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 ABSTRACT 
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K-Means clustering is commonly used for data clustering, but it suffers from limitations 
such as being prone to local optima and slow convergence, particularly when handling large 
medical files. The literature recommends employing metaheuristic algorithms in clustering 
studies to address these issues. This study aims to accurately diagnose diseases in four 
medical datasets (Dermatology, Diabetes, Parkinson's, and Thyroid) and increase the rate 
of correct diagnosis of diseases. We utilized optimization algorithms to assign weights to 
input parameters determining diseases in these datasets, thereby improving clustering 
performance. Our proposed model incorporates the Crow Search Algorithm, Tree Seed 
Algorithm, and Harris Hawks Optimization algorithms in a hybrid structure with K-Means. 
We conducted statistical evaluations using performance metrics. The study demonstrated 
that the hybrid Harris Hawks Optimization algorithm achieved the highest accuracy rate 
(97.19%) among the tested algorithms on the Dermatology dataset. The hybrid Crow 
Search Algorithm obtained a 96.29% accuracy rate on the Thyroid dataset, while the hybrid 
Tree Seed Algorithm achieved a 95.32% accuracy rate on the Dermatology dataset. This 
study offers significant benefits, including reduced staff workload, lower test costs, 
improved accuracy rates, and faster test results for detecting various diseases in medical 
datasets. 
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Kümeleme Analizi için Meta-sezgisel 
Algoritmaların K-Means ile Hibritlenmesi: Tıbbi 
Veri Kümeleri Üzerine Bir İnceleme 

ÖZ 
K-Means kümeleme, veri kümeleme için yaygın olarak kullanılan bir yöntemdir. Ancak 
özellikle büyük tıbbi verilerle çalışırken yerel optimuma takılmak ve yavaş yakınsama gibi 
sorunlarla karşılaşılabilir. Literatürde bu tür sorunları ele almak için kümeleme 
çalışmalarında metasezgisel algoritmaların kullanılmasının önerildiği görülmektedir. Bu 
çalışma, dört farklı tıbbi veri kümesi üzerinde (Dermatoloji, Diyabet, Parkinson ve Tiroid) 
hastalıkların doğru teşhisini koymayı ve hastalıkların doğru teşhis oranını artırmayı 
amaçlamaktadır. Bu veri kümelerindeki hastalıkları belirleyen girdi parametrelerine ağırlık 
atamak için optimizasyon algoritmalarını kullandık ve sonuç olarak kümeleme 
performansını artırdık. Önerilen modelimiz, Karga Arama Algoritması, Ağaç Tohum 
Algoritması ve Harris Hawks Optimizasyon algoritmalarını K-Means ile hibrit bir yapıda 
birleştirmektedir. Performans metrikleri kullanarak istatistiksel değerlendirmeler yaptık. 
Sonuçlar hibrit Harris Hawks Optimizasyon algoritmasının Dermatoloji veri kümesinde test 
edilen algoritmalar arasında en yüksek doğruluk oranına (%97,19) ulaştığını 
göstermektedir. Ayrıca hibrit Karga Arama Algoritması, Tiroid veri kümesinde %96,29 
doğruluk oranı elde ederken, hibrit Ağaç Tohumu Algoritması Dermatoloji veri kümesinde 
%95,32 doğruluk oranı elde etmiştir. Bu çalışma, tıbbi veri kümelerinde çeşitli hastalıkları 
tespit etmek için daha az personel iş yükü, daha düşük test maliyetleri, gelişmiş doğruluk 
oranları ve daha hızlı test sonuçları gibi önemli faydalar sunmaktadır. 

Anahtar Kelimeler:   K-Means 
kümeleme, Metasezgisel 

algoritmalar, Hastalık teşhisi, 
optimizasyon, Karar destek 

sistemleri 
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1. Introduction  
 

The grouping of data with similar characteristics in a dataset is called clustering [1]. Clustering 
operations are used in statistical data analysis, data mining, vector quantization, and data compression 
[2,3]. The clustering process brings problems along with its advantages [4]. The multidimensionality 
and large size of the data can cause time costs. In addition, when using distance-based clustering, it is 
difficult to determine the linked cluster in multidimensional space when it is impossible to measure 
the distance between clusters. Results from clustering processes can be interpreted differently due to 
the differences in the structure of clustering methods. [5]. Two categories, supervised and 
unsupervised, are typically used to categorize the classification process. The main task of supervised 
classification is to put unclassified data in the most appropriate class. Unsupervised classification aims 
to create meaningful subsets from the unclassified data in a cluster [6]. The unsupervised classification 
approach is used to assess the clustering process. Fraley and Raftery [7] classified clustering into two 
categories: hierarchical and partitional. Without notice, the top-down or bottom-up division of the 
number of clusters in a tree structure creates hierarchical clustering. In contrast, partitional clustering 
splits data into groups without regard to hierarchy and with a predetermined number of clusters. The 
Euclidean distance is the basis of the partitional clustering. Calculating the distance between each 
cluster and each point, then including that point in the cluster that minimizes this distance, is how the 
Euclidean distance is stated. There are many different clustering methods available. K-Means, 
Hierarchical clustering, and Gaussian mixture models (GMMs) for clustering are the most well-known 
ones [8]. 
 
Clustering analysis is used in fields such as field of medicine [9–14], machine learning [15], 
identification of images [16], data mining [17,18], market and consumer segmentation [19–21], biology 
[22], statistics [23], and pattern recognition [24]. K-Means is a popular center-based, straightforward, 
and quick clustering algorithm [25]. The K-Means algorithm is used in marketing [26,27], chemistry 
[28], geographic systems [29], meteorological phenomena [30], and social sciences [31], and it has been 
extensively utilized in scientific and industrial fields, particularly in the field of medicine. Liu et al. [26] 
performed customer classification and market analysis using the K-Means algorithm with retail 
company data. Heil et al. [32] classified the agricultural lands in West Africa using data based on 
geological and climatic parameters and the K-Means algorithm. Additionally, they demonstrated how 
the fuzzy K-Means algorithm is superior to the standard K-Means algorithm. Similarly, Tang et al. [28] 
used the K-Means algorithm to classify industrial polymers. Xiaoying et al. [33] analyzed the chemical 
molecules in rice and classified rice according to geographical origin. Anderson [34] used the K-Means 
algorithm and kernel density calculation to determine the points where traffic accidents are most 
intense. Bacao et al. [35] studied K-Means for self-organizing maps. Kanthan and Sujantha [30] 
clustered raindrops with the K-Means algorithm. Chakraborty et al. [36] suggested a methodology for 
weather forecasting with K-Means. Kurniawan and Fatulloh [37] used the K-Means algorithm and 
geographic information system data to classify the social life conditions of a city in Indonesia. Zhou et 
al. [38] clustered crime points using real case data. Evans et al. [39] examined the risks and negative 
consequences of medicines used in medicine on people. They utilized the K-Means method in order to 
classify medicines. They concluded that high-risk characteristics included the patient's age, weight, 
gender, and medicine dosage. A study conducted in the field of dentistry investigated whether 
psychological and social changes have an effect on the case of acute pain after surgery. The K-Means 
algorithm was used to cluster the patients into groups based on their psychological characteristics and 
symptoms. In conclusion, it was observed that patients who were female, depressed, and anxious 
experienced more pain after surgery [40]. In a different research project in the psychiatric field [41], 
various personality inventories were used for cluster analysis. By analyzing the clusters, the differences 
between the two groups were revealed. Thus, unknown aspects of psychopathy were tried to be 
discovered. Likewise, Kim et al. [42] used K-Means to divide the 888 instances submitted to the Korean 
emergency service into two categories. It was found that 85% of suicide attempts were impulsive, and 
15% were planned based on a variety of demographic and clinical factors. Studies in the field of genetics 
have also used the K-Means algorithm. Shai et al. [43] revealed molecular subtypes of unknown 
pathological kinds and classes using the K-Means algorithm. Bertucci et al. [44] used hierarchical 
clustering to describe five breast cancer subtypes. According to research and observations of Ushizawa 
et al. [45], animal embryo gene profiles were examined using cDNA microarray, and the K-Means 
method was utilized to cluster genes. Doctors in the medical field diagnose patients by using a variety 
of tests, observations, and information about the patient's past. In the health sector, decision support 
systems are developed with various techniques to help doctors [46–51]. The K-Means algorithm has 
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the drawback of being stuck to local optima despite performing fast and effective clustering [52]. 
Results from the K-Means technique are based on the initial clustering reference points. In other words, 
the search always converges to the closest local optimum from the initial point. Researchers solve the 
optimum local problem using hierarchical, artificial intelligence-based, partition-based, and density-
based clustering techniques. The dataset is divided into a fixed number of partitions in partition-based 
clustering [53]. Each point shifts its center until it is closest to its cluster center. This method is most 
advantageous when the dataset is homogeneous [54]. In density-based clustering, clusters are formed 
from areas with high data density [55]. This approach clusters data points based on their density. It is 
advantageous when dealing with heterogeneous datasets [54]. The partition-based clustering method 
focuses on specific parts, while the density-based clustering method determines clusters based on their 
density. Examples of the techniques used are as follows: Graph Theory [56], Artificial Neural Networks 
[57], Statistical methods [58], and heuristic algorithms [19, 59–64]. These techniques were used to 
avoid being stuck with the local optimum and to increase the clustering success rate. 
 
In this study, the meta-heuristic algorithms Crow Search Algorithm (CSA), Harris Hawks Optimization 
(HHO), and Tree Seed Algorithm (TSA) are used together with the K-Means algorithm to improve 
clustering performance. Three new algorithms, Hybrid CSA (H-CSA), Hybrid HHO (H-HHO), and Hybrid 
TSA (H-TSA), were developed from the hybrid use of the algorithms. By identifying the significance of 
parameter values used in diagnosing diabetes, dermatology, Parkinson's, and thyroid diseases, 
heuristic algorithms have improved clustering success. In summary, if any parameter in a disease is 
more important, the importance coefficient of that parameter is increased. Thus, a more accurate 
diagnosis is provided. Likewise, if any parameter is less critical in a disease, the importance of this 
parameter is lowered. Thus, we planned to prevent misdiagnoses. Thus, the K-Means algorithm being 
stuck to the local optimum has been resolved. In addition, the relevant coefficients have been correctly 
optimized to increase the clustering success. 

 
2. Materials and Methods 
 
In this study, the K-Means algorithm was combined with CSA, TSA, and HHO algorithms to obtain H-
CSA, H-HHO, and H-TSA algorithms that demonstrate superior clustering integrity performance. The 
developed model utilized four distinct medical datasets, Dermatology, Diabetes, Parkinson's, and 
Thyroid, as input parameters. The datasets were obtained from the UCI Machine Learning Repository 
and additional sources [65–69]. Figure 1 shows a summary of our methodology in the study. 
 

 
Figure 1. A brief summary of methodology 

 
 
2.1. K-Means Algorithm 

 
The K-Means algorithm, initially proposed in 1967 by James MacQueen, is a widely used and efficient 
clustering technique in machine learning, data exploration, and data mining [70]. The algorithm aims 
to group data in a dataset based on similarities and divides them into distinct clusters. The clusters are 
formed around the k initial cluster centers that the algorithm selects, and data are assigned to the 
clusters closest to these centers. Then, the centers of the clusters are recalculated, and the data is 
reassigned to the corresponding clusters. This step is repeated until the data distribution is corrected. 
This process aims to sort the data into clusters that best reflect their similarity. Equation 1 defines the 
objective function. 
 

𝑗 = ∑ ∑ ‖𝑥𝑖
(𝑗)

− 𝑐𝑗‖
2

𝑛
𝑖=1

𝑘
𝑗=1                     (1) 
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Where ‖𝑥𝑖
(𝑗)

− 𝑐𝑗‖
2

 is the distance between 𝑥𝑖
(𝑗)

 and the 𝑐𝑗  (center of cluster). The goal is to find the 

lowest J [8]. Thus, 𝑥𝑖
(𝑗)

 belongs to the 𝑐𝑗  centered cluster for minimum J value. 

 
A method has yet to be presented to determine the number of clusters (K) in the K-Means algorithm. 
This is a disadvantage besides the simplicity and popularity of the K-Means algorithm. K-Means cannot 
guarantee convergence to a global optimum using its iteratively optimal procedure. Additionally, the 
K-Means technique is susceptible to outliers and noisy data. The deformation of cluster geometries is 
an additional problem because it attempts to include an object in a cluster even if it is far from one [70]. 
 
2.2. Harris Hawks Algorithm 
 
The Harris Hawk Algorithm emulates the rabbit hunting approach of the intelligent Harris hawk. Before 
hunting, the leader and other flock members conduct reconnaissance flights. Following prey detection, 
the hunting process commences. Heidari presented a mathematical model outlining these 
characteristics of the Harris hawk in 2019 [71]. 
 
Exploration phase: When Harris hawks roam randomly, they use two exploration strategies. These 
strategies are as in Equation 2. The probability value 𝑞 here indicates which tactic will be in use. 
 

𝑥(𝑡 + 1) = {   
𝑥𝑟𝑎𝑛𝑑(𝑡) −  𝑟1 |𝑥𝑟𝑎𝑛𝑑(𝑡) − 2𝑟2𝑥(𝑡)|,   𝑞 ≥  0.5

(𝑥𝑟𝑎𝑏𝑏𝑖𝑡(𝑡) −  𝑥𝑚(𝑡)) − 𝑟3(𝐿𝐵 +  𝑟4 (𝑈𝐵 −  𝐿𝐵)),   𝑞 <  0.5 
                                                 (2) 

 
Here x(t + 1) is the position vector of Harris in each iteration. The position vector of the prey is 
xrabbit(t). The current position of the hawk is x(t). r1, r2, r3, r4, and q are random numbers (0,1). The 
lower value and the upper value, respectively, are denoted by LB and UB. 𝑥𝑟𝑎𝑛𝑑(𝑡) shows a hawk 
randomly chosen from the current population. 𝑥𝑚(𝑡) is the average position of the current hawk 
population. The average position is found using Equation [71].   
 

𝑥𝑚(𝑡) =
1

𝑁
∑ 𝑥𝑖(𝑡)

𝑁
𝑖=1                                                                      (3) 

 
Here, 𝑡 denotes the number of iterations, and 𝑁 denotes the number of hawks. After completing the 
exploration process, the exploitation phase is presented in Equation 4. 
 

𝐸 = 2𝐸0(1 −
𝑡

𝑇
)                                                     (4) 

                                                                                                                                                     
Here 𝐸 is the total energy of the escaped prey, the prey's initial energy is 𝐸0 is the maximum iterations 
number. 
 
Exploitation phase: Four different strategies are used to simulate the exploitation phase. Soft besiege, 
hard besiege, soft besiege with progressive rapid dives and hard besiege with progressive rapid dives. 
 
At the soft besiege stage, the Harris hawk makes misleading jumps so that reduce energy of prey (𝑟 ≥ 
0.5, 𝐸 ≥ 0.5). This soft encirclement strategy is mathematically given in Equations 5 and 6. Here, r is the 
chance of catching the escaped prey. 𝐸 is the energy of the rabbit. ∆𝑥(𝑡) is the difference between the 
current position in the 𝑡.th iteration and the current position of the prey (rabbit). For the purpose of 
simulating natural rabbit movement, 𝐽 is a value that changes with each iteration. 
 
𝑥(𝑡 + 1) = ∆𝑥(𝑡)  −  𝐸|𝐽𝑥𝑟𝑎𝑏𝑏𝑖𝑡(𝑡) − 𝑥(𝑡)|                                                                              (5)        
                                                                       
∆𝑥(𝑡) = 𝑥𝑟𝑎𝑏𝑏𝑖𝑡(𝑡) − 𝑥(𝑡)                                                                                                                                              (6) 
 
In the Hard Besiege strategy, the energy of the prey is considerably reduced (𝑟 ≥ 0.5, |𝐸| ≤ 0.5). This 
situation is mathematically modeled as in Equation 7. 
 
𝑥(𝑡 +  1)  =  𝑥𝑟𝑎𝑏𝑏𝑖𝑡(𝑡)  −  𝐸|∆𝑥(𝑡)|                                                                                                                          (7) 
 
Soft besiege with progressive rapid dives stage, it is thought that the Hawks decided their next move 
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according to Equation 8 before starting the soft besiege. 
 
𝑌 =  𝑥𝑟𝑎𝑏𝑏𝑖𝑡(𝑡)  −  𝐸|𝐽𝑥𝑟𝑎𝑏𝑏𝑖𝑡(𝑡)  −  𝑥(𝑡)|                                                                                                                  (8) 
 
Harris Hawks dive fast and compare to their previous dives. If the new dive situation is not suitable, 
the hawks continue to fast dive into their prey. A Levy Flight based motion structure is used while 
deciding this. Equation 9 describes this condition. 
 
𝑍 =  𝑌 +  𝑆𝑥𝐿𝐹(𝐷)                                                                                                                                                         (9) 
 
Here D is the problem size. S is a random vector of size 1xD. 𝑌 determines the position of the prey 
relative to its decreasing energy. 𝑍 is the variable that decides whether the hawks will attack its prey. 
Equation 10 gives the levy function, abbreviated LF. 
 

𝐿𝐹(𝑥) = 0.01𝑥 (
𝜇 𝑥 𝜎  

|𝜇|
1
𝜷 

) , σ = [
Ґ(1+𝛽)𝑥𝑠𝑖𝑛(

𝜋𝛽

2
)

Ґ(
1+𝛽

2
)𝑥𝛽𝑥2

(
𝛽−1

2 )
]                                                                                                       (10) 

 
Where 𝑢 is the random number between 𝑣 (0,1) and 𝛽 is 1.5. The hawks' current locations are updated 
during the soft besiege phase using Equation 11.  
 

𝑥(𝑡 + 1) = {   
𝑌 𝑖𝑓 𝐹(𝑌)  <  𝑓(𝑥(𝑡))
𝑍 𝑖𝑓 𝐹(𝑍)  <  𝐹(𝑥(𝑡))

                                                                                                                          (11) 

 
𝑌 and 𝑍 are found using Equations 8 and 9. 
 
Hard besiege with progressive rapid dives stage, the prey lacks the energy to escape. The Harris hawk 
makes a hard besiege before a surprise attack to catch its prey. The hard besiege condition is found 
using Equation 12. 
 

𝑥′(𝑡 + 1) = {   
𝑌′ 𝑖𝑓 𝐹(𝑌′)  <  𝑓(𝑥(𝑡))

𝑍′ 𝑖𝑓 𝐹(𝑍′)  <  𝐹(𝑥(𝑡))
                                                                                                                       (12) 

 
Where Y' and Z' are found by Equations 13 and 14. 
 
𝑌 ′ =  𝑥𝑟𝑎𝑏𝑏𝑖𝑡(𝑡)  −  𝐸|𝐽𝑥𝑟𝑎𝑏𝑏𝑖𝑡(𝑡)  −  𝑥𝑚(𝑡)|                                                                                                              (13) 
 
𝑍 ′ =  𝑌 ′ +  𝑆𝑥𝐿𝐹(𝐷)                                                                                                                                                   (14)         
 
2.3. Tree Seed Algorithm 
                                                          
Kiran [72] introduced the Tree Seed Algorithm (TSA) in 2015, a new metaheuristic optimization 
algorithm that addresses continuous optimization problems. The TSA is based on the inherent 
relationship between trees and seeds in nature. Tree seeds are spread in the soil and grow into trees 
over time [73]. The position of trees and seeds indicates potential solutions for persistent issues when 
tree soils are considered in the research field [74]. As a result, the significance of seed sites in the 
formation of trees has grown. The search space is described by two equations. The first is the procedure 
for producing seeds for the best tree population placement. This strengthens the algorithm's ability to 
perform local searches. For the purpose of creating a new seed, the other equation uses two alternative 
tree places [72]. 
 
𝑆𝑖,𝑗 = 𝑇𝑖,𝑗 + (𝑎𝑖,𝑗 )𝑥(𝐵𝑗 − 𝑇𝑟,𝑗)                                                                                                                                     (15)      

  
𝑆𝑖,𝑗 = 𝑇𝑖,𝑗 + (𝑎𝑖,𝑗 )𝑥(𝑇𝑖,𝑗 − 𝑇𝑟,𝑗)                                                                                                                                   (16) 

 
where, Si,j is jth dimension of ith seed that will be produced ith tree,Ti,j is the jth dimension of ith 
tree, Bj is the jth dimension of best tree location obtained so far, Tr,j is the jth dimension of rth tree 
randomly selected from the population,  the scaling factor is α which is randomly produced in range of 
[−1, 1] and i and r  are seperate indices. 
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Equation 17 is used to generate the initial tree locations, which are potential solutions to the 
optimization problem, at the beginning of the TSA search. 
 
𝑇𝑖,𝑗 = 𝐿𝑗,𝑚𝑖𝑛 + 𝑟𝑖,𝑗 (𝐻𝑗,𝑚𝑎𝑥 − 𝐿𝑗,𝑚𝑖𝑛)                                                                              (17) 

 
where, Lj,min is the lower bound of the search space, Hj,max is the higher bound of the search space 
and ri,j is a random number produced for each dimension and location, in range of [0, 1]. 
 
Equation 18 is used to choose the best solution from the population for minimization. 
 

𝐵 = 𝑚𝑖𝑛{𝑓(𝑇⃗ 𝑖)}𝑖 = 1,2, … , 𝑁                                                                                                (18)  

         
N is the total population of trees. 
 
The maximum number of function evaluations (Max_FEs) is chosen as the termination condition, and 
it is set using the function's dimensionality given in Equation 19. 
 
𝑀𝑎𝑥𝐹𝐸𝑠  = 𝐷𝑥10.000                                                                                (19) 
 
2.4. Crow Search Algorithm 
 
Crows live in flocks and have a powerful memory [75]. They store the food they find and return to their 
hiding place when needed. Crows can also follow each other to learn the location of food stores and 
steal each other's food. Crows can take precautions against this by flying to different places to confuse 
other crows. Inspired by this intelligent behavior of crows, Askarzadeh developed the Crow Search 
Algorithm to solve the optimization problem [75]. The algorithm consists of 4 steps. 
 
Step 1: Initial values are given to algorithm parameters. Then, N crows are randomly placed in the d-
dimensional search space. In the initialization phase, all crows store their food in the positions in which 
they are randomly placed. The fitness values of all positions are calculated, and their memory holding 
their best position is initialized. 
 
Step 2: Each crow randomly chooses a crow and follows it to find the crow's food. New positions are 
created depending on whether the jth crow knows or does not know that it is being followed by the ith 
crow Equation 20. 
 

𝑥𝑖,𝑖𝑡𝑟+1 = {
𝑥𝑖,𝑖𝑡𝑟 + 𝑟𝑖 × 𝑓𝑙𝑖,𝑖𝑡𝑟 × (𝑚𝑗,𝑖𝑡𝑟 − 𝑥𝑖,𝑖𝑡𝑟), 𝑟𝑖 ≥ 𝐴𝑃𝑗,𝑖𝑡𝑟

𝑎                                                                 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                             (20) 

 
Here 𝑥𝑖,𝑖𝑡𝑟 denotes the position of the ith crow in itrth iteration. 𝑟𝑖  is a randomly distributed random 
number between 0-1, m (memory) is the variable that holds the best position of the crow, and a is the 
random position. 𝑓𝑙 (flight length), the algorithm's adjustment parameters are called AP (awareness 
probabilities). 𝑓𝑙 is the range at which the crow can fly, and AP represents the probability of the crow 
noticing that it is being followed. 
 
Step 3: The feasibility of the new locations found is checked. The crows' positions may be changed as 
necessary to create new ones. Otherwise, the crow position will not be changed. 
 
Step 4: All positions' fitness values are calculated, and the memories of the crows are updated according 
to Equation 21. 
 

𝑚𝑖,𝑖𝑡𝑟+1 = {
𝑥𝑖,𝑖𝑡𝑟+1   𝑓(𝑥𝑖,𝑖𝑡𝑟+1)𝑖𝑠 𝑏𝑒𝑡𝑡𝑒𝑟 𝑡ℎ𝑎𝑛 𝑓(𝑚𝑖,𝑖𝑡𝑟)

𝑚𝑖,𝑖𝑡𝑟                                                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                                             (21) 

 
Here 𝑓(𝑥𝑖,𝑖𝑡𝑟+1)  shows the fitness value of the ith crow. If the fitness value of the new position is better 
than the fitness value of the location that was previously memorized, the update takes place according 
to the new position. If the stopping requirement is not met, iteration continues. The position of the 
crow with the best fitness value is selected, and the algorithm is terminated. 
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2.4. Proposed model 
         
The K-Means algorithm works effectively when the distribution of objects in the dataset is normally 
distributed. However, if the distribution of objects in the dataset is non-normally distributed, the 
algorithm may become ineffective. Similarly, suppose there are significant or minimal differences 
between the properties of the objects in the data set. In that case, the K-Means algorithm will not work 
effectively and may not give what is expected [76,77]. K-Means approach and heuristic algorithms 
(CSA, HHO, and TSA) were combined in this study to improve clustering performance. Meta-heuristic 
algorithms were utilized for weighting various health data used in diagnosing Dermatology, Diabetes, 
Parkinson's, and Thyroid ailments. In summary, high or low-impact data in determining the disease 
were found with meta-heuristic algorithms, increasing diagnostic success and making more accurate 
diagnoses. Thus, the classical K-Means algorithm was prevented from being stuck at local optimum 
points. Clustering success was increased by optimizing the disease coefficients according to the degree 
of importance, thus preventing misdiagnoses. First, a W pool is created to rate all dimensions of health 
data. 
 
𝑊 = [𝑤1, 𝑤2, … , 𝑤𝑚]                                                                                                                                            (22) 

𝑊 are the weight values that the optimization algorithm will optimize. Each w value is weighted by the 
optimization algorithm according to its importance in the diagnosis of the disease. All dimensions (Xn) 
are multiplied by a weight parameter (Wm). Thus, the coefficient of the importance of the relevant data 
(dimension) in determining the disease is found. 

𝑋𝑛,𝑚 = 𝑊𝑚 ∗ 𝑋𝑛,𝑚,     𝑛 = 1,… , 𝑁,     𝑚 = 1,… ,𝑀,     𝑛 ≤ 𝑁,      𝑚 ≤ 𝑀,   𝑀 < 𝑁                            (23) 

where N represents the total amount of data and M represents the total number of data attributes. To 
generate a new Xn,m  pool, each characteristic is multiplied by Wm. After that, Equation 24 is used to 
determine the centers of all the data in this pool. 

𝐶𝑘 =
∑ 𝑎𝑛,𝑘∗𝑋𝑛

𝑁
𝑛=1

∑ 𝑎𝑛,𝑘
𝑁
𝑛=1

, 𝑎𝑛,𝑘 = {
1   𝑦𝑛 = 𝑘
0   𝑦𝑛 ≠ 𝑘

, 𝑘 = 1, 2, … , 𝐾                                                                                 (24) 

Here K represents the number of clusters, yn represents the data set, and a represents a variable 
consisting of 1 or 0. The actual value of the data is compared with the first set (k.). If a match is achieved 
as a result of the comparison, 𝑎 takes the value of 1, and the (k.) elements of the relevant set are added. 
This way, the cluster's center point in the k row is found. The center points of all clusters are found in 
this way. Then, using Equation 25, the class of the data is found according to the center points. 

𝑓𝑛 = 𝑘, 𝑖𝑓 min(|𝑥𝑛 − 𝑐1|, |𝑥𝑛 − 𝑐2|, … , |𝑥𝑛 − 𝑐𝐾|, )                                                                                           (25) 

fn is found values that represent data sets. The data is assigned to the fn variable to belong to whichever 
center point is closer. Then, the weight values that give the optimum result are found with the proposed 
meta-heuristics by processing the available data. The objective function used is shown in Equation 26. 

max 𝑓(𝑣) = 100
𝑁⁄ ∗ ∑ 𝑏𝑛

𝑁
𝑛=1 ,       𝑏𝑛 = {

1   𝑦𝑛 = 𝑓𝑛
0   𝑦𝑛 ≠ 𝑓𝑛

                                                                                           (26) 

Here, N is the number of data, and b is the variable that takes the value 0 or 1. If the found value and 
the actual value are equal, b is given the value 1; otherwise, it is given the value 0. These steps continue 
until the number of iterations is completed. Then, the weight values that give the optimum fitness value 
are found. An illustration of these procedures is shown in a flow chart in Figure 2. 
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Figure 2. Flow chart of conceptual approach 
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2.6. Dataset 
 
Four distinct medical datasets were employed in this research: Dermatology, Diabetes, Parkinson's, 
and Thyroid. The datasets were obtained from several sources, including the UCI Machine Learning 
Repository, and 70% of the data was allocated for training purposes, while the remaining 30% was 
reserved for testing [65–69]. 

2.6.1 Dermatology dataset 
 
The dermatology dataset was obtained from UCI Machine Learning Repository [65,69]. There are 34 
attributes in the dataset. There are 358 sample data and six different classes (Pityriasis Rubra Pilaris, 
Psoriasis, Seborrheic Dermatitis, Pityriasis Rosea, Lichen Planus, Chronic Dermatitis). 

2.6.2. Diabetes dataset 
 
The diabetes dataset was obtained from the National Institute of Diabetes and Digestive and Kidney 
Diseases [66]. The dataset has eight attributes. These are age, blood pressure, pregnancy, skin 
thickness, glucose, insulin, BMI and diabetes pedigree function. This dataset contains 768 records. It is 
divided into two results: diabetic or not. 

2.6.3. Parkinson dataset 

This dataset is taken from the UCI Machine Learning Repository [65,67]. It consists of different 
biomedical sound measures obtained from 195 Parkinson's disease patients. This dataset contains 22 
attributes, and there are two groups of outcomes: "1" if Parkinson's disease is present and "0" if not. 

2.6.4. Thyroid function dataset 

The thyroid dataset was taken from the UCI Machine Learning Repository [65,68]. This dataset has 
7200 records and 20 attributes, including sex, age, query_on_thyroxine, on_thyroxine, 
on_antithyroid_medication, pregnant, sick, thyroid_surgery, I131_treatment, query_hyperthyroid, 
query_hypothyroid, tumor, lithium, psych, goiter, hypopituitary, T3, TSH, T4U, TT4. There are three 
classes in the result set. These are not-hypothyroid (normal), subnormal function and hyperfunction. 

Table 1. Datasets of study 
 

Type of Feature Datasets Inputs Classes Instances 
Numeric Dermatology Dataset 34 6 358 
Numeric Diabetes Dataset 8 2 768 
Numeric Parkinson Dataset 22 2 195 
Numeric Thyroid Function Dataset 20 3 7200 

 

2.7. Statistical performance metrics  
 
The models used in the current study were evaluated with performance measurement metrics. 
Formulas of performance metrics are given in Equations 27, 28, 29, 30, and 31 [78–80]. 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑁+𝑇𝑁+𝐹𝑃
                                                                                                                                              (27) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                  (28) 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
                 (29)   

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                     (30) 
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𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑠𝑖𝑐𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                                                                   (31) 

 
Some abbreviations are used in the equations. True Positive (TP) represents a sick person as sick, False 
Positive (FP) represents a healthy as sick (which is incorrect), True Negative (TN) represents a healthy 
person as not sick, False Negative (FN) represents healthy to the person who is sick. 
 

3. Experimantal Results 
 
In this study, CSA, HHO, TSA, and K-Means algorithms were hybridized to create H-CSA, H-HHO, and H-
TSA algorithms and were used to diagnose four different diseases. The algorithm was run on a 
computer with an Intel Core i7, 2.4 GHz CPU, and 8 GB RAM with Windows® 11 operating system, using 
MATLAB 2022b programming language. The parameter settings used in the algorithms are given in 
Table 2. 

Table 2. Parameter settings 

Algorithm Parameter Settings Iteration Number Population Number 

CSA *AP=0.1; *FL=2 100 40 

HHO *ß=1.5 100 40 

TSA *ST=0.1 100 40 

* AP (Awareness Probability), FL (Flight Length), ß (Beta), ST (Search Tendency) 

The termination criterion of the proposed hybrid model is the number of iterations. The proposed 
model runs for 100 iterations and then terminates and finds the weight values that give the best result. 
In this way, the algorithms are run 20 times, and the weight values that give the best fitness value are 
found. The weight values obtained for the dermatology, diabetes, Parkinson's, and thyroid datasets are 
presented in Table 3. Furthermore, Table 4 presents the statistical results of mean runtime, Standard 
Deviation, Average Fitness, Worst Fitness, and Best Fitness values. Each dataset has been evaluated 
separately, and better results produced are shown in bold. 

The hybrid models proposed for each dataset are separately evaluated in Table 4, and the values that 
yield superior results are shown in bold. The H-HHO algorithm found more successful fitness values in 
the Dermatology dataset than other algorithms regarding the worst and best fitness values. On the 
other hand, the H-CSA algorithm produced better values than other algorithms in terms of average 
fitness, worst fitness, and mean runtime values. In terms of standard deviation, H-TSA produced better 
results. H-CSA and H-HHO Diabetes found the best fitness values in the dataset. The best values in 
average fitness and standard deviation were obtained from the H-TSA algorithm. In the Parkinson's 
dataset, the H-TSA algorithm found the best fitness with 81.03%. Similarly, the most successful 
algorithm regarding the average fitness value is H-TSA. For the Thyroid dataset, the H-HHO algorithm 
gave the best values in Standard Deviation, Average Fitness, Best Fitness, and Worst Fitness. The H-
CSA algorithm was found to have the lowest average runtime when evaluating the statistical results in 
terms of mean time. Table 5 shows the fitness values and runtime results of the K-Means Algorithm for 
each data set separately.   

Analyzing the results in Tables 4 and 5, it is evident that the H-CSA, H-HHO, and H-TSA models 
outperform K-Means in terms of best fitness values. However, hybrid algorithms use two algorithms, 
so the proposed models run slower than the K-Means algorithm. However, the high achievements show 
that hybrid algorithms can make this speed difference tolerable and advantageous, especially when 
problem complexity and dataset characteristics are considered. In addition, the complexity matrices of 
the algorithms using the test dataset are presented and statistical performance results are given. Table 
6 shows the values of the results for the Dermatology test dataset.
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Table 3. Coefficient of Dermatology, Diabetes, Pakinson’s, and Thyroid dataset 

 
 Dermatology Diabetes Parkinson’s Thyroid 
 CSA HHO TSA CSA HHO TSA CSA HHO TSA CSA HHO TSA 
W1 0.99955 0.68342 0.02798 0.29578 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
W2 0.99926 0.48179 0.48179 0.74054 0.28513 0.67698 0.0 0.03168 0.0 0.0 0.0 0.06567 
W3 1.0 1.0 0.37077 0.37931 0.0 0.34710 0.0 0.0 0.0 0.0 0.0 0.03777 
W4 0.99963 1.0 0.62532 0.52302 0.0 0.32596 0.0 0.0 0.27688 0.0 0.0 1.0 
W5 0.95734 1.0 0.66528 0.00028 0.0 0.05182 0.0 1.0 1.0 0.0 0.0 0.27827 
W6 0.99987 1.0 0.84918 0.99960 0.73997 0.77061 1.0 0.0 1.0 0.0 0.0 0.07903 
W7 0.88161 1.0 1.0 0.60541 0.28964 0.72123 0.0 1.0 0.30304 0.0 0.0 0.34065 
W8 0.95635 1.0 0.86321 0.98806 0.39522 0.83784 1.0 1.0 0.0 0.0 0.0 0.94969 
W9 0.99971 1.0 0.83405 N/A N/A N/A 0.0 0.0 0.90080 0.00136 0.0 1.0 
W10 0.99922 0.53874 0.15785 N/A N/A N/A 0.0 0.0 0.09686 0.47101 0.0 0.76311 
W11 0.99999 1.0 0.69349 N/A N/A N/A 1.0 0.18872 0.21580 0.0 0.0 0.17567 
W12 0.99974 0.30981 1.0 N/A N/A N/A 0.0 1.0 0.21538 0.0 0.0 0.21051 
W13 0.99955 0.65322 0.57133 N/A N/A N/A 0.0 0.0 0.11129 0.0 0.0 0.0 
W14 0.99967 1.0 0.83357 N/A N/A N/A 0.80071 1.0 0.63166 0.0 0.0 0.84297 
W15 1.0 1.0 0.99547 N/A N/A N/A 1.0 1.0 0.41264 1.0 0.0 0.42849 
W16 0.99962 0.61753 0.46498 N/A N/A N/A 0.0 0.0 0.01859 0.04365 0.0 0.0 
W17 0.99988 0.70193 0.52315 N/A N/A N/A 0.0 1.0 0.20289 0.0 0.00513 0.79203 
W18 0.99925 0.29884 0.95313 N/A N/A N/A 1.0 0.0 0.47236 0.0 0.0 0.95175 
W19 0.99922 0.85027 0.41822 N/A N/A N/A 1.0 0.48010 0.07504 0.0 0.0 0.97276 
W20 1.0 1.0 0.11431 N/A N/A N/A 1.0 1.0 0.75772 0.18877 0.0 0.47394 
W21 0.99916 1.0 0.12406 N/A N/A N/A 1.0 1.0 0.16217 1.0 0.0 0.99125 
W22 0.02495 1.0 0.85538 N/A N/A N/A 1.0 0.21911 0.18336 N/A N/A N/A 
W23 1.0 1.0 0.0 N/A N/A N/A N/A N/A N/A N/A N/A N/A 
W24 0.02037 1.0 0.0 N/A N/A N/A N/A N/A N/A N/A N/A N/A 
W25 0.99949 1.0 0.19679 N/A N/A N/A N/A N/A N/A N/A N/A N/A 
W26 0.74203 1.0 1.0 N/A N/A N/A N/A N/A N/A N/A N/A N/A 
W27 0.99938 1.0 0.58594 N/A N/A N/A N/A N/A N/A N/A N/A N/A 
W28 0.99986 1.0 0.80334 N/A N/A N/A N/A N/A N/A N/A N/A N/A 
W29 0.55448 0.19703 1.0 N/A N/A N/A N/A N/A N/A N/A N/A N/A 
W30 0.99974 1.0 0.82548 N/A N/A N/A N/A N/A N/A N/A N/A N/A 
W31 0.99993 1.0 0.76806 N/A N/A N/A N/A N/A N/A N/A N/A N/A 
W32 0.99995 0.43120 0.36214 N/A N/A N/A N/A N/A N/A N/A N/A N/A 
W33 0.0 1.0 0.42506 N/A N/A N/A N/A N/A N/A N/A N/A N/A 
W34 0.0 0.04693 0.05681 N/A N/A N/A N/A N/A N/A N/A N/A N/A 

 

Table 4. Comparison of fitness values and running times of hybrid algorithms 

 Dermatology Dataset Diabetes Dataset Parkinson’s Dataset Thyroid Dataset 
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 H-CSA H-HHO H-TSA H-CSA H-HHO H-TSA H-CSA H-HHO H-TSA H-CSA H-HHO H-TSA 

Best Fitness 96.2616 97.1962 95.3271 73.4782 73.4782 73.0434 79.3103 79.3103 81.0344 96.2962 96.9907 90.3703 

Worst Fitness 93.4579 93.4579 93.4579 69.5652 69.5652 69.5652 67.2413 70.6896 70.6896 86.2962 94.9537 87.3611 

Average Fitness 95.9532 95.0934 94.4859 71.4565 71.5217 71.6086 72.5000 74.3965 77.3275 90.3842 95.5671 88.0092 

Standard Deviation 1.0677 1.0879 0.7365 1.2238 1.2418 0.8707 3.6883 2.3913 3.0266 3.9746 0.5241 1.0684 

Mean Runtime(ms) 1.6550 3.0765 11.8207 1.0888 1.9590 7.3823 0.4759 0.8472 3.2175 12.4584 22.1137 87.0473 

 
Table 5. Fitness values and runtime scores of the K-Means Algorithm for medical data sets 

 Dermatology Dataset Diabetes Dataset Parkinson’s Dataset Thyroid Dataset 
Best Fitness 0.051248 0.040272 0.037009 0.022738 
Mean Runtime (ms) 44.8598% 61.7391% 68.9655% 43.4259% 

 

Table 6. Performance results of hybrid algorithms and K-Means algorithm for Dermatology dataset (Acc:Accuracy, Rcl:Recall, Spc:Specificity, Pre:Precision, F1s:F1-Score) 

 
H-CSA 
Train Score: 99.6015% 
Test Score:   96.2616% 

H-HHO 
Train Score: 98.8047% 
Test Score:   97.1962% 

H-TSA 
Train Score: 100.0% 
Test Score:   95.3271% 

 
K-Means Algorithm 
Train Score: 45.0199% 
Test Score:   44.8598% 
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Acc(%) 1.0 0.9626 1.0 0.9626 1.0 1.0 1.0 0.9813 0.9906 0.9719 1.0 1.0 1.0 0.9532 1.0 0.9532 1.0 1.0 0.8411 0.7102 0.6635 0.9158 0.9158 0.8504 

Rcl (%) 1.0 0.8500 1.0 0.9090 1.0 1.0 1.0 0.9500 0.9545 0.9090 1.0 1.0 1.0 0.8000 1.0 0.9090 1.0 1.0 0.4687 0.2500 0.5454 0.2727 0.3076 1.0 

Spc (%) 1.0 0.9885 1.0 0.9687 1.0 1.0 1.0 0.9885 1.0 0.9791 1.0 1.0 1.0 0.9885 1.0 0.9583 1.0 1.0 1.0 0.8160 0.6941 0.9895 1.0 0.8367 

Pre(%) 1.0 0.9444 1.0 0.7692 1.0 1.0 1.0 0.9500 1.0 0.8333 1.0 1.0 1.0 0.9411 1.0 0.7142 1.0 1.0 1.0 0.2380 0.3157 0.7500 1.0 0.3600 

F1s(%) 1.0 0.8947 1.0 0.8333 1.0 1.0 1.0 0.9500 0.9767 0.8695 1.0 1.0 1.0 0.8648 1.0 0.8000 1.0 1.0 0.6382 0.2439 0.400 0.4000 0.4705 0.5294 



2 

 Dörterler, Dumlu, Ozdemir & Temurtas Gazi Mühendislik Bilimleri Dergisi: 10(1), 2024  

PRINT ISSN: 2149-4916 E-ISSN: 2149-9373 © 2022 Gazi Akademik Yayıncılık  

The test dataset results for the dermatology classification of disease types were evaluated separately 
for each disease type. Algorithms that make more successful classification are shown in green for 
Psoriasis, blue for Seborrheic Dermatitis, red for Lichen Planus, purple for Pityriasis Rosea, orange for 
Chronic Dermatitis, and brown for Pityriasis Rubra Pilaris. The H-HHO algorithm was more successful 
than the H-CSA and H-TSA algorithms, with a 97% success rate for the Dermatology dataset. The H-
HHO algorithm has the highest accuracy rate in 5 disease types: Seborrheic Dermatitis, Psoriasis, 
Chronic Dermatitis, Pityriasis Rosea, and Pityriasis Rubra Pilaris. In Lichen Planus disease, it has a very 
high accuracy rate, with a value of 0.9719, close to 1. H-CSA and H-TSA algorithms have an accuracy 
score of 1 in diagnosing Lichen Planus disease. It has succeeded in diagnosing Psoriasis, pityriasis 
rubra, and chronic dermatitis diseases with an accuracy of 1.0 in all three algorithms. When the test 
metrics are evaluated, although the H-HHO algorithm finds relatively more successful scores in 6 
disease types than the H-CSA and H-TSA algorithms, the test metrics of all three optimization 
algorithms are high and can be used successfully to diagnose this disease. The test score of the K-Means 
algorithm was examined, and a low success rate of approximately 45% was found. The success rate 
increased significantly when the K-Means algorithm was used in a hybrid way with optimization 
algorithms. It was approximately 95% for all three optimization algorithms. In Figure 3, matrices of 
dermatology dataset confusion of the four algorithms are given. 

          

           

Figure 3. Confusion matrix results of hybrid algorithms and K-Means algorithm for Dermatology dataset 

Compared to the optimization algorithms, the disease classification performance of the K-Means 
algorithm is weak. Hybrid algorithms achieved high performance in classifying all disease types 
compared to K-Means. Diabetes test results are given in Table 7 as follows. Algorithms with more 
successful classifications are shown in bold. 

Table 7. Performance results of hybrid algorithms and K-Means algorithm for Diabetes dataset 
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Algorithm 

H-CSA 

Train Score: 81.7518% 

Test Score:  79.3103% 

H-HHO 

Train Score: 81.7518% 

Test Score: 79.3103% 

H-TSA 

Train Score: 81.7518% 

Test Score: 81.0344% 

K-Means Algorithm 

Train Score: 73.7226% 

Test Score: 68.9655% 

Accuracy (%) 0.7931 0.7931 0.8103 0.6896 

Recall (%) 1.0 0.8333 0.8333 0.6875 

Specificity (%) 0.7391 0.7826 0.8043 0.6904 

Precision (%) 0.5 0.5 0.5263 0.4583 

F1-Score (%) 0.6666 0.6250 0.6451 0.5500 

 

H-CSA and H-HHO algorithms achieved the same result in classifying diabetes disease and produced 
more successful results than H-TSA. The proposed H-CSA and H-HHO models correctly classified 
diabetes with approximately 74% accuracy. Compared to the other two optimization algorithms, the 
H-TSA algorithm is also classified with very close accuracy. Accordingly, the H-TSA model is also 
classified with approximately 73% accuracy. However, the H-CSA and H-HHO algorithms achieved 
higher performance than the H-TSA algorithm according to accuracy, specificity, precision, and F1-
score values. The hybrid algorithms performed about 20% more accomplished classifications than the 
K-Means algorithm. In Figure 4, confusion matrices taken using the diabetes dataset are shown. 

 
Figure 4. Confusion matrix results of hybrid algorithms and K-Means algorithm for Diabetes dataset 

Parkinson's Dataset test results are given in Table 8. Algorithms with more successful results are 
shown in bold. 

Table 8. Performance results of hybrid algorithms and K-Means algorithm for Parkinson’s dataset 
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Algorithm 

H-CSA 

Train Score: 81.7518% 

Test Score:  79.3103% 

H-HHO 

Train Score: 81.7518% 

Test Score: 79.3103% 

H-TSA 

Train Score: 81.7518% 

Test Score: 81.0344% 

K-Means Algorithm 

Train Score: 73.7226% 

Test Score: 68.9655% 

Accuracy (%) 0.7931 0.7931 0.8103 0.6896 

Recall (%) 1.0 0.8333 0.8333 0.6875 

Specificity (%) 0.7391 0.7826 0.8043 0.6904 

Precision (%) 0.5 0.5 0.5263 0.4583 

F1-Score (%) 0.6666 0.6250 0.6451 0.5500 

 

The H-TSA algorithm achieved the highest performance in the Parkinson's dataset, with an accuracy of 
about 81%. In addition, the H-TSA algorithm received the highest scores in the specificity and precision 
metrics. The H-TSA algorithm was followed by the H-CSA and H-HHO algorithms with a 79% accuracy 
score. According to the recall and F1-score metrics, the H-CSA algorithm is ahead of other algorithms. 
In summary, all three hybrid algorithms achieved a successful classification with scores close to each 
other. On the other hand, the K-Means algorithm lags far behind the hybrid algorithms, with an 
accuracy rate of about 68%. In Figure 5, confusion matrices obtained using the Parkinson's dataset are 
given. 

  

 

Figure 5. Confusion matrix results of hybrid algorithms and K-Means algorithm for Parkinson’s dataset 

In Table 9, error metrics results for the Thyroid dataset are shown. 

Table 9. Performance results of hybrid algorithms and K-Means algorithm for Thyroid dataset 
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Algorithm 

H-CSA 

Train Score: 96.9444% 

Test Score:   96.2962% 

H-HHO 

Train Score: 97.8373% 

Test Score:   96.9907% 

H-TSA 

Train Score: 92.0238% 

Test Score:   90.3703% 

K-Means Algorithm 

Train Score: 43.1151% 

Test Score:   43.4259% 

Status 

Not 

Hypert

hyroid 

Hyper 

Functio

n 

Subnor

mal 

Functio

n 

Not 

Hypert

hyroid 

Hyper 

Functio

n 

Subnorm

al 

Function 

Not 

Hypert

hyroid 

Hyper 

Functio

n 

Subnorm

al 

Function 

Not 

Hypert

hyroid 

Hyper 

Functio

n 

Subnorm

al 

Function 

Accuracy (%) 0.9847 0.9652 0.9759 0.9847 0.9722 0.9828 0.9847 0.9097 0.9129 0.9171 0.4986 0.4527 

Recall (%) 0.5423 0.8750 0.9803 0.5423 0.9732 0.9824 0.5423 0.3839 0.9436 0.3389 0.6160 0.4268 

Specificity (%) 0.9971 0.9702 0.9239 0.9971 0.9721 0.9883 0.9971 0.9384 0.5555 0.9333 0.4921 0.7543 

Precision (%) 0.8421 0.6163 0.9933 0.8421 0.6566 0.9989 0.8421 0.2544 0.9610 0.1250 0.0622 0.9528 

F1-Score (%) 0.6597 0.7232 0.9868 0.6597 0.7841 0.9906 0.6597 0.3060 0.9523 0.1826 0.1130 0.5895 

 

Types of thyroid disease were examined in the Not Hyperthyroid, Hyperfunction, and Subnormal 
Function categories. The successful algorithms were shown in green, blue, and red according to the 
diseases, respectively. H-CSA, H-HHO, and H-TSA algorithms produced the same value with 0.9847 
accuracy in classifying not-hyperthyroid disease. The H-HHO algorithm succeeded in diagnosing 
hyperfunction and Subnormal Function disease types. It achieved high success in all disease types with 
an accuracy rate exceeding 90% in all three algorithms. For the Thyroid dataset, the H-HHO algorithm 
with the highest scores in all measurement metrics is relatively more successful than the other two 
hybrid algorithms. When the H-HHO algorithm is compared with the K-Means algorithm, the accuracy 
of the H-HHO algorithm is about 7% more successful in classifying Hyperthyroid disease, 97% in 
classifying Hyper Function disease, and 117% in classifying Subnormal Function disease. In Figure 6, 
confusion matrices taken using the thyroid dataset are given. 
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Figure 6. Confusion matrix results of hybrid algorithms and K-Means algorithm for Thyroid dataset 

4. Conclusion and Discussion 
 
In the present study, we address the local optimum issue caused by randomly generated initial centroid 
values in the clustering process of the K-Means algorithm, as well as provide a solution to the challenges 
in handling large files. We enhance the clustering accuracy by utilizing a metaheuristic algorithm to 
determine the parameter values for disease diagnosis. In other words, the study aimed to achieve a 
more precise diagnosis by adjusting the significance level of highly influential parameters. In addition, 
it sought to prevent false diagnoses by reducing the weight of parameters with minimal impact on the 
disease diagnosis, with the goal of eliminating false diagnoses by minimizing the effect of irrelevant 
parameters. By optimizing the coefficients, we aimed to address the issue of the K-Means approach 
getting trapped in the local optimum and enhance the clustering technique's precision. 

The study utilized a hybridized framework that integrated the CSA, TSA, and HHO algorithms and the 
K-Means method. This approach successfully detected diseases using four distinct medical datasets: 
dermatology, diabetes, Parkinson's, and thyroid. Additionally, we statistically evaluated the 
performance measures of the three hybrid algorithms (H-CSA, H-HHO, and H-TSA) and the K-Means 
algorithm. Among the datasets and optimization algorithms we used in our H-HHO study, the H-HHO 
algorithm generally achieved higher performance than other algorithms in Diabetes, Dermatology, and 
Thyroid datasets. On the other hand, the H-CSA achieved the same success rate as H-HHO in the 
diabetes dataset, although H-HHO produced close results. On the other hand, the H-TSA achieved the 
highest performance only in the Parkinson's dataset compared to other algorithms. However, H-TSA, 
in other datasets, is in the last place. We found that the H-CSA algorithm is the fastest of all four data 
sets used for mean runtime. Despite this, we have concluded that all three algorithms are consistent by 
producing results that are similar to each other. 
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The suggested hybrid three metaheuristic algorithm in the Dermatology dataset was detected with 
100% success in Psoriasis, Pityriasis Rubra Pilaris, and Chronic Dermatitis disease types. In other 
disease types in this group (Lichen Planus, Seborrheic Dermatitis, and Pityriasis Rosea), the H-HHO 
algorithm has been the most successful in the Dermatology dataset, which has six disease types since 
it has the lowest error value. Test results with the K-Means algorithm demonstrated that the hybrid 
models were almost half as successful. The results of all three metaheuristic algorithms proposed in 
the diabetes dataset were determined with the lowest success rate (an average of 73%) compared to 
the results of other datasets. We predict that this situation is due to the structure of the dataset and the 
number of input parameters. The H-CSA and H-HHO algorithms produced the same detection value in 
this dataset and became equivalent algorithms. On the other hand, the K-Means algorithm achieved 
less success than about 20% of our suggested hybrid algorithms. In the Parkinson's dataset, the H-TSA 
algorithm, which had a low success rate in other datasets, was the algorithm that produced the most 
successful diagnosis result. The H-CSA and H-HHO algorithms detected the equal disease in this dataset. 
In addition, the K-Means algorithm has achieved less success than approximately 12% of the hybrid 
algorithms we recommend. 

The three metaheuristic algorithms proposed in detecting disease Not Hyperthyroid, the subcategory 
of thyroid disease, achieved the same result with a success rate of 98%. In diagnosing disease types of 
Hyper Function and Subnormal Function, the H-HHO algorithm achieved higher diagnostic success. 
Besides, the K-Means algorithm achieved half the diagnostic success of the algorithms we suggested in 
diseases Hyper Function and Subnormal Function, excluding disease Not Hyperthyroid. The presented 
study offers significant advantages such as test accuracy rate, staff workload, test costs, and waiting 
time for the test results detection of different types of diseases in medical datasets. In future research, 
new studies can be carried out using datasets of different diseases in the health field and different 
metaheuristic algorithms or deep learning methods. 
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