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ABSTRACT

Vector autoregressive (VAR) process is common tool for capturing the autocorrelation pattern
among VAR models which are generalized form of the univariate autoregression (AR) models. In our
study, bivariate cointegrated VAR (1) is considered. Monte Carlo simulation study is performed to
examine the finite sample performance of estimators corresponding to the asymptotic distribution for

different o and @ in MATLAB R2011A software package.
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IKi DEGISKENLI ESBUTUNLESIK VAR(1) SURECININ
PARAMETRELERININ OZELLIKLERI

0z

Tek degiskenli otoregresif siirecin genellestirilmis hali olan vektor otoregresif siire¢ degiskenler
arasinda otokorelasyon orneklerini modelleyerek yayginca kullanilan bir siiregtir.Calismamizda iki
degiskenli birinci dereceden vektor otoregresif siire¢ goz Oniine alinmistir. Monte Carlo simulasyonu

yardimiyla p ve & nm sonlu drneklem tahmin edicilerinin asismptotik Ozellikleri MATLAB
R2011A programu kullanilarak incelenmistir.
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1. INTRODUCTION

The aim of the study is to examine asymptotic properties of parameters depends on p and &
under the cointegration for bivariate VAR (1) process. The Monte Carlo simulation study is
performed to examine the finite sample performance of pand @ in relation to the asymptotic

distribution for different o and @ .

2. COINTEGRATION IN VECTOR AUTOREGRESSIVE PROCESS
Vector autoregressive (VAR) process is common tool for capturing the autocorrelation pattern
among VAR models which are generalized form of the univariate autoregression (AR) models. In this
study, we consider nonstationary bivariate VAR (1) as follows:
X, =AX,_, +y, t=12,...,n

where A is a nonsingular matrix which involves the coefficients for VAR(1) process,
X, =(X;» X,,)", the error process u is iid N(0,Z,) with £, > 0, and the process is initialized at t=0 by

X0 =0.
0
A:{p } 0+0
0 o

So, the considered nonstationary VAR (1) process can be expressed in two simultaneous
equations. It is clear that X, is related with both X, |, and X,, ,, however X, is related with only

X, in the model.

Xn = pX -1 gxzm + Uy,

Xy =0X, + pX, Uy

In our study, we are interested in the specific case I (1) and I (0). I (1) represents that stationary
process after first differencing. The two-dimensional VAR (1) process X, = AX, , +U, is called

cointegrated if |H| = |A— |2| has no unit roots for AX, or I (1). IT can be written as op’ where a is

adjustment rate (loading vector) and B is cointegration vector. One unit root and one stationary root are
considered in exogenous model. The characteristic roots of coefficient matrix A are

|A-zl,|=0
z,=1 and z,=4<1 , |l|<l

One unit root is derived by solving characteristic roots of coefficient matrix A. The characteristic
roots have only one roots, eitherif p=1, a <1 ora=1, p<1.
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Also if Z; =1 then, X,, and X, are I (1), then A has full rank 2.We rewrite coefficient matrix A as

in the following:
AP 1 0 Q
1o 2

where P is the eigenvectors of A as columns,

po|® P Q=P", |P|=1
c d|’ ’

we choose determinant |P| =1 for simplicity then, ad —bc =1 so inverse of P is equal to adjoint

o [d b
|l-c¢ a

Then we multiply A right by Q and left by P,

matrix of P.

(1

A (ad —Abc) —ab(1-A7)
| cd(1-4) (-cb+Aad)

This representation of A will be used in Error Correction Model.

3. ERROR CORRECTION REPRESENTATION (ECR)

Since |P| =1, the determinant is |ad - bC| =1 and rewrite elements of matrix in equation (1)

ad—Abc=ad - Ab+Ab—Abc=1+cb(1- 1)
—cb+Jad =1-ad+dad =1—-ad(1-1)

That is

A (ad —abc) -—ab(1-2) | [1+cb(1-2) -—ab(l-2)
| cd1-4) (=cb+4ad)| | cd(1-4) 1-ad(1-2)

So A can be rewritten in following

A= Ll) ﬂ +(1- /1)m[c - a] )

Replacing 2 equation instead of A matrix in nonstationary VAR(1) model ( X, = AX,_, +U,),
then equation 3 is obtained as a stationary VAR(1) model by means of error correction representation.
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AX,, b
AX,, =(1-4) d (Cxlt—l _axzu)"'ut

AX _ | X
=af + U, 3)
AX 5 X
a 1s a error correction coefficient,
1-A)b
a =
1-4)d

and [ is the cointegration matrix are obtained.

We often write equation (3.2)
AX, =TIX_, +u,

Where
l=apf

IT is also equal to (A—1,).

If the variables are cointegrated, then rank of matrix IT is reduced. That is, for the bivariate
system, rank of matrix IT is 1. Hence, one of two characteristic root is different from zero and another
one is (1—A). If A=1, then there is no cointegration in the bivariate system for the error correction

representation.

As a result, for the bivariate system, if

e Rank(IT)=0,reduced rank and no cointegration relationship in system
e Rank(IT)=1, reduced rank and cointegration relationship in system
e Rank(IT=2 full rank, X, = AX,, +U, is stationary.

4. ESTIMATION OF BIVARIATE COINTEGRATED VAR (1) PROCESS
Consider cointegrated VAR (1) process is as follows:

AXt = HXt—l + ut = aﬁ'Xt_l + ut t = 1,2, (4)

where II is (2x2) matrix of rank r=1 (0<r<2), a and f are (2x1) with rank r=1 and u; is 2
dimensional white noise process with mean zero and variance-covariance matrix 2,,. Also we suppose

that X, is I (1) process and o' | B is an invertible because of it is real valued scalar. 8| and a | are
orthogonal complements of a and . If r=0, then AX; is stationary and if r=p=2 then X is stationary.
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Maximum Likelihood and Least Square estimation ofIl, ¢ andf are discussed in this
section. Then asymptotic distribution of this related estimator is derived.

Unrestricted LS estimator will be discussed in this section because of the lack of the information
of the variance. Using normal equations, unrestricted LS estimator of II is obtained as follows:

ﬁ = (ZZ:lAXtXé—l)(Zg;lXt—l Xé—l)—l (5)

we replace [1X;_; + u; instead of AX; then equation 4.3. is obtained.

— = (Cfoq ue X)) eg Xemg Xio) ™ (6)
If we choose Q (2x2) such that,
0=[0] . 0 =le@D @B
4

then we multiply from the left with Q and from the right with inverse of Q, it gives us

T T -1
Q(ﬁ - H)Q_l =q (2 utX£—1> Q’Q_1, (2 Xi-1 Xé—l) Q!
t=1

t=1

t=1

-1

where v, = Qu; and z; = QX;.

We indicate that the first =1 components of z, by z,(¥) = B’X which is stationary cointegration
relationship and z,® = a | "X, which is process contains unit root. So, we can write z, with stationary
and nonstationary parts.

That is, ~
Q(M-me

T -1

]
2o @ 7, W7 Zzt—l(l) 2o, @
t=1

T
= [Z Ve Zt—l(l)l Ut Zt— 1(2)' T
=1 = Zzt 1@z, Zzt—l(Z) 2@’

t=1

_ Ahn & Reinsel (1990) would be helpful for details in derivation of the asymptotic distribution of
II — 1. The information which is given in Lemma 1.1 will use in the other. sections.

Lemma 1:
P
1- 7137 7, @ 7, @7 _)1;(1).

where I"Z(l) is the covariance matrix of z, ("
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2- T’%vec(Z?=1 v 2e ") ks N (O, I"Z(l) X 271,)

_ ;412,01 w12 0
3- T Y v 2@ _’Zv/ (fo Wi dWy) Zv/ [IK—r] ’
Where Wy denotes the standard wiener process Wy (s) of dimension K .
4- T3/ Yt Zt—l(l) Zt—1(2) 5 0.

0

1
5- T2¥1124® 2. 1(2)' - [0 Ix_r] 22 (f Wkads)Z2 [1
K-r

4.1 Limiting Results for The LS Estimator IT
We consider D matrix where its elements, T'* and T, are convergence rates.

1y
Then
vec[Q(T1 —)Q~1D]
. NQO, (1) @ %)
- 1 r L Ir o 11 ) lro1.
vec{zg( fo W, Wyds)' 52 [IK—r] ([0 Tx—r]52( fo W, Wy ds) 22 [lx_r]) 1}

The vec[Q(ﬁ - H)Q‘lD] is distributed as a combination of normal distribution and wiener
process.

Proof:
Q(M-m)Q~D

[ T T _|—1

r . Zzt—l(l) 2D Zzt—l(l) 2o @

= T_l/zzvtzt—l(l)' T_lzvtzt—1(2)' D7} T D

t=1 t=1 , ,
llz 26 @ 7, @ Zzt-l(Z) PN JI
t=1 t=1

]
RO T_lzzt—l(l) 2o, @

r—
~
-
v\]
H
M"i
fay

T2 Zt—1(2) Ao T_Zzzt—l(z) PO
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Using by partitioned inverse;

T T
[T—l/szt Zt_l(l)r T—lzvt Zt—l(z) /]
t=1

t=1

Sit + Si1'81257821811 =St S51.S*
—§"5,,57 s*

where S* = (S5 — S515118512) 7!
By using lemma 1(1)
S, =T71 Z?:l Zt—1(1) Zt—l(l) ' E’ Fz(l)

The Sy, is converging in probability to stationary process (z,() = f'X, ) variance-covariance matrix
(€3]
r,”.

By using lemma 1(4)

S12= 851 =T ¥ 2@ 2, @’ i Op(Tl/z)
The Sy, is converging in distribution to zero with converging rate T3/,
By using lemma 1(5) and the continuous mapping theorem;

Spp =T 2% 124D 2, = 0,(1)

S22 = 0p(1)

1 1

The inverse of S,, convergence to a real-valued scalar ( [0 [x_,] Z‘E (f01 WkW,éds)ZE [ I 0 ] ) with
K-r

convergence rate 72,
Using rules of partitioned inverse;
§* =835 +85751(S11 — 512555 S21) 7 12575
1 1
= 0,(1) + 0,10, (T72) 0,(o, (72) 0, (D)
= Op(l)
1 1 *
Since o, (TZ)Which S, is divided by (TZ) ,convergences to zero, S’ convergences to Sy .
It can be seen easily, S;; — S1,555 5,1 convergences to a scalar.
1 1 1
S11 = 512522 521 = S11 — 0p (TZ) 0,(1oy (TZ) =511 t0,(1)= 0,(1)

Based on continuous mapping theorem, the inverse of S;; — S;,55, S, also convergences to the
scalar.

(811 = 5125282007 = 0,(1)
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As aresult,
-1 -1 -1 @\t 1 1
STt + S8, S, STt = (rz ) +0,(1o, (TZ) 0,(1o,, (TZ) 0,(1)

= ()t + 0, (1)

and
-1 1
~S551,5" = =0, (Do, (T2) 0,(1) = 0, (D)
Thus,
LT T
= T_EZ vz D’ T'lzvt AN ']
t=1 t=1
T
| -1 1) (1) -1 |
(T Ze 1" 7)) T+ 0, (1) 0, (1)
% t=1 .
0p(1) (T2 Z 2@ 2, D)+ 0, (1)
t=1
LT T T T
T_EZ v ze W' (T71 Z ze Wz, W)=t 171 Z v 2e P (T2 Z 241 7, @ ')_1]
t=1 t=1 t=1 t=1
+0,(1)
Finally,

vec[Q(MT—M)Q D]

T T

VeC(T_%Z v zp, D (T1 Z 2@z, , W™
_ t=1 t=1
- T T -1
vec(T‘lz:vt ze @’ (T_zzzt—1(2) Zt—1(2)'> )
L t=1 t=1 ]

Using lemma 1(1), lemma 1(2) and lemma 1(5), the proof has been completed.

NO, ) ® %,

£$W&ﬂ§{mwméij}

d

5 1

1 01
vec {25(] WkW,éds)’Zs[
0
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The vec[Q (ﬁ - l'[)Q‘lD] is still consisting of nonnormal elements. Choosing proper
convergence rate, the nonnormal part of matrix could be normal.

The distribution of unrestricted LSE estimator II is asymptotically normal,
— d -1
VTvee( =) >N, (1) B ®Z)
(€Y -1 I : . -1vT ’ -1
And S (I, B' is estimated by using (T ™" Y t=1 X¢—1X¢—1)

4.2. Limiting Results for the MLE Estimator II

When the error process is assumed to be Normal distribution, maximum likelihood estimator can
be used to estimate unknown parameters. If a and )}, are known, the maximum likelihood estimator
is the same as Generalized Least Sqaure (GLS) estimator for Sj_,. The log likelihood function is
given as following:

KT T 1%
ln(l) = —711121'[ - Elnlzul - EZ(Ayt - HXt_l)IZ“Il (AXt - HXt_l)

t=1

For maximizing log-likelihood function the following determinant should be minimized.

T
T Ay = X 1) By = X, )’
t=1

For the general case, rank (IT) =r, it means that there are r cointegration relationship. We can write
[T = af’, so the determinant is given by

T
T (AX, - 0B Xe ) (AX, — B’ X )’
t=1

with respect to a and . The minimum value of the determinant is attained for
T
B=1[v1 o Vr]'(z Xeo1X{_1)7/?
t=1

@ = (X0, AX X{ 1 B) BTy B X1 Xi1B)

Where the eigenvalues A;,> 1, =+ > Ax and the associated orthonormal eigenvectors
Vi ey Uy

is obtained from the following matrix

T -1/2 ,r T T T
(Z XtX£_1) (Z Xt_lAXz> (2 th£> (Z AXtXt’_l) (Z XtX£_1)
t=1 t=1 t=1 t=1 t=1
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And also TT = @3’ must have same asymptotic results as the unrestricted LS estimator of I1. We

know that B’ does not affect the LS estimator II. And also, MLE estimator of a is equal to LS
estimator (Lutkepohl 2005). That is given in the following asymptotic results,

VTvee@ - m SN, 8 (L) @ 5

A o I
To reach unique ', normalized MLE estimator of . S should be obtained. = [v " ] is
K-r
normalized MLE estimator [§ and also the normalized estimator for MLE estimator & can be obtained

explicitly. f and @ estimators are given below:

T -1

B'X—1 X£_1/?>
1

T
o= <Z Axtxz_lﬁ“x
t=1 t=
1 U 4 -
o l4 AN ¥ '
o= s s (Y - ) ) (Y

t=1 t=1

MLE estimators of II, & and E have same asymptotic properties as LS estimators of II,& and ﬁ
So, asymptotic properties are identical for both estimation techniques.

5. SIMULATION STUDY

In this section, finite sample properties of both estimator is considered through Monte Carlo
simulation. Cointegrated bivariate model X, = AX,_, +U, is simulated with following coefficient

S
0 o

and variance covariance matrix of iid error process

matrix,

_[ o
u = [0 1]
Simulation is performed for different p and & values in A matrix. . One unit root is derived by

solving characteristic roots of coefficient matrix A. Characteristic roots have only one root, either if
p=1,a<l ora=1, p<1 .Weassume cointegrated process contains one unit root.

The aim of the study is to examine the asymptotic properties of E( p) — p and E(&) — a firstly
for constant p and varying a., secondly for constant o and varying p. a and p should not be

greater than 1, because we consider one unit root and one stationary root in the bivariate system. In
both steps, 6 is the same because its value doesn’t affect the stationarity of the system.

Then E( p) — p and E(&) — a are performed for different replications T=50, 100, 250 through
Monte Carlo simulation.
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Figure 1. Histograms of E(p) —pand E(&) —a for a =1andp
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When histograms which are illustrated in Figure 1 are examined- ¢ =1 and p =0.1, 0.5, 0.9-
distributions of E( p) — p have smaller kurtosis as T increases for any case in p. Also, when ¢ = 1
is constant and p increases, kurtosis and bias of distribution of E( §) — p have better result, that is
smaller kurtosis and narrower confidence interval ,and smaller bias for all p. Unlike E( p) — p, when
a is equal to 1 and p is increasing, histograms of E(@) — @ have the almost same results for all p .

As shown in Figure 2, for p =1, a =0.1, 0.5 ,0.9, 6 = 0.4, kurtosis of distributions of E(p) —
p is decreasing considerably in contrast to kurtosis of distribution E(&) — a . .Also, properties of
distribution E (&) — a is almost same as the time series length 100,250.

o 1
0 0.1 05 09
MSE @ 0.0011 0.0013 0.0025
T=
MSE p | 0000474 0.1358 06238
MSE a | 0000277 0.00032 0.00060
T=100
MSE p | 0000125 0.1478 0.6344
MSE @ | 0000045 | 0000052 | 0000092
T=250
MSE p | 0000021 0.1551 0.6338

Table 1. Mean Square Error of Parameters when a = 1

As it is shown in Table 1; for all cases, as time series length increases, mean square errors (MSE)
of @ and p parameters decreases. When p approaches to one, MSE of parameter p increases
remarkably comparing to o. Reversely, when a approaches to 1, this increasing rate of MSE of @ and
p parameters is slower than p approaches to 1 as shown in Table 2.

o 1
a 0.1 05 09
MSE @ | 0000642 | 0001938 | 0002818
T=
MSE p | 0000830 | 0000545 | 0.000047
MSE @ | 0000167 | 0000492 | 0.000683
T=100
MSE p | 0000215 | 0000127 | 0.000004
MSE @ | 0000030 [ 0000081 | 0000102
T=250
MSE p | 0000035 | 0000019 | 0.000000

Table 2. Mean Square Error of Parameters when p = 1
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6. CONCLUSION

When a =1, the distributions of E( p) — p have smaller kurtosis as T increases for any case in
p. Also, when a = 1 is constant and p increases, kurtosis and bias of distribution of E( p) — p have
better result, that is smaller kurtosis and narrower confidence interval ,and smaller bias for all p.
Unlike E( p) — p, when a is equal to 1 and p is increasing, histograms of E(@) —a have the
almost same results for all p .

For p=1, a =0.1, 0.5,0.9, 6 = 0.4 , kurtosis of distributions of E(p) —p is decreasing
considerably in contrast to kurtosis of distribution E(&) —a . .Also, properties of distribution
E(@) — a is almost same as the time series length 100,250.

For all cases, as time series length increases, mean square errors (MSE) of & and p parameters
decreases. When p approaches to one, MSE of parameter p increases remarkably comparing to
a. Reversely, when o approaches to 1, this increasing rate of MSE of @ and p parameters is slower
than p approaches to 1.

When p has unit root, the MSE of parameters have better results. In existence of exogenous

variables in the bivariate system, unit root case should be taken account of parameter p=1. Unbias and
consistency results are obtained in this case.
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