https://doi.org/10.46810/tdfd.1417161

Dyadic Maximal Function Maps the Weighted Hardy Space $H^1(w)$ to the Weighted $L^1(w)$ Space

Sakin DEMIR^{1*}

¹ Agri Ibrahim Cecen University, Faculty of Education, Department of Basic Education, Ağrı, Türkiye Sakin DEMIR ORCID No: 0000-0002-8019-6917

*Corresponding author: sakin.demir@gmail.com

(Received: 09.01.2024, Accepted: 20.03.2024, Online Publication: 26.03.2024)

Keywords

Weighted Hardy space, Muckenhoupt weight,

 A_p weight,

Hardy space, Dyadic maximal function

Abstract: Let
$$f : \mathbb{R} \to \mathbb{R}$$
 be a locally integrable function, and define the dyadic maximal function

$$Tf(x) = \sup_{j} \frac{1}{2^{j}} \left| \int_{0}^{2^{j}} f(x-t) dt \right|.$$

Let $1 , and <math>w \in A_p$, i.e.,

$$\sup_{I}\left(\frac{1}{|I|}\int_{I}w(x)dx\right)\left(\frac{1}{|I|}\int_{I}w(x)^{-\frac{1}{p-1}}dx\right)<\infty$$

where the supremum is taken over all intervals I in \mathbb{R} . In this research we prove that Tf

maps the weighted Hardy space $H^1(w)$ to the weighted $L^1(w)$ space. More precisely, we show that there exists a positive constant α such that

$$\left\|Tf\right\|_{L^{1}(w)} \leq \alpha \left\|f\right\|_{H^{1}(w)}$$

for all $f \in H^1(w)$.

İkili Maksimal Fonksiyon Ağırlıklı $H^1(w)$ Hardy Uzayını Ağırlıklı $L^1(w)$ Uzayına Dönüştürür

Anahtar Kelimeler Ağırlıklı Hardy uzayı, Muckenhoupt ağırlığı, A_p ağırlığı,

Hardy uzayı, İkili maksimal fonksiyon

Öz: Yerel olarak integrallenebilen bir
$$f : \mathbb{R} \to \mathbb{R}$$
 fonksiyonu için Tf ikili maksimal fonksiyonunu

$$Tf(x) = \sup_{j} \frac{1}{2^{j}} \left| \int_{0}^{2^{j}} f(x-t) dt \right|$$

olarak tanımlayalım. $1 ve <math>w \in A_p$ olsun. Yani supremum \mathbb{R} reel sayılar kümesindeki bütün I aralıkları üzerinden alınmak üzere

$$\sup_{I}\left(\frac{1}{|I|}\int_{I}w(x)dx\right)\left(\frac{1}{|I|}\int_{I}w(x)^{-\frac{1}{p-1}}dx\right)<\infty$$

olsun. Bu araştırmada Tf fonksiyonunun ağırlıklı Hardy uzayı $H^1(w)$ yı ağırlıklı $L^1(w)$ uzayına dönüştürdüğü gösterilmiştir. Yani her $f \in H^1(w)$ için

$$\|Tf\|_{L^{1}(w)} \leq \alpha \|f\|_{H^{1}(w)}$$
olacak şekilde bir pozitif α sabitinin varlığı gösterilmiştir.

1. INTRODUCTION

We say that a positive function $w \in L^1_{loc}(\mathbb{R})$ is a Muckenhoupt's A_p weight for some 1 if the following condition is satisfied:

$$\sup_{I}\left(\frac{1}{|I|}\int_{I}w(x)dx\right)\left(\frac{1}{|I|}\int_{I}w(x)^{-\frac{1}{p-1}}dx\right)<\infty,$$

where the supremum is taken over all intervals I in \mathbb{R} . We say that $w \in A_1$ if given any interval I in \mathbb{R} there exists a constant C > 0 such that

$$\frac{1}{|I|} \int_{I} w(y) dy \le C w(x)$$

for a.e. $x \in I$.

We say that $w \in A_{\infty}$ if there exist $\delta > 0$ and $\varepsilon > 0$ such that given an interval I in \mathbb{R} , for any measurable set $E \subset I$,

$$|E| < \delta \cdot |I| \Longrightarrow w(E)(1 - \varepsilon) \cdot w(I)$$

where

$$w(E) = \int_E w$$

One can find an extensive study of weighted Hardy spaces $H^{p}(w)$ in Garcia-Cuerva, J. (1979), where wis a Muckenhoupt's A_{p} weight. The atomic characterization of $H^{p}(w)$ has also been given in Garcia-Cuerva, J. (1979). Given a weight function w on \mathbb{R} , as usual we denote by $L^{p}(w)$ the space of all functions satisfying

$$\left\|f\right\|_{L^{p}(w)}^{p}=\int_{\mathbb{R}}\left|f(x)\right|^{p}w(x)dx<\infty.$$

When $p = \infty$, $L^{\infty}(w)$ is equal to the space L^{∞} and

$$\|f\|_{L^{\infty}(w)} = \|f\|_{L^{\infty}}.$$

Let ϕ be a function in $S(\mathbb{R}^n)$, the Schwartz space of rapidly decreasing smooth functions, satisfying

$$\int_{\mathbb{R}} \phi(x) dx = 1.$$

Define

$$\phi_t(x) = t^{-n} \phi(x/t), \qquad t > 0, \ x \in \mathbb{R},$$

and the maximal function f^* by

$$f^*(x) = \sup_{t>0} \left| f * \phi_t(x) \right|$$

Then $H^{p}(w)$ consists of those tempered distributions

$$S'(\mathbb{R}^n)$$
 for which $f^* \in L^p(w)$ with
 $\|f\|_{H^p(w)} = \|f^*\|_{L^p(w)}.$

These weighted Hardy spaces $H^{p}(w)$ can also be characterized in terms of these atoms in

the following way:

Definition 1. Let $0 and <math>p \ne q$ such that $w \in A_q$ with critical index q_w . Set $[\cdot]$ the integer function. For $s \in \mathbb{Z}$ satisfying $s \ge [n(q_w / p - 1)]$, a real-valued function a defined on \mathbb{R} is called a (p,q,s)-atom with respect to w if

(i)
$$a \in L^{p}(w)$$
 and is supported on an interval
 I ,
(ii) $\|a\|_{L^{q}(w)} \leq w(I)^{1/q-1/p}$,

(iii) $\int_{\mathbb{R}} a(x) x^{\alpha} dx = 0 \text{ for every multi-index } \alpha$ with $|\alpha| \le s$.

The real-valued atom defined above is called a (p,q,s)-atom centered at x_0 with respect to W(w-(p,q,s))-atom centered at x_0), where x_0 is the center of the interval I.

Remark. Let *a* be any real-valued w - (p, q, s)-atom supported in an interval *I*. Then we have

$$\int_{I} |a(x)|^p w(x) dx \leq 1.$$

Proof. Let *a* be any *B*-valued w - (p, q, s)-atom. It is clear that $a \in L^p_B(w)$ and $||a||_{L^p_B(w)} \leq 1$, since by Hölder's inequality

$$\int_{I} |a(x)|^{p} w(x) dx \leq \left\| a^{p} \right\|_{L^{r}(w)} \left(\int_{I} w(x) dx \right)^{1/r'}$$

= $\left\| a \right\|_{L^{q}(w)}^{p} \cdot w(I)^{1-p/q}$
 $\leq 1,$
where $r = a/p$ and $1/r' = 1 - 1/r = 1 - p/q$

where r = q / p and 1 / r' = 1 - 1 / r = 1 - p / q.

Note that analog to the classical case any function in $H^{p}(w)$ admits a decomposition

 $f = \sum \lambda_i a_i$, where a_i 's are w - (p, q, s)-atoms and $\sum |\lambda_i|^p < \infty$. For a fixed weight function w and $f \in H^p(w)$ it is well known (see Garcia-Cuerva, J. (1979)) that

$$\left\|f\right\|_{H^{p}(w)} = \inf\left(\sum_{i} \left|\lambda_{i}\right|^{p}\right)^{1/p}.$$

2. RESULTS

Let $f : \mathbb{R} \to \mathbb{R}$ be a locally integrable function, and define the dyadic maximal function

$$Tf(x) = \sup_{k} \frac{1}{2^{k}} \left| \int_{0}^{2^{k}} f(x-t) dt \right|.$$

It is clear that $Tf(x) = \sup_{k} |K * f(x)|$, where

$$K(x) = \frac{1}{2^k} \chi_{[o, 2^k]}(x).$$

Our first result is the following lemma that will be used when proving our main result:

Lemma 1. There exists a positive constant *C* independent of $y \in \mathbb{R}$ such that

$$\int_{|x|>2|y|} \sup_k |K(x-y)-K(x)| \, dx \leq C \, .$$

Proof. Let

$$\Phi_{k}(x, y) = \frac{1}{2^{k}} \chi_{[0, 2^{k}]}(x - y) - \frac{1}{2^{k}} \chi_{[0, 2^{k}]}(x)$$
$$= \frac{1}{2^{k}} \chi_{[y, y + 2^{k}]}(x) - \frac{1}{2^{k}} \chi_{[0, 2^{k}]}(x).$$

First consider the case $x \ge 0$, $y \ge 0$. Since x > 2y, we obviously have $\Phi_k(x, y) = \frac{1}{2^k} \chi_{[y, y+2^k]}(x)$. If for some $k \in \mathbb{Z}^+$ we have $x > y + 2^k$, it is then clear that $\Phi_k(x, y) = 0$. So we only need to consider the case $\Phi_k(x, y) = \frac{1}{2^k} \chi_{[y, y+2^k]}(x)$ when evaluating the

integral.

Now assume that x < 0, y < 0. Since |x| > 2 |y|, we have y > x, and thus we obtain $\Phi_k(x, y) = 0$. Also, same is true if $x \le 0$, $y \ge 0$ since this implies x < y. If $x \ge 0$, $y \le 0$, we have the same situation as in the first case.

We conclude that we only need to evaluate

$$\Phi_k(x, y) = \frac{1}{2^k} \chi_{[y, y+2^k]}(x),$$

and we have

$$\int_{|x|>2|y|} \sup_{k} |K(x-y) - K(x)| dx$$

= $\int_{|x|>2|y|} \sup_{k} \frac{1}{2^{k}} \chi_{[y,y+2^{k}]}(x) dx$
= $\int_{1}^{y+2^{k}} \sup_{k} \frac{1}{2^{k}} dx$

and thus, our proof is complete.

=1

Lemma 2. There exists a constant C > 0 such that

$$\int_{\mathbb{R}} |Tf(x)|^{p} w(x) dx \leq C \int_{\mathbb{R}} |f(x)|^{p} w(x) dx$$

for all $f \in L^{p}(w)$, $1 , where
$$L^{p}(w) = \left\{ f : \mathbb{R} \to \mathbb{R} : \int_{\mathbb{R}} |f(x)|^{p} w(x) dx < \infty \right\}.$$$

Proof. Recall the Hardy-Littlewood maximal function

$$Mf(x) = \sup_{I} \frac{1}{|I|} \int_{I} f(x-t) dt,$$

where the supremum is taken over all intervals I in \mathbb{R} . It is clear that for any $x \in \mathbb{R}$ we have $Tf(x) \leq Mf(x)$ and it is also well known (see Muckenhoupt, B. (1972)) that there exists a constant C > 0 such that

$$\int_{\mathbb{R}} |Mf(x)|^{p} w(x) dx \leq C \int_{\mathbb{R}} |f(x)|^{p} w(x) dx$$

for all $f \in L^{p}(w)$, $1 . We thus obtain
$$\int_{\mathbb{R}} |Tf(x)|^{p} w(x) dx \leq \int_{\mathbb{R}} |Mf(x)|^{p} w(x) dx$$

$$\leq C \int_{\mathbb{R}} |f(x)|^{p} w(x) dx$$$

and this completes our proof.

We can now state and prove our main result:

Theorem 1. Let $1 , and <math>w \in A_p$. Then there exists a constant C > 0 such that

$$\|Tf\|_{L^{1}(w)} \leq C \|f\|_{H^{1}(w)}$$

for all $f \in H^1(w)$.

Proof. Given an interval $I = I(x_0; R)$ in \mathbb{R} with center x_0 and length 2R, and denoting by \tilde{I} the double interval, $\tilde{I} = I(x_0; 2R)$, we first claim that

$$\int_{\mathbb{R}-\tilde{I}} |T(f)| w(x) dx \leq C \left\| f \right\|_{L^{1}(w)}$$

for every $f \in L^1(w)$ supported in I such that $\int f(x)dx = 0.$

But for such a function f,

$$Tf(x) = \int_{I} \left\{ K(x-y) - K(x-x_0) \right\} \cdot f(y) dy$$
$$(x \in \tilde{I})$$

and therefore

$$\int_{\mathbb{R}^{-\tilde{I}}} |Tf(x)| w(x) dx$$

$$\leq \int \int_{|x-x_0| \ge 2R > 2|y-x_0|} \sup_{k} |\{K(x-y) - K(x-x_0)\} \cdot f(y)| dyw(x) dx$$

$$\leq C \int ||f(y)| w(y) dy$$

$$\leq C \int_{|y-x_0| < R} |f(y)| w(y) dy$$

which proves our claim.

Let now a(x) be an atom with supporting interval J, and let I be the smallest interval containing J, and \tilde{J} as before. Then there exists a positive constant C_1 such that

$$\int_{\mathbb{R}-\tilde{I}} |Ta(x)| w(x) dx \leq C_1.$$

On the other hand, since by Lemma 2

$$\int_{\mathbb{R}} |Ta(x)|^q w(x) dx \le C_2 \int_{\mathbb{R}} |a(x)|^q w(x) dx$$

we have by Hölder's inequality,

$$\int_{\tilde{I}} |Ta(x)| w(x) dx \le C_3 \left\| a(x) \right\|_{L^q(w)} (Cw(J))^{1/q'} \le \text{Constant.}$$

REFERENCES

- [1] Coifman, R, Fefferman, C. Weighted norm inequalities for maximal functions and singular integrals. Studia Math. 1974; 51, 241-250.
- [2] Demir, S. *H*^{*p*} spaces and inequalities in ergodic theory. Ph.D Thesis, University of Illinois at Urbana-Champaign, Urbana, IL, USA, 1999.
- [3] Garcia-Cuerva, J. Weighted H^{p} spaces. Dissertations Math. 1979; 162, 1-63.
- [4] Garcia-Cuerva, J, Rubio de Francia, JL. Weighted norm inequalities and related topics. Mathematics Studies 116, North-Holland, Amsterdam, 1985.
- [5] Muckenhoupt, B. Weighted norm inequalities for the Hardy maximal function. Trans. Amer. Math. Soc.1972; 165, 207-226.

175