
Fırat Üniversitesi Müh. Bil. Dergisi                                                                                                                                        Araştırma Makalesi                                                                       
36(1), 459-470, 2024                                                                                                                              https://doi.org/10.35234/fumbd.1417170 

 
Modeling Longitudinal Evolution of Decommissioned Geostationary Satellites using Neural 

Networks 

İbrahim ÖZ1*, Cevat ÖZARPA2 
1 Ankara Yıldırım Beyazıt Üniversitesi, TTO, Ayvalı Mah. Anakara, Türkiye  

2 Ankara Medipol Üniversitesi, Mühendislik Fakültesi, Ankara, Türkiye 
*1 ibrahimoz@gazi.edu.tr, 2 cevat.oraropa@ankaramedipol.edu.tr 

 

 (Geliş/Received: 09/01/2024;                                                                               Kabul/Accepted: 27/03/2024) 
 

Abstract: This study uses neural networks to explore the intricate longitudinal progression of decommissioned geostationary 
satellites. The goal is to model and predict satellites' longitudinal dynamics across time dimensions. Historical satellite 
longitude data undergoes thorough preprocessing to train time series neural networks in both single-input and 3-input 
configurations for all six decommissioned satellites, yielding comprehensive longitudinal behavior insights. Results reveal 
impressive outcomes: average Mean Squared Error (MSE) between predicted and measured longitudes is 1.55x10-3, with 
regression close to unity. This convergence implies a strong alignment between the neural network methodology employed and 
the intricate problem domain. These results accentuate the suitability and effectiveness of the chosen neural network approach 
in addressing the challenges posed by decommissioned geostationary satellite trajectory modeling. The study's implications 
span various fields. Insight into long-term orbital shifts aids in understanding satellite behaviors, enhancing trajectory 
predictions and decision-making in satellite management and space technology advancement. Additionally the research 
emphasizes the importance of accurate predictions about satellite behavior after decommissioning. This contributes to better 
mission planning, resource optimization, and more efficient strategies for dealing with space debris. 
 
Key words: Decommissioned satellites, geostationary orbits, neural networks, longitudinal evolution, orbit 
dynamics. 
 

Ömrünü Tamamlamış Yer Sabit Uyduların Boylam Hareketlerinin Yapay Sinir Ağları ile 
Modellenmesi  

 
Öz: Bu çalışmada, yapay sinir ağları kullanılarak işletme ömrünü tamamlamış yer sabit yörünge uydularının boylam hareketleri 
incelenmiştir.  Uydu yörünge hareketleri ve dinamiği içinde, uydu boylam hareketleri yapay sinir ağları ile modellenmiştir.  
Ömrünü tamamlamış altı uyduya ait veriler, veri tabanından alınmış, kapsamlı bir ön işlemeye tabi tutulmuş ve hem tek girişli 
hem üç girişli yapay sinir ağı eğitiminde kullanılmıştır. Modelleme sonunda ölçülen ve tahmin edilen sonuçlar arasındaki 
ortalama kare hata (MSE) 1.55x10-3 ve regresyon değeri 1 civarında olup tüm uydular için oldukça başarılı sonuçlar elde 
edilmiştir. Böylece yapay sinir ağları ile karmaşık yörünge dinamiğinin modellenebildiği görülmüştür. İşletme ömrünü 
tamamlamış uyduların boylam hareketlerinin yapay sinir ağları ile etkili bir biçimde modellenebildiği görülmektedir. Uydu 
operatörleri bu tip uyduların uzun vadeli yörünge hareketlerini önerilen yöntem ile tahmin edebilir ve tahminlerini bu konuda 
alacakları kararlar için destek bilgisi olarak kullanabilir. İlave olarak bu araştırma ömrünü tamamlamış uyduların hareketlerini 
hassas bir şekilde göstermekte bu durumda daha iyi görev planlaması yapmaya, kaynak optimizasyonuna ve uzay enkazlarının 
daha iyi yönetilme stratejilerinin geliştirilmesine imkân tanımaktadır. 
 
Anahtar kelimeler: Ömrünü tamamlamış uydu, yer sabit yörünge, yapay sinir ağları, boylam değişimi, yörünge dinamiği. 
 
1. Introduction 
 

Fırat Geostationary satellites gracefully encircle the earth at an unwavering 35,786 km altitude above the 
equator. This exceptional orbital position, synchronized with the earth's rotation, facilitates straightforward 
ground-based tracking. The stability of this position proves invaluable for television, data communication, and 
other applications that benefit from consistent connectivity. The 24-hour orbital period ensures uninterrupted 
communication, allowing antennas to remain aligned with GEO satellites, transmitting and receiving signals 
without needing constant adjustments [1-2]. 

The orbit raising of a geostationary satellite's operational life is marked by the exhaustion of its onboard fuel 
reserves. At this critical juncture, the satellite's maneuverability is significantly compromised, and its ability to 
perform controlled orbital adjustments diminishes. Consequently, a carefully orchestrated decommissioning 
process is initiated to manage the satellite's fate and ensure the long-term sustainability of the space environment.  
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The International Telecommunication Union (ITU), a specialized agency of the United Nations, plays a 
pivotal role in space communication governance. ITU's Radio Regulations (RR) provide a framework for 
managing orbital slots and frequency assignments, ensuring interference-free communication services. The 
regulation Rec. ITU-R S.1003 of the ITU R pertains to the disposal of space systems, particularly geostationary 
satellites, once they cease their operational activities due to fuel depletion or other reasons. According to this 
regulation, satellite operators are mandated to remove their satellites from the geostationary orbit at the end of 
their mission [3-4]. 

Similarly, The Inter-Agency Space Debris Coordination Committee (IADC) advises measures to mitigate 
space debris, including preventing break-ups, relocating spacecraft and orbital stages after missions, and limiting 
object releases. For geostationary satellites at the end of their operational life, recommendations include relocating 
them from the crowded geostationary orbit region and passivating them to reduce explosion risks, though this 
passivation can influence their orbital characteristics. These steps collectively aim to reduce debris and uphold 
space environment sustainability [5-6]. 

Geostationary satellites (GEO satellites) are typically decommissioned within the range of 150 km to 500 km 
above the geostationary belt. Once a decommissioned satellite is placed in its new graveyard orbit, its orbital 
behavior is influenced by several factors, including the earth's gravitational pull, solar wind, and gravitational 
forces from other celestial bodies. These perturbations introduce variations in the satellite's orbital elements over 
time, which can be categorized into three main types: short-periodic, long-periodic, and secular terms. Short-
periodic variations terms of a satellite impact elements like semi-major axis, eccentricity, inclination, ascending 
node, and argument of perigee. They arise from perturbations with periods less than one year, including earth's 
non-spherical mass distribution, the moon's and Sun's gravitational effects, and solar radiation pressure. These 
variations can lead to daily or monthly changes in orbital elements. Long-periodic variations affect the same orbital 
elements, arising from perturbations with periods exceeding one year, such as the gravitational influence of the 
moon and Sun and solar radiation pressure. These variations cause changes on a yearly or multi-year basis. 

In the realm of artificial intelligence (AI) and machine learning (ML), a plethora of methodologies and 
applications have emerged, showcasing the immense potential and versatility of these technologies. 
Methodologically, AI and ML encompass a wide spectrum of techniques, including feature selection and stability 
analysis [7], hybrid control systems involving artificial neural networks (ANNs) and fuzzy PI control [8], and 
comparative assessments of predictive algorithms, such as ordinary ANNs and convolutional neural networks 
(CNNs) for customer churn prediction [9]. These methods collectively form the foundation for addressing complex 
challenges across diverse domains. 

When it comes to real-world AI applications, the breadth of possibilities is striking. AI-driven techniques 
play a pivotal role in forecasting Turkey's natural gas consumption [10], utilizing LSTM-based deep learning 
methods for earthquake prediction through ionospheric data analysis [11], and improving the precision of daily 
wind energy predictions through machine learning and statistical techniques [12]. In the healthcare sector, AI 
comes to the forefront with a machine learning model for diagnosing Type 2 diabetes based on health behavior 
[13], while in the field of speech recognition, recurrent units like LSTM and GRU find applications in Turkish 
speech recognition techniques and broader speech processing endeavors [14]. These references represent just a 
glimpse of the rich tapestry of AI and ML methodologies and applications, each contributing uniquely to their 
respective domains and expanding the horizons of technological possibilities. 

This study focuses on the longitudinal behavior of decommissioned GEO satellites with machine leraning 
over time. Due to the tumbling motion of deorbited GEO satellites, accurately determining their sunlit surface area 
and surface reflection coefficient proves challenging. Additionally, the dynamic modeling of GEO satellites is 
complex due to the presence of various perturbing forces [15]. 
 
2. Satellite Dynamics in GEO Graveyard Region 

 
Decommissioned satellites exhibit a specific movement known as "drift" in an eastward direction when 

transitioning to the graveyard orbit. The eastward drift of decommissioned GEO satellites is influenced by a 
combination of factors, primarily the gravitational perturbations caused by the non-spherical mass distribution of 
the earth, gravitational forces from the moon and Sun, and solar radiation pressure. While these satellites were 
initially positioned in a geostationary orbit where their orbital period matched the earth's rotation period, their 
relocation to the graveyard orbit changes their orbital parameters. [16] 

The eastward drift occurs due to the interaction of these perturbing forces. As the satellite moves away from 
its original geostationary position, the gravitational forces from the moon and Sun and the solar radiation pressure 
act as external accelerations, causing the satellite's orbit to slowly shift in an eastward direction. This phenomenon 
can be visualized as the satellite "catching up" with the earth's rotation as it moves along its orbital path. It's 
important to note that the drift of decommissioned GEO satellites is a natural outcome of the complex interplay 
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between various gravitational and radiation forces. This phenomenon is well understood and is a critical 
consideration when planning the end-of-life operations of GEO satellites to ensure their safe disposal and to 
minimize the risk of collisions with operational satellites in the geostationary region. [17, 18] 

 
Figure 1. Decommissioned GEO satellite 350 km above the GEO belt, typical longitude values over a time. 
 
The longitude drift rate (D) is highly related to the semi-major discrepancy (Δa) relative to the synchronous 

semi-major axis as, whose value is almost constant subjected to the non-spherical terms of the earth's gravitation 
field [16].  

The daily longitude drift rate can be expressed in Equation 1. 
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where D: drift rate ͦ / day, a: semi-major axis, ac: ideal GEO semi-major axis, 𝑛+ = <𝜇/𝑎+$ 
 
The drift rate is counted positively in the eastward direction. If Δa=0, then D=0. If Δa>0, then D<0, which 

means that the semi-major axis' increment results in that the satellite rotates slowly relative to the spin of the earth. 
By contrast, the semi-major axis' decrement results in the satellite running faster than the earth's spin. One 
kilometer of semi-major discrepancy induces a longitude drift rate of 0.0128 per day. 

Table 1 presents the altitudes of decommissioned GEO satellites from GEO ideal orbit 35786 km along with 
their corresponding relative changes in longitude expressed in degrees per day. The table also includes the duration 
of one complete revolution around the earth for each altitude.  

 
Table 1. GEO Decommissioning Altitude and Relative Longitude Change 
 

GEO altitude GEO+150 km GEO+200 km GEO+350 km GEO+500 km 
Δ Long (°/day) -1.92 -2.56 -4.48 -6.40 
Revolution Time (days) 187.50 140.63 80.36 56.25 

 
As expected, there is a direct correlation between altitude and the rate of change of longitude per day, with 

higher altitudes resulting in faster rates of change. Consequently, the time needed a deorbited satellite to complete 
one full revolution around the earth decreases as its altitude increases. By interpreting these relationships, we can 
make more accurate orbital predictions and enhance our overall understanding of satellite movements. [19, 20]. 

 
2.1 Data Collection and Processing 

 
In this comprehensive study, we have extensively investigated the behavior of six decommissioned 

geostationary satellites, each identified by their NORAD IDs: Eutelsat-33A (NORAD ID: 27948), Intelsat-801 
(NORAD ID :24742), Meteosat-6 (NORAD ID: 22912), Astra-1F (NORAD ID: 23842), Turksat-1B (NORAD 
ID: 23200), and Turksat-2A (NORAD ID: 26666). Our research primarily focused on analyzing the longitudinal 
evolution and orbit dynamics of these satellites over time. 
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We sourced the observed orbital parameters from publicly available information on space track databases to 
gather essential data for our analysis [21]. These datasets were carefully curated, providing precise and accurate 
information on each satellite's position, velocity, inclination, eccentricity, and other relevant orbital characteristics.  

Table 2 provides the initial data of six satellites, obtained from the publicly available Celestrack data source 
and based on the epoch of January 1st, 2020, at 9:00 UTC. The orbital parameters listed in Table 2 offer a 
comprehensive insight into the initial configurations of these decommissioned satellites. These orbital parameters, 
including Semi-Major Axis (SMA), Eccentricity (Ecc), Inclination (inc), Right Ascension of Ascending Node 
(RAAN), Argument of Perigee (AoP), True Anomaly (TA), and Longitude (Lon), provide a foundation for 
analyzing the orbital dynamics and behaviors of these satellites. Such detailed information is invaluable for 
studying how these satellites interact with the geostationary region and how various factors influence their 
trajectories over time.  

 
Table 2. The orbital parameters of the six satellites at the designated epoch. 
 
Satellites SMA Ecc inc RAAN AoP TA Lon 
Astra-1F 42585.399 0.001072 7.180 55.865 295.853 14.605 131.309 
Eutelsat-33A 42559.163 0.000415 4.418 74.147 189.917 7.313 36.097 
Intelsat-801 42602.619 0.001350 8.476 48.262 301.030 331.613 85.710 
Meteosat-6 42531.116 0.000370 13.873 18.878 242.078 23.270 48.879 
Turksat-1B 42512.006 0.001461 11.492 32.772 33.950 175.002 6.011 
Turksat-2A 42754.583 0.001215 3.331 81.888 247.414 133.713 250.428 
 
A comprehensive dataset spanning a period of two years, beginning from the selected epoch, was acquired 

from the Celestrack database. These data points serve as the foundation for analyzing and modeling the 
longitudinal behavior of decommissioned geostationary satellites.  

 
Figure 2 offers a graphical representation that emphasizes the positions of decommissioned geostationary 

satellites, which serve as the primary dataset for the analysis conducted in this study. The figure showcases the 
longitudinal changes of these satellites, which are expressed in terms of degrees per day. These changes signify 
the gradual evolution of the satellites' positions along their orbits over time. The data used for this visualization 
was sourced from the Celestrack database, a reputable repository of orbital information. This dataset, allows us to 
observe and analyze the patterns of movement exhibited by these satellites during this period. The graphical 
representation is a valuable tool for visually comprehending the complex orbital dynamics and longitudinal 
changes these decommissioned satellites undergo in their post-operational phases. 

 

 
Figure 2. Decommissioned geostationary satellites, accompanied by their respective longitudinal changes 

expressed in degrees per day. 
3. Neural Network Modeling of Decommissioned Satellites 
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Various forms of neural networks, deep learning, and artificial intelligence are extensively applied across 
diverse satellite domains, exemplified by various research efforts. Stepišnik et al. explored the utilization of 
machine learning to enhance spacecraft operation within dynamic radiation environments [22]. Robertsa, Soleraa, 
and Linaresa delved into geosynchronous satellite behavior classification via unsupervised machine learning [23]. 
Supervised machine learning was applied in geosynchronous satellite maneuver classification and orbital pattern 
anomaly detection [24]. Solera, Roberts, and Linares addressed the geosynchronous satellite pattern of life node 
detection and classification, presenting their findings at the 9th Space Traffic Management Conference [25]. 
Roberts and Linares further contributed to the field by focusing on geosynchronous satellite maneuver 
classification via supervised machine learning at the Advanced Maui Optical and Space Surveillance Technologies 
Conference. These studies collectively illustrate the broad spectrum of satellite applications enriched by neural 
network paradigms and artificial intelligence techniques.  

Over time, there has been a consistent rise in interest and exploration within artificial neural networks, 
marking a significant evolution from the early stages of machine learning. This evolution has given rise to one of 
the most prevalent subsets of artificial intelligence algorithms known as deep learning architectures. 
Complementary to these architectures, plethora of innovative approaches have emerged within the realm of deep 
learning, aiming to tackle and solve an array of complex problems in artificial intelligence. These advancements 
in intelligent solutions have reverberated across an extensive spectrum of sectors, including but not limited to 
industry, medicine, robotics, image processing, computer vision, object detection, speech processing and 
recognition, translation, future prediction, finance, and a myriad of other domains [26-28]. This widespread 
applicability underscores the significance and breadth of impact that artificial neural networks, particularly within 
deep learning frameworks, have achieved in modern-day AI applications.  

In this study, we have developed a neural network model to predict the longitude of six decommissioned 
geostationary satellites. The model comprises single-input and three-input layers, with a single output layer 
dedicated to predicting the longitude. The neural network architecture incorporates ten hidden layers, each 
containing interconnected neurons, and two time delays as shown in Figure 3. This intricate configuration 
empowers the network to effectively capture and understand the intricate patterns and intricate relationships 
between orbital dynamics and the resulting variations in longitude. Through this architecture, the neural network 
learns to discern the complex interplay of factors affecting the longitudinal behavior of these satellites.  

 

 
 
Figure 3. Nonlinear autoregressive neural networks with exogenous Input 
 
Assuming x(t) represent the exogenous input at time t, and y(t) be the output of the network at time t. The 

network takes into account the historical values of its own output and the exogenous inputs up to the current time 
to predict the next output. Mathematically, this can be represented through Equation (2), 
 

𝑦(𝑡) = 𝑓B𝑦(𝑡 − 1), 𝑦(𝑡 − 2,…𝑦(𝑡 − 𝑑FG, 𝑥(𝑡 − 1), 𝑥(𝑡 − 2)… , 𝑥(𝑡 − 𝑑I); 𝜃)	 	 (2) 
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where dy : is the number of lagged terms considered for the output time series, dx: the number of lagged terms 
considered for the exogenous input time series, θ: represents the set of all parameters (weights and biases) in the 
network 
The dynamics of the network can be represented for hidden state by the following Equation (3), 
 
ℎ(𝑡) = 𝜎(𝑊PPℎ(𝑡 − 1) +𝑊PI𝑥(𝑡) + 𝑏P	 (3) 

 
the output prediction can be expressed with Equation (4), 
 
𝑦(𝑡) = 𝑊FPℎ(𝑡) + 𝑏F	 (4) 

 
Whh, Whx, and Wyh represent the weight matrices associated with the hidden state transitions, exogenous input 
transitions, and output generation, respectively.  
 
During training, the network learns the weight matrices Whh, Whx, and Wyh , as well as the bias vectors bh and by, 
through optimization techniques such as gradient descent. The objective is to minimize the difference between the 
predicted output  y(t) and the actual target output at each time step. The specific choice of activation functions, 
network architecture (recurrent neural network), and optimization algorithm selected according to datasets and the 
problem. 

By delving into the interplay between past longitude values and the associated input variables, the network 
becomes proficient in capturing underlying patterns and correlations. This learning process empowers the network 
to make accurate predictions about future longitudes. Such predictive capabilities are crucial for comprehending 
the positioning of satellites in space and facilitating informed decision-making processes. 

This comprehensive study involves collecting data spanning a total of 1463 samples for each satellite, which 
is pivotal for facilitating the training of neural networks to achieve predictive capabilities. The dataset is 
meticulously divided into three distinct segments: 70% (1025 samples) is allocated for the training phase, 15% 
(219 samples) for validation, and the remaining portion for rigorous testing. During the training process, the neural 
network undergoes iterative adjustments in response to computed errors, thus refining its predictive performance. 
The validation subset evaluates the network's generalization capacity, thereby leading to the termination of training 
when further improvements in performance plateau. Conversely, the testing subset serves as an independent 
evaluation mechanism, assessing the network's operational efficiency both during and after the training phase. This 
approach ensures that the network's performance is rigorously assessed while preserving the integrity of the 
training process. 

As previously outlined, the study encompasses two distinct modes of training: a single input paradigm that 
exclusively involves day values and a more intricate 3-input framework that encompasses day values, semi-major 
axis, and latitudinal inputs. This dual-training approach allows the neural network to learn from multiple 
dimensions of data, enhancing its predictive capabilities and enabling a more holistic understanding of the complex 
interplay between orbital parameters and longitudinal changes. 

The gathered dataset is divided into distinct training and validation sets. The neural network is then subjected 
to training using the allocated training data, during which it learns to predict longitudes based on input data. This 
learning process takes place iteratively, refining the model's ability to generate accurate predictions. 

The Mean Squared Error (MSE) is employed as a pivotal performance indicator to gauge the effectiveness of 
the proposed model's predictive performance. The utilization of this metric involves quantifying the accuracy and 
quality of predictions by assessing the dissimilarity between predicted and actual values. The MSE is 
mathematically expressed as follows; 

 

𝑀𝑆𝐸 = -
V
∑ (V
XY- 𝑦Z[(\]^[_ − 𝑦`^[_X+a[_)%  (5) 

The MSE metric incorporates the absolute differences between the actual and predicted values. However, 
through squaring these differences, the emphasis is placed on larger errors, resulting in an average squared 
difference between the actual and predicted values. 
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𝑅% = 1 −
∑ (c
def FghijklhmnFolhmd'phm)q

∑ (c
def Fghijklhm)q

  (6) 

 
In this research, the Levenberg-Marquardt training algorithm is selected due to its superior performance 

compared to alternative methods. The training, validation, and testing outcomes assessment relies on two key 
metrics: Mean Squared Error (MSE) and Regression R Values. The MSE metric quantifies the average squared 
difference between projected outputs and real targets, with lower values signifying heightened accuracy (zero 
value indicates no error). The Regression R Values measure the correlation between anticipated outputs and target 
values, with an R-value of 1 signifying a strong association and a value of 0 denoting a random relationship. By 
leveraging these evaluation metrics in conjunction with the effective Levenberg-Marquardt training algorithm, our 
study aims to deliver precise and dependable predictions for estimating the longitude of decommissioned satellites, 
thereby advancing the capabilities of neural network modeling within this domain.)  

     
4. Results and Discussion 

 
In this study, we delved into the intricate task of modeling the longitudinal evolution of decommissioned 

geostationary satellites by applying time series neural networks. Our primary objective was to harness neural 
networks' capabilities to predict these satellites' longitudinal behavior, shedding light on their orbital dynamics and 
contributing to the advancement of predictive modeling in space science. 

Through rigorous data collection and meticulous analysis, we constructed and evaluated a neural network 
model that effectively captures the complex relationships between past longitudinal values and other relevant 
orbital parameters. The dataset, spanning 1463 points, was meticulously partitioned into training, validation, and 
testing subsets, ensuring a robust evaluation of the model's predictive prowess. By employing a 10-layer neural 
network architecture with interconnected neurons and two delays, we facilitated the network's ability to discern 
and understand the intricate patterns that govern the longitudinal changes of decommissioned geostationary 
satellites. 

Our investigation encompassed both single-input and 3-input paradigms, wherein we considered the historical 
data of longitude (y) as well as other pertinent factors (x), such as semi-major axis and latitude. The neural network 
successfully learned from these input data to accurately predict the longitude variations over time. The model's 
effectiveness was assessed using performance metrics, namely Mean Squared Error (MSE) and Regression R 
Values. Our findings highlighted that the Levenberg-Marquardt training algorithm yielded superior results, 
underpinning the model's capability to provide reliable and precise predictions. 

The results from our modeling efforts revealed promising outcomes. The predicted versus measured longitude 
differences exhibited remarkable accuracy, as evidenced by the low MSE values and regression values of 0.999. 
This alignment between predictions and actual observations underscores the robustness of our neural network 
model in capturing the longitudinal evolution of decommissioned geostationary satellites. The model's predictive 
capability holds significant implications for satellite operators and space agencies, enabling better mission 
planning, decision-making, and resource allocation during the post-operation phases of satellite lifecycles. 

An individual neural network model has been established and trained for each satellite in two distinct 
scenarios: single-input and three-input cases. The outcomes encompass both predicted longitudes and associated 
errors, signifying the disparities between the predicted and measured values. Among multiple time response graphs 
illustrating satellite behavior, particular attention has been given to Eutelsat's results to avoid redundancy. In Figure 
4, the graphical representation showcases the alignment of measured and predicted longitude values for Eutelsat-
33A. The congruence between the two sets of values is evident, with negligible divergence. The lower segment of 
the figure exhibits the variance between the two, demonstrating an error fluctuating within the range of ±0.05 
degrees. This exceptional error magnitude underscores the remarkable performance and accuracy of the neural 
network modeling employed. 
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Figure 4. Eutelsat-33A: Measured and Predicted Longitude Values (Upper) and Differences (Lower) 
 
Figure 5 offers an insightful representation of the dynamics of Mean Squared Error (MSE) in conjunction 

with the number of iterations during the iterative modeling procedure. This depiction is presented on a logarithmic 
scale for four specific satellites: Eutelsat-33A, Intelsat-801, Meteosat-6, and Turksat-2A. As anticipated, the errors 
consistently diminish as the iterative process advances. This pattern is consistent with the expected trajectory of 
iterative optimization algorithms commonly employed in neural network training. The gradual decrease in errors 
across successive iterations signifies the model's iterative refinement of predictions. Through this incremental 
learning process, the neural network adeptly hones its predictions, leading to a significant reduction in MSE and a 
heightened precision in estimating longitudes. 

 
Figure 5. Mean Squared Error (MSE) Performance of Neural Network Across Iterations for 4 Satellites 
 



İbrahim ÖZ, Cevat ÖZARPA 

467 
 

Figure 6 illustrates a comprehensive juxtaposition between the measured and predicted longitudes regression 
for four satellites: Eutelsat-33A, IS-801, Meteosat-6, and Turksat-2A. Remarkably, the data points congregate 
closely along the 45-degree line, signifying a substantial correlation between the predicted and observed 
longitudes. The quantitative metrics further underscore the model's efficacy. The regression value (R) 
demonstrates an exceptional score of 0.9999, underscoring the robust and meaningful relationship between the 
predicted and measured data points. 

 
Figure 6. Regression Analysis of Predicted vs. Measured Longitudes for Four Decommissioned Satellites 
 
Figure 7 provides a comprehensive visualization of the discrepancies between measured and predicted values 

for all six satellites, each represented by distinct colors as indicated in the legend. The x-axis represents the passage 
of time in months over a span of two years, while the y-axis depicts the magnitude of errors, which varies for each 
satellite. Despite the distinct amplitudes of these errors, it is notable that all error values remain consistently low 
across the board. This collective observation serves as a strong testament to the efficacy and accuracy of the 
employed modeling approach. 

 
Figure 7. Comparison of Measured and Predicted Longitude Differences over 24 Months for All Six 

Decommissioned Satellites 
 



Modeling Longitudinal Evolution of Decommissioned Geostationary Satellites using Neural Networks 

468 
 

Figure 8 offers an enhanced perspective by zooming in on the details of Figure 7, specifically focusing on a 
3-month timeframe for all satellites, namely Astra-1F, Eutelsat-33A, Meteosat-6, Intelsat-801, Turksat-1B, and 
Turksat-2A. Notably, the sine wave ripples observable in the graph are attributed to the influence of eccentricity 
and other external factors such as the sun and the moon that influence the satellite orbits. These ripples exhibit 
distinct patterns for each satellite due to their unique orbital characteristics. Remarkably, the error values 
associated with these predictions remain consistently small, underscoring the precision and effectiveness of the 
modeling approach employed in this study. 

 
Figure 8. Zoomed-in Three-Month Comparison of Predicted vs Measured Longitude Differences for All Six 

Satellites 
 
Table 2 furnishes a comprehensive comparison of the anticipated and observed variations in satellite 

longitudes and the accompanying Mean Squared Error (MSE) calculations for both single-input and three-input 
scenarios. The outcomes are achieved through the implementation of a neural network model. The table further 
presents the regression values for the respective input conditions, providing insights into the predictive accuracy. 

The tabulated data highlights the precision of the model's predictions for each satellite. Evidently, the MSE 
values for both single-input and three-input configurations are considerably low, signifying the adeptness of the 
neural network in capturing and modeling the intricate dynamics of the satellites' longitudinal behaviors. The 
regression values near 1 indicate a robust correlation between the predicted and measured values, underlining the 
efficacy of the neural network approach in this study. 

 
Table 2. Comparison of Predicted vs. Measured Satellite Longitudes Differences and Their Mean Squared 

Errors (MSE) for Single and Three Inputs Obtained Using Neural Network 
 

Sat name MSE (1 input) MSE (3 inputs) Regression  
(1 and 3 inputs) 

Astra-1F  8.628x10-4 1.175x10-4 0.99999 
Eutelsat-33A 1.695x10-4 1.209x10-4 0.99999 
Intelsat-801  1.615x10-3 1.624x10-3 0.99999 
Meteosat-6  3.358x10-3 1.067x10-4 0.99999 
Turksat-1B  2.858x10-3  3.593x10-5 0.99999 
Turksat-2A  4.419x10-4 1.375x10-5 0.99999 
Average 1.551x10-3 3.364x10-4 0.99999 
Standard dev. 1.312x10-3 6.322x10-4 0.00000 

 
This analysis demonstrates the model's consistent performance across the different satellites, further 

solidifying its reliability. The average MSE and standard deviation values for both input scenarios reinforce the 
model's accuracy and consistency.  
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The collective findings of this study strongly affirm the effectiveness of the employed neural network model 
in accurately predicting variations in satellite longitudes, thereby enriching our comprehension of decommissioned 
geostationary satellite behaviors in real-world scenarios. These results resonate with similar studies in the field. 
For instance, Ariafar and Rudiger investigated the long-term evolution of retired geostationary satellites [29]. 
Baresi et al. delved into the long-term evolution of mid-altitude quasi-satellite orbits, contributing to the broader 
understanding of orbital dynamics [30]. Proietti et al. provided insights into the long-term orbit dynamics of 
decommissioned geostationary satellites, aligning with the objectives of this study [31]. The confluence of these 
findings highlights the model's robustness and positions it within the broader context of established research 
endeavors, bolstering its credibility and applicability in contributing to the field's knowledge base. 

In light of these findings, our study contributes to the growing body of research aimed at unraveling the 
intricacies of space science through advanced computational techniques. The application of time series neural 
networks in modeling satellite behavior displays their potential for understanding complex orbital dynamics and 
predicting satellite characteristics. As we continue to delve into the nuances of space phenomena, such predictive 
models stand to play a pivotal role in the optimal management of space assets, enhancing both the efficiency and 
sustainability of satellite operations. 

In summary, this study represents a significant advancement in modeling the longitudinal evolution of 
decommissioned geostationary satellites. By employing time series neural networks, we have established a robust 
framework for accurately predicting satellite behavior, thereby contributing to our understanding of orbital 
dynamics and facilitating effective space asset management. 

The successful modeling of decommissioned geostationary satellites' longitudinal evolution using time series 
neural networks carries several important benefits and implications for future space science and satellite 
operations. Accurately predicting satellite behavior post-decommissioning provides valuable insights for mission 
planning and decision-making. Operators can leverage the predictive model to plan end-of-life maneuvers, 
ensuring decommissioned satellites are safely moved to graveyard orbits, minimizing space debris generation, and 
optimizing resource allocation. Moreover, accurate prediction of satellite behavior post-decommissioning 
contributes to the sustainability and longevity of space operations by preventing satellites from becoming potential 
sources of space debris. 
 
5. Conclusion 

 
In conclusion, this study comprehensively explores the longitudinal evolution of decommissioned 

geostationary satellites using time series neural networks. By harnessing the power of advanced computational 
techniques, we have successfully modeled the behavior of these satellites after their operational lives end. Our 
investigation, supported by a robust dataset extracted from publicly available sources, highlights the intricate 
relationship between orbital dynamics and satellite longitudinal variations. The predictive capabilities of our neural 
network model offer significant benefits for space science, satellite operations, and the broader aerospace industry. 
Our findings demonstrate that accurate predictions of satellite behavior post-decommissioning contribute to 
enhanced mission planning, resource optimization, and effective space debris mitigation. 

The successful modeling of decommissioned satellite behavior contributes to the scientific community and 
the responsible stewardship of our celestial environment. With each accurate prediction, we move closer to 
ensuring the harmony of human activities in space with preserving the space environment for generations to come. 
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