··· (Γ · · Γ · 1	1 1 / 1 [·] D	

P < 0.05 considered as statistically significant. P values are calculated using Pearson Correlation tests. r: Pearson correlation coefficient, 95% CI: A range of values that you can be 95% certain contains the true mean of the population.

Extreme Group Comparison Analysis

Table 2 shows the significant difference between the means of the Upper-Lower 27% groups of the section and total scores. The difference between the Upper-Lower 27% groups was statistically significant in all sections and total score (p < 0.001).

Table 2

T-test results for score means of %27 of lower groups and %27 of upper group of the questionnaire (n=96)

Section/Total	Group	Mean±SD	t	р
Maaranutrianta	Upper	14.84 ± 3.71	-23.747	< 0.001
Macronutrients	Lower	3.23 ± 3.04		
Microporta	Upper	5.72±2.72	-12.366	< 0.001
Micronutrients	Lower	0.85 ± 2.73		< 0.001
Undration	Upper	2.79±2.13	-7.087	< 0.001
Hydration	Lower	0.61±2.12		
Deriodization	Upper	2.02 ± 1.18	5 610	< 0.001
Feriodization	Lower	0.83 ± 1.70	-3.019	< 0.001
Total Saama	Upper	25.38±3.63	26 522	< 0.001
Total Score	Lower	5.53 ± 3.89	-30.322	< 0.001

Values are expressed as mean \pm SD. $P \le 0.05$ considered as statistically significant. P values are calculated using Independent Sample T Tests.

Table	3
-------	---

Conclution and Cronoach s α for the items (ii-355)

M1 1.84 ± 0.60 0.142 0.875 M2 1.8 ± 0.81 0.278 0.873 M3 1.66 ± 0.79 0.312 0.873 M4 1.19 ± 0.52 0.300 0.873 M5 1.90 ± 0.76 0.291 0.873 M6 1.90 ± 0.76 0.291 0.873 M7 1.56 ± 0.77 0.309 0.873 M8 1.17 ± 0.51 0.256 0.873 M9 1.75 ± 0.79 0.318 0.872 M10 2.02 ± 0.37 0.267 0.874 M11 1.91 ± 0.95 0.270 0.873 M12 1.88 ± 0.67 0.213 0.874 M13 1.06 ± 0.30 0.278 0.874 M14 1.65 ± 0.76 0.228 0.874 M15 1.87 ± 0.65 0.254 0.873 M16 2.14 ± 0.51 0.281 0.873 M17 2.06 ± 0.56 0.229 0.873 M18 1.58 ± 0.77 0.256 0.873 M19 1.18 ± 0.55 0.068 0.875 M20 2.06 ± 0.45 0.229 0.874 M21 2.04 ± 0.69 0.438 0.871 M22 1.83 ± 0.79 0.516 0.870 M23 1.92 ± 0.79 0.4425 0.871 M24 1.87 ± 0.88 0.444 0.870 M25 1.92 ± 0.79 0.445 0.870 M26 1.68 ± 0.85 0.447 0.870 M27 2.08 ± 0.77 0.485 0.870 M28 2.15 ± 0.48 0.442 0.871 <t< th=""><th>Items</th><th colspan="2">Mean±SD Corrected Item-Total Correlation</th><th colspan="2">Cronbach's Alpha if Item Deleted</th></t<>	Items	Mean±SD Corrected Item-Total Correlation		Cronbach's Alpha if Item Deleted	
M2 $1.8440.81$ 0.278 0.873 M3 $1.6640.79$ 0.312 0.873 M4 $1.990.52$ 0.300 0.873 M5 $1.9940.79$ 0.308 0.873 M6 $1.990.76$ 0.291 0.873 M7 $1.5640.77$ 0.309 0.873 M8 $1.1740.51$ 0.256 0.873 M9 $1.7540.79$ 0.318 0.872 M10 $2.0240.37$ 0.267 0.874 M11 $1.9140.95$ 0.270 0.874 M13 $1.6640.30$ 0.278 0.874 M14 $1.6540.76$ 0.228 0.874 M15 $1.8140.65$ 0.254 0.873 M16 $2.1440.51$ 0.281 0.873 M17 $2.0640.56$ 0.290 0.873 M18 $1.5840.77$ 0.256 0.873 M19 $1.1840.55$ 0.068 0.875 M20 $2.0640.45$ 0.229 0.874 M21 $2.0440.69$ 0.438 0.871 M22 $1.8340.79$ 0.516 0.870 M23 $1.9240.79$ 0.4425 0.871 M24 $1.8740.85$ 0.447 0.870 M25 $1.9240.82$ 0.433 0.870 M26 $1.6840.85$ 0.447 0.870 M27 $2.0840.77$ 0.485 0.871 M28 $2.1510.58$ 0.505 0.871 M29 $1.7140.86$ 0.422 0.873 M31 $1.8340.85$ 0.226 0.873 <t< td=""><td>M1</td><td>1.88±0.60</td><td>0.142</td><td>0.875</td></t<>	M1	1.88±0.60	0.142	0.875	
M3 1.6 ± 0.79 0.312 0.873 M4 1.9 ± 0.52 0.300 0.873 M5 1.9 ± 0.76 0.291 0.873 M6 1.9 ± 0.76 0.291 0.873 M7 1.5 ± 0.77 0.309 0.873 M8 1.17 ± 0.51 0.256 0.873 M9 1.7 ± 0.79 0.318 0.872 M10 2.02 ± 0.37 0.267 0.874 M11 1.9 ± 0.95 0.270 0.873 M12 1.8 ± 0.67 0.213 0.874 M13 1.0 ± 0.30 0.278 0.874 M14 1.6 ± 0.76 0.228 0.874 M15 1.87 ± 0.65 0.254 0.873 M16 2.14 ± 0.51 0.281 0.873 M16 2.14 ± 0.51 0.281 0.873 M17 2.06 ± 0.56 0.229 0.873 M18 1.5 ± 0.77 0.256 0.873 M19 $1.1840.55$ 0.068 0.875 M20 2.06 ± 0.45 0.229 0.871 M21 2.04 ± 0.69 0.438 0.871 M22 1.83 ± 0.79 0.516 0.870 M23 1.92 ± 0.79 0.4425 0.871 M24 1.87 ± 0.80 0.448 0.871 M25 1.92 ± 0.82 0.493 0.870 M26 1.6 ± 0.85 0.447 0.870 M27 2.0 ± 0.74 0.175 0.874 M30 1.5 ± 0.72 0.228 0.873 M34 1.92 ± 0.72 0.226 0.874 M35 </td <td>M2</td> <td>1.88 ± 0.81</td> <td>0.278</td> <td>0.873</td>	M2	1.88 ± 0.81	0.278	0.873	
M4 1.19:0.52 0.300 0.873 M5 1.90:0.79 0.308 0.873 M6 1.90:0.76 0.291 0.873 M7 1.56:0.77 0.309 0.873 M8 1.17:40.51 0.256 0.873 M9 1.75:60.79 0.318 0.872 M10 2.02:0.37 0.267 0.874 M11 1.91:0.95 0.270 0.873 M12 1.88:0.67 0.213 0.874 M13 1.06:40.30 0.278 0.874 M14 1.65:40.76 0.228 0.873 M15 1.87:40.65 0.224 0.873 M16 2.14:40.51 0.281 0.873 M17 2.06:40.56 0.290 0.873 M18 1.58:40.77 0.256 0.873 M19 1.18:40.55 0.068 0.871 M22 1.8:40.79 0.516 0.870 M23 1.9:2:0.79 0.425 0.871 M24 1.8:40.85 0.4:47 0.870 M25	M3	$1.66{\pm}0.79$	0.312	0.873	
NS 1.90 ± 0.79 0.308 0.873 M6 1.90 ± 0.76 0.291 0.873 M7 1.56 ± 0.77 0.309 0.873 M8 1.17 ± 0.51 0.256 0.873 M9 1.75 ± 0.79 0.318 0.872 M10 2.02 ± 0.37 0.267 0.874 M11 1.91 ± 0.95 0.270 0.874 M13 1.06 ± 0.30 0.278 0.874 M14 1.65 ± 0.76 0.228 0.874 M15 1.87 ± 0.65 0.224 0.873 M16 2.14 ± 0.51 0.281 0.873 M17 2.06 ± 0.56 0.290 0.873 M18 1.58 ± 0.77 0.256 0.873 M19 1.88 ± 0.55 0.068 0.871 M20 2.06 ± 0.45 0.229 0.871 M21 2.04 ± 0.69 0.438 0.871 M22 1.83 ± 0.79 0.516 0.870 M23 1.92 ± 0.79 0.425 0.870 M24 1.87 ± 0.80 0.444 0.870 M25 1.92 ± 0.82 0.447 0.870 M26 1.68 ± 0.85 0.447 0.870 M27 2.08 ± 0.77 0.485 0.871 M30 1.50 ± 0.74 0.175 0.871 M31 1.83 ± 0.85 0.222 0.873 M33 1.72 ± 0.90 0.279 0.873 M34 1.95 ± 0.72 0.289 0.873 M35 2.12 ± 0.45 0.277 0.874 M36 2.06 ± 1.31 0.267 0.874 <td>M4</td> <td>$1.19{\pm}0.52$</td> <td>0.300</td> <td>0.873</td>	M4	$1.19{\pm}0.52$	0.300	0.873	
M6 1.90 ± 0.76 0.291 0.873 M7 1.56 ± 0.77 0.309 0.873 M8 1.17 ± 0.51 0.256 0.873 M9 1.75 ± 0.79 0.318 0.872 M10 2.02 ± 0.37 0.267 0.874 M11 1.91 ± 0.95 0.270 0.873 M12 1.88 ± 0.67 0.213 0.874 M13 1.06 ± 0.30 0.278 0.874 M14 1.65 ± 0.76 0.228 0.874 M15 1.87 ± 0.65 0.224 0.873 M16 2.14 ± 0.51 0.281 0.873 M17 2.06 ± 0.56 0.290 0.873 M18 1.58 ± 0.77 0.256 0.873 M19 1.18 ± 0.55 0.068 0.871 M20 2.06 ± 0.45 0.229 0.874 M21 2.04 ± 0.69 0.438 0.871 M22 1.83 ± 0.79 0.516 0.870 M23 1.92 ± 0.79 0.425 0.871 M24 1.87 ± 0.80 0.448 0.871 M25 1.92 ± 0.82 0.493 0.870 M26 1.68 ± 0.85 0.447 0.870 M27 2.08 ± 0.77 0.485 0.871 M30 1.50 ± 0.74 0.175 0.873 M33 1.72 ± 0.90 0.279 0.873 M34 1.95 ± 0.72 0.289 0.873 M35 2.12 ± 0.45 0.226 0.874 M33 1.72 ± 0.90 0.279 0.873 M34 1.95 ± 0.72 0.289 0.873 </td <td>M5</td> <td>$1.90{\pm}0.79$</td> <td>0.308</td> <td>0.873</td>	M5	$1.90{\pm}0.79$	0.308	0.873	
N71.56±0.770.3090.873M81.17±0.510.2560.873M91.75±0.790.3180.872M102.02±0.370.2670.874M111.91±0.950.2700.873M121.88±0.670.2130.874M131.06±0.300.2780.874M141.65±0.760.2280.874M151.87±0.650.2540.873M162.14±0.510.2810.873M172.06±0.560.2900.873M181.58±0.770.2560.873M191.18±0.550.0680.875M202.06±0.450.2290.871M212.04±0.690.4380.871M221.83±0.790.5160.870M231.92±0.790.4250.871M241.87±0.800.4480.871M251.92±0.820.4930.870M261.68±0.850.4470.870M272.08±0.770.4850.871M301.50±0.740.1750.873M331.72±0.900.2790.873M341.95±0.720.2890.873M352.12±0.450.2260.873M341.95±0.720.2890.873M352.12±0.450.2670.873M341.95±0.720.2890.873M352.12±0.450.2670.874M404.35±1.330.0020.874M441.95±0.66<	M6	$1.90{\pm}0.76$	0.291	0.873	
N8 1.17±0.51 0.256 0.873 M9 1.75±0.79 0.318 0.872 M10 2.02±0.37 0.267 0.874 M11 1.91±0.95 0.270 0.873 M12 1.88±0.67 0.213 0.874 M13 1.06±0.30 0.278 0.874 M14 1.65±0.76 0.228 0.874 M15 1.87±0.65 0.228 0.873 M16 2.14±0.51 0.281 0.873 M17 2.06±0.56 0.290 0.873 M18 1.58±0.77 0.256 0.873 M20 2.06±0.55 0.068 0.875 M21 2.04±0.69 0.438 0.871 M22 1.8±0.55 0.668 0.870 M23 1.92±0.79 0.425 0.871 M24 1.87±0.80 0.448 0.870 M25 1.92±0.79 0.425 0.871 M26 1.68±0.85 0.447 0.870	M7	$1.56{\pm}0.77$	0.309	0.873	
M9 1.75±0.79 0.318 0.872 M10 2.02±0.37 0.267 0.874 M11 1.91±0.95 0.270 0.873 M12 1.88±0.67 0.213 0.874 M14 1.65±0.76 0.228 0.874 M14 1.65±0.76 0.228 0.874 M15 1.87±0.65 0.254 0.873 M16 2.14±0.51 0.281 0.873 M17 2.06±0.56 0.290 0.873 M18 1.58±0.77 0.256 0.873 M19 1.8±0.55 0.0668 0.875 M20 2.06±0.45 0.229 0.874 M21 2.04±0.69 0.438 0.871 M22 1.8±0.79 0.516 0.870 M24 1.87±0.80 0.4448 0.871 M25 1.92±0.82 0.493 0.870 M24 1.85±0.77 0.485 0.871 M25 1.92±0.82 0.4477 0.874	M8	$1.17{\pm}0.51$	0.256	0.873	
M10 2.02±0.37 0.267 0.874 M11 1.91±0.95 0.270 0.873 M12 1.88±0.67 0.213 0.874 M13 1.06±0.30 0.278 0.874 M14 1.65±0.76 0.228 0.874 M16 2.14±0.51 0.281 0.873 M16 2.14±0.51 0.281 0.873 M17 2.06±0.56 0.290 0.873 M18 1.5\$±0.77 0.256 0.873 M19 1.18±0.55 0.068 0.873 M20 2.06±0.45 0.229 0.874 M21 2.04±0.69 0.438 0.871 M22 1.8±0.79 0.516 0.870 M23 1.92±0.82 0.493 0.870 M24 1.87±0.80 0.448 0.871 M25 1.92±0.82 0.493 0.870 M26 1.68±0.77 0.485 0.871 M25 0.254 0.871 0.870	M9	1.75 ± 0.79	0.318	0.872	
M11 1.91±0.95 0.270 0.873 M12 1.88±0.67 0.213 0.874 M13 1.06±0.30 0.278 0.874 M14 1.65±0.76 0.228 0.873 M15 1.87±0.65 0.224 0.873 M16 2.14±0.51 0.281 0.873 M17 2.06±0.56 0.290 0.873 M18 1.88±0.77 0.256 0.873 M19 1.18±0.55 0.068 0.871 M20 2.06±0.45 0.229 0.874 M21 2.04±0.79 0.516 0.870 M23 1.92±0.82 0.443 0.871 M24 1.87±0.80 0.448 0.871 M25 1.92±0.82 0.493 0.870 M24 1.87±0.80 0.444 0.870 M27 2.08±0.77 0.485 0.870 M27 2.08±0.77 0.485 0.871 M30 1.50±0.74 0.175 0.874	M10	$2.02{\pm}0.37$	0.267	0.874	
M12 1.88±0.67 0.213 0.874 M13 1.06±0.30 0.278 0.874 M14 1.65±0.76 0.228 0.874 M15 1.87±0.65 0.254 0.873 M16 2.14±0.51 0.281 0.873 M17 2.06±0.56 0.290 0.873 M18 1.58±0.77 0.256 0.873 M19 1.18±0.55 0.068 0.875 M20 2.06±0.45 0.229 0.874 M21 2.04±0.69 0.438 0.870 M22 1.83±0.79 0.516 0.870 M23 1.92±0.79 0.425 0.871 M24 1.87±0.80 0.448 0.870 M25 1.92±0.82 0.493 0.870 M26 1.68±0.85 0.447 0.870 M27 2.08±0.77 0.485 0.871 M28 2.15±0.58 0.505 0.871 M30 1.50±0.74 0.175 0.874 M31 1.85±0.85 0.222 0.873 M34 1	M11	$1.91{\pm}0.95$	0.270	0.873	
M13 1.06 ± 0.30 0.278 0.874 M14 1.65 ± 0.76 0.228 0.874 M15 1.87 ± 0.65 0.254 0.873 M16 2.14 ± 0.51 0.281 0.873 M17 2.06 ± 0.56 0.290 0.873 M18 1.5 ± 0.77 0.256 0.873 M19 1.1 ± 0.55 0.068 0.875 M20 2.06 ± 0.45 0.229 0.874 M21 2.04 ± 0.69 0.438 0.871 M22 1.83 ± 0.79 0.516 0.870 M23 1.92 ± 0.79 0.425 0.871 M24 $1.870.80$ 0.448 0.870 M25 1.92 ± 0.79 0.425 0.871 M26 1.6 ± 0.85 0.447 0.870 M27 2.08 ± 0.77 0.485 0.870 M28 2.15 ± 0.58 0.505 0.871 M30 1.50 ± 0.74 0.175 0.874 M31 1.83 ± 0.85 0.222 0.873 M33 1.72 ± 0.90 0.279 0.873 M34 1.95 ± 0.72 0.289 0.873 M35 2.12 ± 0.45 0.226 0.874 M36 2.06 ± 1.16 0.228 0.875 M37 2.79 ± 1.25 0.099 0.878 M38 4.05 ± 1.31 0.267 0.875 M37 2.79 ± 1.25 0.296 0.874 M40 4.35 ± 1.33 0.002 0.881 M41 1.33 ± 0.61 0.191 0.874 M44 2.25 ± 0.86 0.328 0.872 </td <td>M12</td> <td>$1.88{\pm}0.67$</td> <td>0.213</td> <td>0.874</td>	M12	$1.88{\pm}0.67$	0.213	0.874	
M14 1.65±0.76 0.228 0.874 M15 1.87±0.65 0.254 0.873 M16 2.14±0.51 0.281 0.873 M17 2.06±0.56 0.290 0.873 M18 1.58±0.77 0.256 0.875 M20 2.06±0.45 0.229 0.874 M21 2.04±0.69 0.438 0.871 M22 1.83±0.79 0.516 0.870 M21 2.04±0.69 0.438 0.871 M22 1.87±0.80 0.448 0.871 M24 1.87±0.80 0.448 0.870 M25 1.92±0.79 0.425 0.871 M26 1.68±0.85 0.447 0.870 M27 2.08±0.77 0.485 0.871 M30 1.50±0.74 0.175 0.874 M31 1.83±0.85 0.222 0.874 M32 2.01±0.44 0.265 0.873 M33 1.72±0.90 0.279 0.873	M13	1.06 ± 0.30	0.278	0.874	
M15 1.87±0.65 0.254 0.873 M16 2.14±0.51 0.281 0.873 M17 2.06±0.56 0.290 0.873 M18 1.58±0.77 0.256 0.873 M19 1.18±0.55 0.068 0.875 M20 2.06±0.45 0.229 0.874 M21 2.04±0.69 0.438 0.871 M23 1.92±0.79 0.516 0.870 M24 1.87±0.80 0.448 0.871 M25 1.92±0.79 0.425 0.870 M24 1.87±0.80 0.448 0.870 M25 1.92±0.77 0.485 0.870 M26 1.68±0.85 0.447 0.870 M27 2.08±0.77 0.485 0.870 M28 2.15±0.58 0.505 0.871 M30 1.50±0.74 0.175 0.874 M31 1.83±0.85 0.222 0.873 M33 1.72±0.90 0.279 0.873 M34 1.95±0.72 0.289 0.874 M35 2	M14	1.65 ± 0.76	0.228	0.874	
N16 2.14±0.51 0.281 0.873 M17 2.06±0.56 0.290 0.873 M18 1.58±0.77 0.256 0.873 M19 1.18±0.55 0.068 0.875 M20 2.06±0.45 0.229 0.874 M21 2.04±0.69 0.438 0.871 M22 1.83±0.79 0.516 0.870 M23 1.92±0.79 0.425 0.871 M24 1.87±0.80 0.448 0.870 M25 1.92±0.82 0.493 0.870 M26 1.68±0.85 0.447 0.870 M27 2.08±0.77 0.485 0.870 M28 2.15±0.58 0.505 0.871 M30 1.50±0.74 0.175 0.874 M31 1.83±0.85 0.222 0.874 M33 1.72±0.90 0.279 0.873 M34 1.95±0.72 0.289 0.873 M35 2.12±0.45 0.226 0.874	M15	$1.87{\pm}0.65$	0.254	0.873	
M17 2.06 ± 0.56 0.290 0.873 M18 1.58 ± 0.77 0.256 0.873 M19 1.18 ± 0.55 0.068 0.875 M20 2.06 ± 0.45 0.229 0.874 M21 2.04 ± 0.69 0.438 0.871 M22 1.83 ± 0.79 0.516 0.870 M23 1.92 ± 0.79 0.425 0.871 M24 1.87 ± 0.80 0.448 0.871 M25 1.92 ± 0.82 0.493 0.870 M26 1.68 ± 0.85 0.447 0.870 M27 2.08 ± 0.77 0.485 0.871 M28 2.15 ± 0.58 0.505 0.871 M29 1.71 ± 0.86 0.442 0.871 M30 1.50 ± 0.74 0.175 0.874 M31 1.83 ± 0.85 0.222 0.874 M33 1.72 ± 0.90 0.279 0.873 M34 1.95 ± 0.72 0.289 0.873 M35 2.12 ± 0.45 0.226 0.874 M36 2.06 ± 1.16 0.228 0.875 M37 2.79 ± 1.25 0.099 0.878 M38 4.05 ± 1.31 0.267 0.873 M40 4.35 ± 1.33 0.002 0.881 M41 1.33 ± 0.61 0.191 0.874 M44 2.25 ± 0.86 0.328 0.871 M45 1.47 ± 0.82 0.448 0.871 M46 1.36 ± 0.75 0.396 0.871 M47 1.99 ± 0.86 0.374 0.871 M48 1.33 ± 0.71 0.448 0.871 <td>M16</td> <td>$2.14{\pm}0.51$</td> <td>0.281</td> <td>0.873</td>	M16	$2.14{\pm}0.51$	0.281	0.873	
M18 1.58±0.77 0.256 0.873 M19 1.18±0.55 0.068 0.875 M20 2.06±0.45 0.229 0.874 M21 2.04±0.69 0.438 0.871 M22 1.83±0.79 0.516 0.870 M23 1.92±0.79 0.425 0.871 M24 1.87±0.80 0.448 0.871 M25 1.92±0.82 0.493 0.870 M26 1.68±0.85 0.447 0.870 M27 2.08±0.77 0.485 0.871 M28 2.15±0.58 0.505 0.871 M29 1.71±0.86 0.442 0.871 M30 1.50±0.74 0.175 0.874 M31 1.83±0.85 0.222 0.873 M33 1.72±0.90 0.279 0.873 M34 1.95±0.72 0.289 0.873 M35 2.12±0.45 0.226 0.874 M36 2.06±1.16 0.228 0.874 M37 2.79±1.25 0.099 0.878 M38 4	M17	2.06 ± 0.56	0.290	0.873	
M19 1.18±0.55 0.068 0.875 M20 2.06±0.45 0.229 0.874 M21 2.04±0.69 0.438 0.871 M22 1.83±0.79 0.516 0.870 M23 1.92±0.79 0.425 0.871 M24 1.87±0.80 0.448 0.871 M25 1.92±0.82 0.493 0.870 M26 1.68±0.85 0.447 0.870 M28 2.15±0.58 0.505 0.871 M29 1.71±0.86 0.442 0.871 M30 1.50±0.74 0.175 0.874 M31 1.83±0.85 0.222 0.873 M33 1.72±0.90 0.279 0.873 M34 1.95±0.72 0.289 0.873 M35 2.12±0.45 0.226 0.875 M37 2.79±1.25 0.099 0.875 M38 4.05±1.31 0.267 0.873 M39 1.62±1.09 0.275 0.873 M40 4.35±1.33 0.002 0.881 M41 1	M18	$1.58{\pm}0.77$	0.256	0.873	
M20 2.06 ± 0.45 0.229 0.874 M21 2.04 ± 0.69 0.438 0.871 M22 1.83 ± 0.79 0.516 0.870 M23 1.92 ± 0.79 0.425 0.871 M24 1.87 ± 0.80 0.448 0.871 M25 1.92 ± 0.82 0.493 0.870 M26 1.68 ± 0.85 0.447 0.870 M27 2.08 ± 0.77 0.485 0.871 M28 2.15 ± 0.58 0.505 0.871 M30 1.50 ± 0.74 0.175 0.874 M31 1.83 ± 0.85 0.222 0.874 M32 2.01 ± 0.44 0.265 0.873 M33 1.72 ± 0.90 0.279 0.873 M34 1.95 ± 0.72 0.289 0.873 M35 2.12 ± 0.45 0.226 0.874 M36 2.06 ± 1.16 0.228 0.875 M37 2.79 ± 1.25 0.099 0.878 M38 4.05 ± 1.31 0.267 0.874 M40 4.35 ± 1.33 0.002 0.881 M41 1.33 ± 0.61 0.191 0.874 M42 1.5 ± 0.72 0.226 0.874 M43 1.5 ± 0.72 0.267 0.873 M43 1.5 ± 0.72 0.266 0.871 M44 2.25 ± 0.86 0.328 0.871 M45 1.47 ± 0.82 0.418 0.871 M46 1.3 ± 0.71 0.418 0.871 M47 1.99 ± 0.86 0.374 0.872 M48 1.33 ± 0.71 0.443 0.871 </td <td>M19</td> <td>$1.18{\pm}0.55$</td> <td>0.068</td> <td>0.875</td>	M19	$1.18{\pm}0.55$	0.068	0.875	
M21 2.04 ± 0.69 0.438 0.871 M22 1.83 ± 0.79 0.516 0.870 M23 1.92 ± 0.79 0.425 0.871 M24 1.87 ± 0.80 0.448 0.871 M25 1.92 ± 0.82 0.493 0.870 M26 1.68 ± 0.85 0.447 0.870 M27 2.08 ± 0.77 0.485 0.871 M28 2.15 ± 0.58 0.505 0.871 M29 1.71 ± 0.86 0.442 0.871 M30 1.50 ± 0.74 0.175 0.874 M31 1.83 ± 0.85 0.222 0.874 M32 2.01 ± 0.44 0.265 0.873 M33 1.72 ± 0.90 0.279 0.873 M34 1.95 ± 0.72 0.289 0.873 M35 2.12 ± 0.45 0.226 0.874 M36 2.06 ± 1.16 0.228 0.875 M37 2.79 ± 1.25 0.099 0.878 M38 4.05 ± 1.31 0.267 0.874 M40 4.35 ± 1.33 0.002 0.881 M41 1.3 ± 0.61 0.191 0.874 M42 1.5 ± 0.72 0.226 0.871 M43 1.56 ± 0.72 0.226 0.871 M44 2.25 ± 0.86 0.328 0.872 M45 1.47 ± 0.82 0.418 0.871 M46 1.36 ± 0.75 0.396 0.871 M47 1.99 ± 0.86 0.374 0.871 M48 1.33 ± 0.71 0.443 0.871 M44 2.25 ± 0.86 0.328 0.871	M20	$2.06{\pm}0.45$	0.229	0.874	
M22 1.83 ± 0.79 0.516 0.870 M23 1.92 ± 0.79 0.425 0.871 M24 1.87 ± 0.80 0.448 0.871 M25 1.92 ± 0.82 0.493 0.870 M26 1.68 ± 0.85 0.447 0.870 M27 2.0 ± 0.77 0.485 0.870 M28 2.15 ± 0.58 0.505 0.871 M30 1.50 ± 0.74 0.175 0.874 M31 1.83 ± 0.85 0.222 0.874 M32 2.01 ± 0.44 0.265 0.873 M33 1.72 ± 0.90 0.279 0.873 M34 1.95 ± 0.72 0.289 0.873 M35 2.12 ± 0.45 0.226 0.874 M36 2.06 ± 1.16 0.228 0.875 M37 2.79 ± 1.25 0.099 0.878 M38 4.05 ± 1.31 0.267 0.875 M39 1.62 ± 1.09 0.245 0.874 M40 4.35 ± 1.33 0.002 0.881 M41 1.33 ± 0.61 0.191 0.874 M42 1.54 ± 0.75 0.267 0.873 M43 1.56 ± 0.72 0.226 0.871 M44 2.25 ± 0.86 0.328 0.871 M45 1.47 ± 0.82 0.418 0.871 M46 1.36 ± 0.75 0.396 0.871 M47 1.99 ± 0.86 0.374 0.871 M48 1.33 ± 0.71 0.448 0.871 M49 2.28 ± 0.50 0.463 0.871 M49 2.26 ± 0.54 0.463 0.871 <td>M21</td> <td>$2.04{\pm}0.69$</td> <td>0.438</td> <td>0.871</td>	M21	$2.04{\pm}0.69$	0.438	0.871	
M23 1.92 ± 0.79 0.425 0.871 M24 1.87 ± 0.80 0.448 0.871 M25 1.92 ± 0.82 0.493 0.870 M26 1.6 ± 0.85 0.447 0.870 M27 2.0 ± 0.77 0.485 0.870 M28 2.15 ± 0.58 0.505 0.871 M29 1.71 ± 0.86 0.442 0.871 M30 1.50 ± 0.74 0.175 0.874 M31 1.83 ± 0.85 0.222 0.874 M32 2.01 ± 0.44 0.265 0.873 M33 1.72 ± 0.90 0.279 0.873 M34 1.95 ± 0.72 0.289 0.873 M35 2.12 ± 0.45 0.226 0.874 M36 2.06 ± 1.16 0.228 0.875 M37 2.79 ± 1.25 0.099 0.878 M38 4.05 ± 1.31 0.267 0.875 M39 1.62 ± 1.09 0.245 0.874 M40 4.35 ± 1.33 0.002 0.881 M41 1.33 ± 0.61 0.191 0.874 M42 1.54 ± 0.75 0.267 0.873 M43 1.56 ± 0.72 0.226 0.871 M44 2.25 ± 0.86 0.328 0.872 M45 1.47 ± 0.82 0.418 0.871 M46 1.36 ± 0.71 0.418 0.871 M47 1.99 ± 0.86 0.374 0.871 M48 1.33 ± 0.71 0.443 0.871 M49 2.24 ± 0.50 0.463 0.871 M49 2.24 ± 0.50 0.463 0.871	M22	$1.83{\pm}0.79$	0.516	0.870	
M24 1.87 ± 0.80 0.448 0.871 M25 1.92 ± 0.82 0.493 0.870 M26 1.68 ± 0.85 0.447 0.870 M27 2.08 ± 0.77 0.485 0.870 M28 2.15 ± 0.58 0.505 0.871 M29 1.71 ± 0.86 0.442 0.871 M30 1.50 ± 0.74 0.175 0.874 M31 1.83 ± 0.85 0.222 0.874 M32 2.01 ± 0.44 0.265 0.873 M33 1.72 ± 0.90 0.279 0.873 M34 1.95 ± 0.72 0.289 0.873 M35 2.12 ± 0.45 0.226 0.875 M36 2.06 ± 1.16 0.228 0.875 M37 2.79 ± 1.25 0.099 0.878 M38 4.05 ± 1.31 0.267 0.874 M40 4.35 ± 1.33 0.002 0.881 M41 1.33 ± 0.61 0.191 0.874 M42 1.54 ± 0.75 0.267 0.873 M43 1.56 ± 0.72 0.226 0.871 M44 2.25 ± 0.86 0.328 0.872 M45 1.47 ± 0.82 0.418 0.871 M46 1.36 ± 0.75 0.396 0.871 M47 1.99 ± 0.86 0.374 0.872 M48 1.33 ± 0.71 0.448 0.871 M49 2.08 ± 0.82 0.469 0.871 M45 1.47 ± 0.82 0.469 0.871 M46 1.36 ± 0.72 0.226 0.871 M47 1.99 ± 0.86 0.374 0.872 <td>M23</td> <td>$1.92{\pm}0.79$</td> <td>0.425</td> <td>0.871</td>	M23	$1.92{\pm}0.79$	0.425	0.871	
M25 1.92 ± 0.82 0.493 0.870 M26 1.68 ± 0.85 0.447 0.870 M27 2.08 ± 0.77 0.485 0.870 M28 2.15 ± 0.58 0.505 0.871 M29 1.71 ± 0.86 0.442 0.871 M30 1.50 ± 0.74 0.175 0.874 M31 1.83 ± 0.85 0.222 0.874 M32 2.01 ± 0.44 0.265 0.873 M33 1.72 ± 0.90 0.279 0.873 M34 1.95 ± 0.72 0.289 0.873 M35 2.12 ± 0.45 0.226 0.874 M36 2.06 ± 1.16 0.228 0.875 M37 2.79 ± 1.25 0.099 0.878 M38 4.05 ± 1.31 0.267 0.874 M40 4.35 ± 1.33 0.002 0.881 M41 1.33 ± 0.61 0.191 0.874 M42 1.54 ± 0.72 0.226 0.874 M44 2.25 ± 0.86 0.328 0.872 M45 1.47 ± 0.82 0.418 0.871 M46 1.36 ± 0.72 0.396 0.871 M47 1.99 ± 0.86 0.374 0.872 M48 1.33 ± 0.71 0.418 0.871 M49 2.08 ± 0.82 0.469 0.871 M49 2.08 ± 0.82 0.469 0.871 M45 1.72 ± 0.82 0.463 0.871 M45 1.25 ± 0.54 0.463 0.871 M46 1.36 ± 0.72 0.463 0.871 M47 1.99 ± 0.86 0.374 0.872 <td>M24</td> <td>$1.87{\pm}0.80$</td> <td>0.448</td> <td>0.871</td>	M24	$1.87{\pm}0.80$	0.448	0.871	
M26 1.68 ± 0.85 0.447 0.870 M27 2.08 ± 0.77 0.485 0.870 M28 2.15 ± 0.58 0.505 0.871 M29 1.7 ± 0.86 0.442 0.871 M30 1.50 ± 0.74 0.175 0.874 M31 1.83 ± 0.85 0.222 0.874 M32 2.0 ± 0.444 0.265 0.873 M33 1.72 ± 0.90 0.279 0.873 M34 1.95 ± 0.72 0.289 0.873 M35 2.12 ± 0.45 0.226 0.874 M36 2.06 ± 1.16 0.228 0.875 M37 2.79 ± 1.25 0.099 0.878 M38 4.05 ± 1.31 0.267 0.875 M39 1.62 ± 1.09 0.245 0.874 M40 4.35 ± 1.33 0.002 0.881 M41 1.33 ± 0.61 0.191 0.874 M42 1.54 ± 0.75 0.267 0.873 M43 1.56 ± 0.72 0.226 0.871 M44 2.25 ± 0.86 0.328 0.872 M45 1.47 ± 0.82 0.418 0.871 M46 1.36 ± 0.75 0.396 0.871 M47 1.99 ± 0.86 0.374 0.872 M48 1.33 ± 0.71 0.418 0.871 M49 2.08 ± 0.82 0.469 0.870 M45 1.47 ± 0.82 0.469 0.871 M47 1.99 ± 0.86 0.374 0.871 M48 1.33 ± 0.71 0.418 0.871 M49 2.08 ± 0.82 0.469 0.871 <td>M25</td> <td>$1.92{\pm}0.82$</td> <td>0.493</td> <td>0.870</td>	M25	$1.92{\pm}0.82$	0.493	0.870	
M27 2.08 ± 0.77 0.485 0.870 M28 2.15 ± 0.58 0.505 0.871 M29 1.71 ± 0.86 0.442 0.871 M30 1.50 ± 0.74 0.175 0.874 M31 1.83 ± 0.85 0.222 0.874 M32 2.01 ± 0.44 0.265 0.873 M33 1.72 ± 0.90 0.279 0.873 M34 1.95 ± 0.72 0.289 0.873 M35 2.12 ± 0.45 0.226 0.874 M36 2.06 ± 1.16 0.228 0.875 M37 2.79 ± 1.25 0.099 0.878 M38 4.05 ± 1.31 0.267 0.874 M40 4.35 ± 1.33 0.002 0.881 M41 1.33 ± 0.61 0.191 0.874 M42 1.54 ± 0.75 0.267 0.873 M43 1.56 ± 0.72 0.226 0.871 M44 2.25 ± 0.86 0.328 0.872 M45 1.47 ± 0.82 0.418 0.871 M46 1.36 ± 0.75 0.396 0.871 M47 1.99 ± 0.86 0.374 0.872 M48 1.33 ± 0.71 0.418 0.871 M49 2.08 ± 0.82 0.469 0.871 M49 2.02 ± 0.50 0.484 0.871 M49 2.02 ± 0.50 0.484 0.871 M49 2.02 ± 0.50 0.463 0.871 M49 2.02 ± 0.50 0.463 0.871 M49 2.02 ± 0.50 0.463 0.871 M49 2.02 ± 0.50 0.463 0.871 <td>M26</td> <td>$1.68{\pm}0.85$</td> <td>0.447</td> <td>0.870</td>	M26	$1.68{\pm}0.85$	0.447	0.870	
M28 2.15 ± 0.58 0.505 0.871 M29 1.71 ± 0.86 0.442 0.871 M30 1.50 ± 0.74 0.175 0.874 M31 1.83 ± 0.85 0.222 0.873 M32 2.01 ± 0.44 0.265 0.873 M33 1.72 ± 0.90 0.279 0.873 M34 1.95 ± 0.72 0.289 0.873 M35 2.12 ± 0.45 0.226 0.874 M36 2.06 ± 1.16 0.228 0.875 M37 2.79 ± 1.25 0.099 0.878 M38 4.05 ± 1.31 0.267 0.874 M40 4.35 ± 1.33 0.002 0.881 M41 1.33 ± 0.61 0.191 0.874 M42 1.54 ± 0.75 0.226 0.871 M43 1.56 ± 0.72 0.226 0.871 M44 2.25 ± 0.86 0.328 0.871 M46 1.36 ± 0.75 0.396 0.871 M47 1.99 ± 0.86 0.374 0.872 M48 1.33 ± 0.71 0.418 0.871 M47 1.99 ± 0.86 0.374 0.872 M48 1.33 ± 0.71 0.484 0.871 M49 2.08 ± 0.82 0.469 0.871 M49 2.08 ± 0.82 0.463 0.871 M51 2.26 ± 0.54 0.463 0.871	M27	$2.08{\pm}0.77$	0.485	0.870	
M29 1.71 ± 0.86 0.442 0.871 M30 1.50 ± 0.74 0.175 0.874 M31 1.83 ± 0.85 0.222 0.874 M32 2.01 ± 0.44 0.265 0.873 M33 1.72 ± 0.90 0.279 0.873 M34 1.95 ± 0.72 0.289 0.873 M35 2.12 ± 0.45 0.226 0.874 M36 2.06 ± 1.16 0.228 0.875 M37 2.79 ± 1.25 0.099 0.878 M38 4.05 ± 1.31 0.267 0.875 M39 1.62 ± 1.09 0.245 0.874 M40 4.35 ± 1.33 0.002 0.881 M41 1.33 ± 0.61 0.191 0.874 M42 1.54 ± 0.72 0.226 0.874 M44 2.25 ± 0.86 0.328 0.872 M45 1.47 ± 0.82 0.418 0.871 M46 1.36 ± 0.75 0.396 0.871 M47 1.99 ± 0.86 0.374 0.872 M48 0.22 ± 0.50 0.484 0.871 M49 2.08 ± 0.82 0.469 0.870 M50 2.24 ± 0.50 0.484 0.871 M51 2.26 ± 0.54 0.463 0.871 M52 1.72 ± 0.82 0.353 0.872	M28	2.15 ± 0.58	0.505	0.871	
M30 1.50 ± 0.74 0.175 0.874 M31 1.83 ± 0.85 0.222 0.874 M32 2.01 ± 0.44 0.265 0.873 M33 1.72 ± 0.90 0.279 0.873 M34 1.95 ± 0.72 0.289 0.873 M35 2.12 ± 0.45 0.226 0.874 M36 2.06 ± 1.16 0.228 0.875 M37 2.79 ± 1.25 0.099 0.878 M38 4.05 ± 1.31 0.267 0.875 M39 1.62 ± 1.09 0.245 0.874 M40 4.35 ± 1.33 0.002 0.881 M41 1.33 ± 0.61 0.191 0.874 M42 1.54 ± 0.75 0.267 0.873 M43 1.56 ± 0.72 0.226 0.874 M44 2.25 ± 0.86 0.328 0.872 M45 1.47 ± 0.82 0.418 0.871 M46 1.36 ± 0.75 0.396 0.871 M47 1.99 ± 0.86 0.374 0.872 M48 1.33 ± 0.71 0.418 0.871 M49 2.08 ± 0.82 0.469 0.870 M50 2.24 ± 0.50 0.484 0.871 M51 2.26 ± 0.54 0.463 0.871 M52 1.72 ± 0.82 0.353 0.872	M29	1.71 ± 0.86	0.442	0.871	
M31 1.83 ± 0.85 0.222 0.874 M32 2.01 ± 0.44 0.265 0.873 M33 1.72 ± 0.90 0.279 0.873 M34 1.95 ± 0.72 0.289 0.873 M35 2.12 ± 0.45 0.226 0.874 M36 2.06 ± 1.16 0.228 0.875 M37 2.79 ± 1.25 0.099 0.878 M38 4.05 ± 1.31 0.267 0.875 M39 1.62 ± 1.09 0.245 0.874 M40 4.35 ± 1.33 0.002 0.881 M41 1.33 ± 0.61 0.191 0.874 M42 1.54 ± 0.75 0.267 0.873 M43 1.56 ± 0.72 0.226 0.874 M44 2.25 ± 0.86 0.328 0.872 M45 1.47 ± 0.82 0.418 0.871 M46 1.33 ± 0.71 0.418 0.871 M47 1.99 ± 0.86 0.374 0.872 M48 1.33 ± 0.71 0.484 0.871 M49 2.08 ± 0.82 0.469 0.871 M49 2.0 ± 0.54 0.463 0.871 M51 2.26 ± 0.54 0.463 0.871	M30	1.50 ± 0.74	0.175	0.874	
M32 2.01 ± 0.44 0.265 0.873 M33 1.72 ± 0.90 0.279 0.873 M34 1.95 ± 0.72 0.289 0.873 M35 2.12 ± 0.45 0.226 0.874 M36 2.06 ± 1.16 0.228 0.875 M37 2.79 ± 1.25 0.099 0.878 M38 4.05 ± 1.31 0.267 0.875 M39 1.62 ± 1.09 0.245 0.874 M40 4.35 ± 1.33 0.002 0.881 M41 1.33 ± 0.61 0.191 0.874 M42 1.54 ± 0.75 0.267 0.873 M43 1.56 ± 0.72 0.226 0.874 M44 2.25 ± 0.86 0.328 0.871 M45 1.47 ± 0.82 0.418 0.871 M46 1.36 ± 0.75 0.396 0.871 M47 1.99 ± 0.86 0.374 0.871 M48 1.33 ± 0.71 0.418 0.871 M49 2.08 ± 0.82 0.469 0.870 M50 2.24 ± 0.50 0.484 0.871 M51 2.26 ± 0.54 0.463 0.871	M31	1.83 ± 0.85	0.222	0.874	
M33 1.72 ± 0.90 0.279 0.873 M34 1.95 ± 0.72 0.289 0.873 M35 2.12 ± 0.45 0.226 0.874 M36 2.06 ± 1.16 0.228 0.875 M37 2.79 ± 1.25 0.099 0.878 M38 4.05 ± 1.31 0.267 0.875 M39 1.62 ± 1.09 0.245 0.874 M40 4.35 ± 1.33 0.002 0.881 M41 1.33 ± 0.61 0.191 0.874 M42 1.54 ± 0.75 0.267 0.873 M43 1.56 ± 0.72 0.226 0.871 M44 2.25 ± 0.86 0.328 0.872 M45 1.47 ± 0.82 0.418 0.871 M46 1.36 ± 0.75 0.396 0.871 M47 1.99 ± 0.86 0.374 0.872 M48 1.33 ± 0.71 0.418 0.871 M49 2.08 ± 0.82 0.469 0.871 M51 2.26 ± 0.54 0.463 0.871 M52 1.72 ± 0.82 0.353 0.872	M32	2.01±0.44	0.265	0.873	
M34 1.95 ± 0.72 0.289 0.873 M35 2.12 ± 0.45 0.226 0.874 M36 2.06 ± 1.16 0.228 0.875 M37 2.79 ± 1.25 0.099 0.878 M38 4.05 ± 1.31 0.267 0.875 M39 1.62 ± 1.09 0.245 0.874 M40 4.35 ± 1.33 0.002 0.881 M41 1.33 ± 0.61 0.191 0.874 M42 1.54 ± 0.75 0.267 0.873 M43 1.56 ± 0.72 0.226 0.871 M44 2.25 ± 0.86 0.328 0.872 M45 1.47 ± 0.82 0.418 0.871 M46 1.36 ± 0.75 0.396 0.871 M47 1.99 ± 0.86 0.374 0.872 M48 1.33 ± 0.71 0.418 0.871 M49 2.08 ± 0.82 0.469 0.871 M49 2.08 ± 0.82 0.469 0.871 M51 2.26 ± 0.54 0.463 0.871	M33	1.72 ± 0.90	0.279	0.873	
M35 2.12 ± 0.45 0.226 0.874 M36 2.06 ± 1.16 0.228 0.875 M37 2.79 ± 1.25 0.099 0.878 M38 4.05 ± 1.31 0.267 0.875 M39 1.62 ± 1.09 0.245 0.874 M40 4.35 ± 1.33 0.002 0.881 M41 1.33 ± 0.61 0.191 0.874 M42 1.54 ± 0.75 0.267 0.873 M43 1.56 ± 0.72 0.226 0.874 M44 2.25 ± 0.86 0.328 0.872 M45 1.47 ± 0.82 0.418 0.871 M46 1.36 ± 0.75 0.396 0.871 M47 1.99 ± 0.86 0.374 0.872 M48 1.33 ± 0.71 0.418 0.871 M49 2.08 ± 0.82 0.469 0.870 M50 2.24 ± 0.50 0.484 0.871 M51 2.26 ± 0.54 0.463 0.871 M52 1.72 ± 0.82 0.353 0.872	M34	1.95 ± 0.72	0.289	0.873	
M36 2.06 ± 1.16 0.228 0.875 M37 2.79 ± 1.25 0.099 0.878 M38 4.05 ± 1.31 0.267 0.875 M39 1.62 ± 1.09 0.245 0.874 M40 4.35 ± 1.33 0.002 0.881 M41 1.33 ± 0.61 0.191 0.874 M42 1.54 ± 0.75 0.267 0.873 M43 1.56 ± 0.72 0.226 0.874 M44 2.25 ± 0.86 0.328 0.872 M45 1.47 ± 0.82 0.418 0.871 M46 1.36 ± 0.75 0.396 0.871 M47 1.99 ± 0.86 0.374 0.872 M48 1.33 ± 0.71 0.418 0.871 M49 2.08 ± 0.82 0.469 0.870 M50 2.24 ± 0.50 0.484 0.871 M51 2.26 ± 0.54 0.463 0.871 M52 1.72 ± 0.82 0.353 0.872	M35	2.12±0.45	0.226	0.874	
M37 2.79 ± 1.25 0.099 0.878 M38 4.05 ± 1.31 0.267 0.875 M39 1.62 ± 1.09 0.245 0.874 M40 4.35 ± 1.33 0.002 0.881 M41 1.33 ± 0.61 0.191 0.874 M42 1.54 ± 0.75 0.267 0.873 M43 1.56 ± 0.72 0.226 0.874 M44 2.25 ± 0.86 0.328 0.872 M45 1.47 ± 0.82 0.418 0.871 M46 1.36 ± 0.75 0.396 0.871 M47 1.99 ± 0.86 0.374 0.872 M48 1.33 ± 0.71 0.418 0.871 M49 2.08 ± 0.82 0.469 0.870 M50 2.24 ± 0.50 0.484 0.871 M51 2.26 ± 0.54 0.463 0.871 M52 1.72 ± 0.82 0.353 0.872	M36	2.06 ± 1.16	0.228	0.875	
M38 4.05 ± 1.31 0.267 0.875 M39 1.62 ± 1.09 0.245 0.874 M40 4.35 ± 1.33 0.002 0.881 M41 1.33 ± 0.61 0.191 0.874 M42 1.54 ± 0.75 0.267 0.873 M43 1.56 ± 0.72 0.226 0.874 M44 2.25 ± 0.86 0.328 0.872 M45 1.47 ± 0.82 0.418 0.871 M46 1.36 ± 0.75 0.396 0.871 M47 1.99 ± 0.86 0.374 0.872 M48 1.33 ± 0.71 0.418 0.871 M49 2.08 ± 0.82 0.469 0.870 M50 2.24 ± 0.50 0.484 0.871 M51 2.26 ± 0.54 0.463 0.871 M52 1.72 ± 0.82 0.353 0.872	M37	2.79±1.25	0.099	0.878	
M39 1.62 ± 1.09 0.245 0.874 M40 4.35 ± 1.33 0.002 0.881 M41 1.33 ± 0.61 0.191 0.874 M42 1.54 ± 0.75 0.267 0.873 M43 1.56 ± 0.72 0.226 0.874 M44 2.25 ± 0.86 0.328 0.872 M45 1.47 ± 0.82 0.418 0.871 M46 1.36 ± 0.75 0.396 0.871 M47 1.99 ± 0.86 0.374 0.872 M48 1.33 ± 0.71 0.418 0.871 M49 2.08 ± 0.82 0.469 0.870 M50 2.24 ± 0.50 0.484 0.871 M51 2.26 ± 0.54 0.463 0.871 M52 1.72 ± 0.82 0.353 0.872	M38	4.05 ± 1.31	0.26/	0.875	
M40 4.35 ± 1.33 0.002 0.881 M41 1.33 ± 0.61 0.191 0.874 M42 1.54 ± 0.75 0.267 0.873 M43 1.56 ± 0.72 0.226 0.874 M44 2.25 ± 0.86 0.328 0.872 M45 1.47 ± 0.82 0.418 0.871 M46 1.36 ± 0.75 0.396 0.871 M47 1.99 ± 0.86 0.374 0.872 M48 1.33 ± 0.71 0.418 0.871 M49 2.08 ± 0.82 0.469 0.870 M50 2.24 ± 0.50 0.484 0.871 M51 2.26 ± 0.54 0.463 0.871 M52 1.72 ± 0.82 0.353 0.872	M39	1.62±1.09	0.245	0.874	
M41 1.33 ± 0.61 0.191 0.874 M42 1.54 ± 0.75 0.267 0.873 M43 1.56 ± 0.72 0.226 0.874 M44 2.25 ± 0.86 0.328 0.872 M45 1.47 ± 0.82 0.418 0.871 M46 1.36 ± 0.75 0.396 0.871 M47 1.99 ± 0.86 0.374 0.872 M48 1.33 ± 0.71 0.418 0.871 M49 2.08 ± 0.82 0.469 0.870 M50 2.24 ± 0.50 0.484 0.871 M51 2.26 ± 0.54 0.463 0.871 M52 1.72 ± 0.82 0.353 0.872	M40	4.35 ± 1.33	0.002	0.881	
M42 1.54 ± 0.75 0.267 0.873 M43 1.56 ± 0.72 0.226 0.874 M44 2.25 ± 0.86 0.328 0.872 M45 1.47 ± 0.82 0.418 0.871 M46 1.36 ± 0.75 0.396 0.871 M47 1.99 ± 0.86 0.374 0.872 M48 1.33 ± 0.71 0.418 0.871 M49 2.08 ± 0.82 0.469 0.870 M50 2.24 ± 0.50 0.484 0.871 M51 2.26 ± 0.54 0.463 0.871 M52 1.72 ± 0.82 0.353 0.872	M41	1.33 ± 0.61	0.191	0.874	
M43 1.56 ± 0.72 0.226 0.874 M44 2.25 ± 0.86 0.328 0.872 M45 1.47 ± 0.82 0.418 0.871 M46 1.36 ± 0.75 0.396 0.871 M47 1.99 ± 0.86 0.374 0.872 M48 1.33 ± 0.71 0.418 0.871 M49 2.08 ± 0.82 0.469 0.870 M50 2.24 ± 0.50 0.484 0.871 M51 2.26 ± 0.54 0.463 0.871 M52 1.72 ± 0.82 0.353 0.872	M42	1.54 ± 0.75	0.267	0.873	
M44 2.25 ± 0.86 0.328 0.872 M45 1.47 ± 0.82 0.418 0.871 M46 1.36 ± 0.75 0.396 0.871 M47 1.99 ± 0.86 0.374 0.872 M48 1.33 ± 0.71 0.418 0.871 M49 2.08 ± 0.82 0.469 0.870 M50 2.24 ± 0.50 0.484 0.871 M51 2.26 ± 0.54 0.463 0.871 M52 1.72 ± 0.82 0.353 0.872	M43	1.56 ± 0.72	0.226	0.874	
M45 1.47 ± 0.82 0.418 0.871 M46 1.36 ± 0.75 0.396 0.871 M47 1.99 ± 0.86 0.374 0.872 M48 1.33 ± 0.71 0.418 0.871 M49 2.08 ± 0.82 0.469 0.870 M50 2.24 ± 0.50 0.484 0.871 M51 2.26 ± 0.54 0.463 0.871 M52 1.72 ± 0.82 0.353 0.872	M44	2.25±0.86	0.328	0.872	
M46 1.36 ± 0.75 0.396 0.871 M47 1.99 ± 0.86 0.374 0.872 M48 1.33 ± 0.71 0.418 0.871 M49 2.08 ± 0.82 0.469 0.870 M50 2.24 ± 0.50 0.484 0.871 M51 2.26 ± 0.54 0.463 0.871 M52 1.72 ± 0.82 0.353 0.872	N145	$1.4/\pm 0.82$	0.418	0.871	
M471.99±0.860.3740.872M481.33±0.710.4180.871M492.08±0.820.4690.870M502.24±0.500.4840.871M512.26±0.540.4630.871M521.72±0.820.3530.872	IV140	1.30 ± 0.73	0.396	0.871	
M481.53±0.710.4180.871M492.08±0.820.4690.870M502.24±0.500.4840.871M512.26±0.540.4630.871M521.72±0.820.3530.872	IV14 / M 4 9	1.99 ± 0.80 1.22±0.71	0.374	0.872	
$M147$ 2.06 ± 0.82 0.409 0.870 M50 2.24 ± 0.50 0.484 0.871 M51 2.26 ± 0.54 0.463 0.871 M52 1.72 ± 0.82 0.353 0.872	1V140 M40	1.33 ± 0.71 2.08 ± 0.92	0.418	0.0/1	
M302.24±0.300.4840.871M512.26±0.540.4630.871M521.72±0.820.3530.872	IV149 M50	2.08±0.82	0.409	0.870	
M51 2.20 ± 0.34 0.405 0.871 M52 1.72 ± 0.82 0.353 0.872	M51	2.24±0.30 2.26±0.54	0.484	0.0/1	
1v152 1.72±0.02 0.555 0.872	M52	2.20±0.34 1.72±0.92	0.405	0.0/1	
M52 1.81 ± 0.86 0.440 0.071	1V132 M53	1./2±0.82 1.91⊥0.96	0.333	0.072	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1v133 M54	1.01±0.80 1.72±0.88	0.440	0.0/1	
M55 1 16+0.52 0.409 0.872	M55	1 16+0 52	0.351	0.872	

M56	1.92±0.87	0.415	0.871
M57	1.33±0.69	0.379	0.872
M58	$2.28{\pm}0.53$	0.525	0.871
M59	2.06±0.73	0.405	0.871

Values are expressed as mean \pm SD.

Cronbach's α coefficient, which gives the internal consistency of the items that make up the questionnaire, was calculated as 0.888 for the overall questionnaire. The correlation and Cronbach's α values for items are shown in Table 3. The values for items ranged between 0.870 and 0.878, since all 59 items have Cronbach's α below 0.888, there is no need to remove any item from the questionnaire.

The test-retest reliability results for the sections and the total score of the 355 athletes are shown in Table 4. Correlation coefficients were calculated and found to be positively moderate for the total score (r = 0.599, p < 0.001).

Table 4

Test-retest measurement for each section and total score (n=355)

Section/Total	Test Mean ± SD	Retest Mean ± SD	r	р
Macronutrients	7.93 ± 5.20	8.36 ± 5.71	0.554	< 0.001
Micronutrients	2.59 ± 3.34	2.07 ± 3.79	0.407	< 0.001
Hydration	1.37 ± 2.33	0.96 ± 2.37	0.408	< 0.001
Periodization	1.31 ± 1.52	1.22 ± 1.63	0.390	< 0.001
Total Score	13.20 ± 7.34	12.62 ± 8.53	0.599	< 0.001
Total Score*	61.18 ± 6.22	60.69 ± 7.23	0.599	< 0.001

Values are expressed as mean \pm SD. P < 0.05 considered as statistically significant. P values are calculated using Spearman Correlation Tests. r: Spearman correlation coefficient. *Score formulated as 0 - 100 points.

Discussion

To investigate the relationship between nutritional knowledge and dietary habits in athletes, validated tools are needed to assess nutritional knowledge in this population (Trakman et al., 2017). This study aimed to determine the validity and reliability of the Short Sports Nutrition Knowledge Questionnaire (NUKYA) for Athletes in Turkish, thus providing a compact sports nutrition questionnaire needed in the field to be introduced to the literature.

In this study, the validity and reliability of the NUKYA questionnaire developed by Vázquez-Espino et al. (2020) was examined on 355 participants consisting of Turkish athletes. The questionnaire aims to reveal the nutrition knowledge levels of athletes.

During the adaptation phase into Turkish, the questionnaire, which consists of 4 sections and 59 items, was first translated from the main form into Turkish and then back into English, and the necessary adjustments were made in line with expert opinions and reached its final Turkish format. Unlike other sports nutrition information surveys (Bujang and Baharum, 2016) adapted to Turkish, NUKYA is a short questionnaire that can be completed in a short time. In addition, macronutrients, micronutrients, hydration, and periodization sections, can help athletes determine nutritional information in detail.

For the convergent validity of the questionnaire, correlation coefficients between NSKQ and NUKYA total scores were examined. There is a positive correlation between the total scores of the two questionnaires (r = 0.379, p < 0.01).

In Durnali's study, a statistically significant difference was found between the Upper-Lower 27% groups in all items, as in our study, which was an indication that items are good at differentiating individuals (Durnali, 2022).

The field of application may often affect the cut-off values for the reliability of questionnaires, because of this, generalization is not recommended. Internal consistency is recommended as 0.7 at minimum (Trakman et al. 2017; Parmenter and Wardle, 2000), whereas, a Cronbach's α value over 0.6 is also acceptable by some authors (Taber, 2018; Cronbach, 1951). Several questionnaires were presented as validated with a Cronbach's α value ranging between 0.6 - 0.7 (Nahar et al., 2019; Nackers et al., 2019). In a review, Contento indicates that for studies that measure nutrition knowledge, Cronbach's α values were reported mostly between 0.6 and 0.7 (Contento, 2008). In a validation study by Rosi and colleagues, about general and sports nutrition knowledge conducted with Italian adolescents, an acceptable internal consistency reliability, by Cronbach's α scores was revealed (0.684) (Rosi et al., 2020). In a study of Alsaffar, internal reliability for the scale (0.89) and the two sections which were "sources of nutrients" (0.88) and "diet-disease relationships" (0.81) were high. The other two sections which were "dietary recommendation" and "choosing everyday foods" had lower values for reliability (0.47 and 0.43, respectively) (Alsaffar, 2012). In our study, the Cronbach α internal consistency coefficient for the overall questionnaire was determined as 0.888 and item values are between 0.870-0.878. No items were removed from the questionnaire. The Cronbach α value is a statistical measure that ranges between 0 and 1. As the value approaches 1, the reliability of the scale increases (Büyüköztürk, 2002; Hayran and Hayran, 2018). For measuring knowledge structures, reliability estimates of 0.70 or greater indicate the sufficient reliability of the test (Axelson and Brinberg, 1992). This suggests that the current questionnaire is reliable and can effectively measure nutritional knowledge in athletes.

To measure the test-retest reliability of the NUKYA questionnaire, the Turkish form was applied to athletes studying at universities at two-week intervals. As a result of the application, the consistency coefficient for the entire questionnaire was calculated as r = 0.599. In line with the results obtained, the questionnaire has a positive and medium level of internal consistency. The results of the t-test of the test and retest indicated that this questionnaire was repeatable. In a similar study conducted with track and field athletes, the test and retest correlation was found as r = 0.98, p < 0.05 which demonstrates satisfactory internal reliability (Kline, 2015). In Furber and colleagues' study, the test and retest correlation was found to be high and consistent across the total test and retest correlation for the whole questionnaire was 0.98 (Fuber et al., 2017).

Conclusion

The NUKYA questionnaire is a valid and reliable tool to measure the nutritional knowledge of Turkish athletes. Since this questionnaire, which has been adapted into Turkish, is shorter than other questionnaires, its use may create an advantage in terms of time. Moreover, it is thought that this questionnaire can provide more accurate information since it has a short measurement period, which can increase the athlete's focus on the questions. With these Turkish-adapted questionnaires, dietitians, clinicians, coaches, sports scientists and researchers will be provided with detailed information about the nutritional knowledge of athletes and the effectiveness of nutrition education intervention studies to increase nutritional knowledge can be evaluated effectively.

Conflict Declaration

The author(s) have no declaration of conflict regarding the research.

References

- Alsaffar, A. A. (2012). Validation of a general nutrition knowledge questionnaire in a Turkish student sample. *Public health nutrition*, 15(11), 2074-2085.
- Axelson, M. L., and Brinberg, D. (1992). The measurement and conceptualization of nutrition knowledge. *Journal* of Nutrition Education, 24(5), 239-246.
- Bujang, M. A., and Baharum, N. (2016). Sample size guideline for correlation analysis. World, 3(1), 37-46.
- Büyüköztürk, Ş. (2018). Sosyal bilimler için veri analizi el kitabı (Data Analysis Handbook for Social Sciences). *Pegem Yayıncılık*, 179-180.
- Calella, P., Iacullo, V. M., and Valerio, G. (2017). Validation of a general and sport nutrition knowledge questionnaire in adolescents and young adults: GeSNK. *Nutrients*, 9(5), 439.
- Contento, I. (2008). Review of nutrition education research in the Journal of Nutrition Education and Behavior, 1998 to 2007. *Journal of nutrition education and behavior*, 40(6), 331-340.
- Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. psychometrika, 16(3), 297-334.
- Çırak, O., and Çakıroğlu, F. P. (2019). Sporcu beslenme bilgisi ölçeğinin Türkçe formunun geçerlik ve güvenirlik çalışması (The validity and reliability study of the Turkish version of the Nutrition for Sport Knowledge Questionnaire).. Ankara Sağlık Bilimleri Dergisi, 8(1), 35-49.
- Durnali, M. (2022). The Development and Validation of Technological Leadership Behavior Instrument for School Principal. *Journal of Learning and Teaching in Digital Age*, 7(2), 210-221.
- Ercan, I., and Kan, I. (2004). Reliability and validity in the scales. Uludağ Üniversitesi Tıp Fakültesi Dergisi, 30(3), 211-6.
- Furber, M. J. W., Roberts, J. D., and Roberts, M. G. (2017). A valid and reliable nutrition knowledge questionnaire for track and field athletes. *BMC nutrition*, *3*, 1-7.
- Hayran, M., and Hayran, M. (2018). Sağlık Araştırmaları İçin Temel İstatistik (Basic Statistics for Health Research). Ankara: Omega Araştırmaları.
- Hinton, P. S., Sanford, T. C., Davidson, M. M., Yakushko, O. F., and Beck, N. C. (2004). Nutrient intakes and dietary behaviors of male and female collegiate athletes. *International Journal of Sport Nutrition and Exercise Metabolism*, 14(4):389-405.
- Hoogenboom, B. J., Morris, J., Morris, C., and Schaefer, K. (2009). Nutritional knowledge and eating behaviors of female, collegiate swimmers. *North American journal of sports physical therapy: NAJSPT*, 4(3),139.
- Jagim, A. R., Zabriskie, H., Currier, B., Harty, P. S., Stecker, R., and Kerksick, C. M. (2019). Nutrient Status and perceptions of energy and macronutrient intake in a Group of Collegiate Female Lacrosse Athletes. *Journal* of the International Society of Sports Nutrition, 16(1), 43.
- Karpinski, C. A., Dolins, K. R., and Bachman, J. (2019). Development and validation of a 49-Item Sports Nutrition Knowledge Instrument (49-SNKI) for adult athletes. *Topics in Clinical Nutrition*, *34*(3), 174-185.
- Kerksick, C. M., Wilborn, C. D., Roberts, M. D., Smith-Ryan, A., Kleiner, S. M., Jäger, R. et al. (2018). ISSN exercise & sports nutrition review update: research & recommendations. *Journal of the international* society of sports nutrition, 15(1), 38.
- Kline, P. (2015). Personality (Psychology Revivals): Measurement and Theory. Routledge.
- Kline, R. (2016). Principles and Practices of Structural EquationModeling, 4th ed. New York: The Guilford Press.
- Koo, T. K., and Li, M. Y. (2016). A guideline of selecting and reporting intraclass correlation coefficients for reliability research. *Journal of chiropractic medicine*, 15(2), 155-163.
- Kutlu, M., Cintesun, E. E., Ugur, H., and Tosun, M. I. (2022). Validation and implementation of general and sport nutrition knowledge questionnaire for university students and athletes. *Central European Journal of Sport Sciences and Medicine*, 40(4), 77-88.

- Nackers, F., Roederer, T., Marquer, C., Ashaba, S., Maling, S., Mwanga-Amumpaire, J., et al. (2019). A screening tool for psychological difficulties in children aged 6 to 36 months: cross-cultural validation in Kenya, Cambodia and Uganda. *BMC pediatrics*, *19*(1), 1-11.
- Nahar, B., Hossain, M., Ickes, S. B., Naila, N. N., Mahfuz, M., Hossain, D., et al. (2019). Development and validation of a tool to assess appetite of children in low income settings. *Appetite*, 134, 182-192.
- Parmenter, K., and Wardle, J. (2000). Evaluation and design of nutrition knowledge measures. *Journal of Nutrition Education*, 32(5), 269-277.
- Preacher, K. J., Rucker, D. D., MacCallum, R. C., and Nicewander, W. A. (2005). Use of the extreme groups approach: a critical reexamination and new recommendations. *Psychological methods*, *10*(2), 178.
- Prieto, A.J. (1992). A method for translation of instruments to otherlanguages. Adult Educ Q 43, 1-14.
- Rosi, A., Ferraris, C., Guglielmetti, M., Meroni, E., Charron, M., Menta, R., et al. (2020). Validation of a general and sports nutrition knowledge questionnaire in Italian early adolescents. *Nutrients*, *12*(10), 3121.
- Slater, G., and Phillips, S. M. (2013). Nutrition guidelines for strength sports: sprinting, weightlifting, throwing events, and bodybuilding. Ronald, J.M., Susan, M.S., (Eds.). Food, Nutrition and Sports Performance III. Routledge, pp. 67-77.
- Taber, K. S. (2018). The use of Cronbach's alpha when developing and reporting research instruments in science education. *Research in science education*, 48, 1273-1296.
- Tam, R., Beck, K. L., Gifford, J. A., Flood, V. M., and O'Connor, H. T. (2020). Development of an electronic questionnaire to assess sports nutrition knowledge in athletes. *Journal of the American College of Nutrition*, 39(7), 636-644.
- Trakman, G. L., Forsyth, A., Hoye, R., and Belski, R. (2017). Developing and validating a nutrition knowledge questionnaire: key methods and considerations. *Public health nutrition*, 20(15), 2670-2679.
- Trakman, G. L., Forsyth, A., Hoye, R., and Belski, R. (2017). The nutrition for sport knowledge questionnaire (NSKQ): development and validation using classical test theory and Rasch analysis. *Journal of the International Society of Sports Nutrition*, 14(1), 26.
- Valliant, M. W., Pittman Emplaincourt, H., Wenzel, R.K., and Garner, B.H. (2012). Nutrition education by a registered dietitian improves dietary intake and nutrition knowledge of a NCAA female volleyball team. *Nutrients*, 4(6), 506-516.
- Vázquez-Espino, K., Fernández-Tena, C., Lizarraga-Dallo, M. A., and Farran-Codina, A. (2020). Development and validation of a short sport nutrition knowledge questionnaire for athletes. *Nutrients*, *12*(11), 3561.