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Research Article

Abstract − We present a unified approach to calculating the zeros of the classical orthogo-
nal polynomials and discuss the electrostatic interpretation and its connection to the energy
minimization problem. This approach works for the generalized Bessel polynomials, including
the normalized reversed variant, as well as the Vieté–Pell and Vieté–Pell–Lucas polynomials.
We briefly discuss the electrostatic interpretation for each aforesaid case and some recent ad-
vances. We provide zeros and error estimates for various cases of the Jacobi, Hermite, and
Laguerre polynomials and offer a brief discussion of how the method was implemented sym-
bolically and numerically with Maple. In conclusion, we provide possible avenues for future
research.
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1. Introduction

The Jacobi, Hermite, and Laguerre polynomials are called classical orthogonal polynomials. They
have served as objects of study as early as the 19th century and found applications in physics and
approximation and number theory. For example, the Jacobi polynomials contain the Legendre poly-
nomials as a special case, the coefficients in the expansion of the gravitational potential associated to
a point mass [1]. The last two chapters of Szegö’s classic text [2] focus on applications to interpolation
and mechanical quadrature. More recently, the theory of orthogonal polynomials was used to present
a formulation of quantum mechanics [3]. The classical orthogonal polynomials may be characterized
as solutions to a Sturm–Liouville type equation of the form:

Q(x)y′′ + L(x)y′ + λy = 0

In the case of the Jacobi polynomials, Q(x) = 1−x2, L(x) = β−α−(α+β+2)x, and λ = n(n+α+β+1).
For the Hermite polynomials, Q(x) = 1, L(x) = −2x, and λ = 2n. For the generalized Laguerre
polynomials, Q(x) = x, L(x) = (α + 1 − x), and λ = n. In each case, the corresponding polynomial
solutions satisfy an orthogonality condition of the form∫ ∞

−∞
Pm(x)Pn(x)W (x)dx = 0, m ̸= n

1rmoussa@nsu.edu; 2jetipton@nsu.edu (Corresponding Author)
1,2Department of Mathematics, College of Science, Engineering, and Technology, Norfolk State University, Norfolk,
United States

https://dergipark.org.tr/en/pub/jnt
https://orcid.org/0009-0009-4936-8555
https://orcid.org/0000-0002-4291-5984
https://doi.org/10.53570/jnt.1350502


Journal of New Theory 45 (2023) 30-45 / A Unified Approach to Computing the Zeros of Orthogonal Polynomials 31

where for the Jacobi polynomials,

W (x) =

 (1 − x)α(1 + x)β, −1 ≤ x ≤ 1
0, |x| > 1

for the Hermite polynomials,
W (x) = e−x2

and for the generalized Laguerre polynomials,

W (x) =

 xαe−x, x ≥ 0
0, x < 0

Some topics of recent interest in the area of orthogonal polynomials include generalized Bessel poly-
nomials [4], Vieté–Pell–Lucas polynomials [5, 6], and quasi-orthogonal polynomials [7]. Dunster et
al. [4] study the reverse generalized Bessel polynomials by combining a qualitative analysis involving
Liouville–Green Stokes lines and anti-Stokes lines with a fixed point method to calculate their zeros.
Tasci and Yalcin [6] present some fundamental properties of Vieté–Pell and Vieté–Pell–Lucas polyno-
mials, such as their characteristic equations, Binet formulas, and generating functions. More recently,
Kuloğlu et al. [5] study a generalization of these polynomials, incomplete generalized Vieté–Pell and
Vieté–Pell–Lucas polynomials, presenting recurrence relations and their generating functions. The
well-known electrostatic interpretation is a central reason for continued interest in the zeros of classi-
cal and nonclassical orthogonal polynomials. Ismail [8,9] extensively researches this topic, including a
recent study on the general theory of quasi-orthogonal polynomials, which included an investigation
into an electrostatic equilibrium problem [7]. Another point of interest is that these zeros have been
used in quadrature rules [10–12].

The above treatment can be provided to both the (normalized reversed) generalized Bessel polynomials
and the Vieté–Pell and Vieté–Pell–Lucas polynomials. Take Q(x) = x2, L(x) = αx + β, and λ =
−n(n+α−1), for the generalized Bessel polynomials, while the normalized reverse Bessel polynomials
satisfy Q(x) = x, L(x) = −(2n − 2 + a + 2x), and λ = 2n (for more details, see [4, 13]). To provide
Vieté–Pell and Vieté–Pell–Lucas polynomials a similar treatment, one can exploit their relationship to
the Chebyshev polynomials to find that Q(x) = 4−x2, L(x) = −3x, and λ = n(n+1) for the Vieté–Pell
polynomials and Q(x) = 4 − x2, L(x) = −x, and λ = n2 for the Vieté–Pell–Lucas polynomials.

We present a unified method to calculate the zeros of a class of orthogonal polynomials, including
the classical orthogonal polynomials and generalized Bessel polynomials. We discuss the electrostatic
interpretation for several cases and the connection to the energy minimization problem. The method
in question differs from that used by Dunster et al. [4] and is more akin to an approach developed by
Pasquini [14–16] and more recently [17]. In Section 2, we present the details of the method. In Section
3, we discuss the electrostatic interpretation in the context of the energy minimization problem. We
briefly outline how to implement the method symbolically and numerically in Section 4. In Section 5,
we provide some examples. The paper concludes with possible avenues for future investigation.

2. Method

Given a polynomial y = cn

n∏
i=1

(x − xi), where cn, xi ∈ R, cn ̸= 0, and the xi are distinct,

y′

y
=

n∑
i=1

1
x − xi

(1)
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y′′

y
=

n∑
i=1

∑
j∈Ji

1
(x − xi)(x − xj) = 2

∑
i<j

1
(x − xi)(x − xj) (2)

and
ax2 + bx + c

(x − xi)(x − xj) = a + ax2
i + bxi + c

(xi − xj)(x − xi)
+

ax2
j + bj + c

(xj − xi)(x − xj) (3)

where Ji consists of all integers in [1, n] except i. Identities 1 and 2 follow from the product rule.
Identity 3 follows from partial fraction decomposition.

Lemma 2.1. From the above setting,

(µx + ν)y′

y
= µn +

n∑
i=1

ν + µxi

x − xi

and

(ax2 + bx + c)y′′

y
= a(n2 − n) + 2

∑
i ̸=j

ax2
i + bxi + c

(xi − xj)(x − xi)

Proof.
The first identity follows directly from Identity 1 and some long division. For the second identity,
combine Identities 2 and 3 and get the equality

(ax2 + bx + c)y′′

y
= 2

∑
i<j

[
a + ax2

i + bxi + c

(xi − xj)(x − xi)
+

ax2
j + bxj + c

(xj − xi)(x − xj)

]

There are n2−n
2 terms in the above summation. Thus, 2

∑
i<j

a = a(n2 − n). Observe that

∑
i<j

[
ax2

i + bxi + c

(xi − xj)(x − xi)
+

ax2
j + bxj + c

(xj − xi)(x − xj)

]
=

∑
i<j

ax2
i + bxi + c

(xi − xj)(x − xi)
+

∑
i<j

ax2
j + bxj + c

(xj − xi)(x − xj)

=
∑
i<j

ax2
i + bxi + c

(xi − xj)(x − xi)
+

∑
j<i

ax2
i + bxi + c

(xi − xj)(x − xi)

=
∑
i ̸=j

ax2
i + bxi + c

(xi − xj)(x − xi)

where the second to last equality follows from index swapping on the second summation. Putting the
above calculations together yields the desired result.

Proposition 2.2. Suppose y is a degree n polynomial solution to the differential equation

(ax2 + bx + c)y′′ + (µx + ν)y′ + κy = 0

If the zeros of y, x1, · · · , xn are distinct, then for each integer k ∈ [1, n],

2
∑
j∈Jk

ax2
k + bxk + c

xk − xj
+ ν + µxk = 0

Proof.
Divide by y and apply Lemma 1,
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a(n2 − n) + 2
∑
i̸=j

ax2
i + bxi + c

(xi − xj)(x − xi)
+ µn +

n∑
i=1

ν + µxi

x − xi
+ κ = 0 ⇔2

∑
i ̸=j

ax2
i + bxi + c

(xi − xj)(x − xi)
+

n∑
i=1

ν + µxi

x − xi
+ M = 0

⇔2(x − xk)
∑
i ̸=j

ax2
i + bxi + c

(xi − xj)(x − xi)

+ (x − xk)
n∑

i=1

ν + µxi

x − xi
+ (x − xk)M = 0

where M = κ + a(n2 − n) + µn and k is some integer in [1, n]. As x approaches xk, all terms will
approach zero except those for i = k. Taking this limit gives the desired result.

2.1. Jacobi Polynomials

For α, β > −1, the degree n Jacobi polynomial P
(α,β)
n (x) solves the differential equation

(1 − x2)y′′ + (β − α − (α + β + 2)x)y′ + n(n + α + β + 1)y = 0

Denote the n distinct zeros of P
(α,β)
n (x) by x1, · · · , xn. Let a = −1, b = 0, c = 1, µ = −(α + β + 2),

and ν = β − α. By Proposition 2.2, we see that the zeros must satisfy

2
∑
j∈Jk

−x2
k + 1

xk − xj
+ β − α − (α + β + 2)xk = 0 ⇔

1
2(α + 1)
xk − 1 +

1
2(β + 1)
xk + 1 +

∑
j∈Jk

1
xk − xj

= 0 (4)

The following theorem, which we have adapted from the Marsden and Hoffman classic [18], expresses
the well-known fact that a continuous real-valued function over a compact set must attain an absolute
maximum:

Theorem 2.3. [18] Suppose A ⊂ Rn and let f : A → R be continuous. If K ⊂ A is compact, then f

is bounded on K. Furthermore, there exists an x0 ∈ K such that f(x0) = sup f(A).

In what follows, consider the real-valued function

f(x⃗) =
n∏

k=1

[
(1 − xk)(α+1)/2(1 + xk)(β+1)/2

] ∏
i<j

(xj − xi)

defined over the set Dn = {x⃗ ∈ Rn : −1 < x1 < x2 < · · · < xn < 1}. Note that f is smooth over Dn

and continuous on Dn. Note that f vanishes on the boundary of Dn but is positive over Dn. Since f

must attain an absolute maximum in Dn, the previous observations show that this maximum occurs
in Dn and must be a critical point.

Lemma 2.4. A point x⃗ ∈ Dn is a critical point of f if and only if Expression 4 holds for k ∈
{1, 2, 3, · · · , n}.

Proof.
Consider instead

ln(f) =
n∑

k=1

[α + 1
2 ln(1 − xk) + β + 1

2 ln(1 + xk)
]

+
∑
i<j

ln(xj − xi)

we have that
∂ ln(f)

∂xk
= fxk

f
=

1
2(α + 1)
xk − 1 +

1
2(β + 1)
xk + 1 +

∑
j∈Jk

1
xk − xj

demonstrating the claim.

Lemma 2.5. The function ln(f) has only one critical point in Dn.
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Proof.
The claim holds if we can show that ln(f) is concave in Dn. This, in turn, will follow if we can show
that the Hessian of ln(f) is diagonally dominant and negative definite. To that extent, observe that

∂2 ln(f)
∂x2

k

=
−1

2(α + 1)
(xk − 1)2 −

1
2(β + 1)
(xk + 1)2 −

∑
j∈Jk

1
(xk − xj)2

and for i ̸= j that
∂2 ln(f)
∂xixj

= 1
(xi − xj)2

The Hessian is thus diagonally dominant and negative definite.

Example 2.6. To see the above results in action, set α = β = 0, giving the Legendre differential
equation:

(1 − x2)y′′ − 2xy′ + n(n + 1)y = 0

The general solution is
y = k1Pn(x) + k2Qn(x)

where
Pn(x) = 1

2nn!
dn

dxn
(x2 − 1)n

is the n-th Legendre polynomial and

Qn =


1
2 log 1+x

1−x , if n = 0

P1(x)Q0(x) − 1, if n = 1
2n−1

n Qn−1(x) − n−1
n Qn−2(x), if n ≥ 2

is the n-th Legendre function of the second kind [2]. For n = 2, the second Legendre polynomial
P2(x) = 3x2−1

2 solves the following differential equation:

(1 − x2)y′′ − 2xy′ + 6y = 0

The corresponding real-valued function on D2 is

f(x1, x2) = (x2 − x1)
√

(1 − x2
1)(1 − x2

2)

which attains a global maximum at x1 = −1/
√

3 and x2 = 1/
√

3. It is clear that P2(x1) = P2(x2) = 0.

2.2. Hermite Polynomials

The degree n Hermite polynomial Hn(x) solves the differential equation y′′ − 2xy
′ + 2ny = 0. Denote

the n distinct zeros of Hn(x) by x1, · · · , xn. Let a = b = ν = 0, c = 1, µ = −2, and κ = 2n. By
Proposition 2.2, we observe that the zeros must satisfy

2
∑
j∈Jk

1
xk − xj

− 2xk = 0 ⇔
∑
j∈Jk

1
xk − xj

− xk = 0 (5)

In what follows, consider the real-valued function

f(x⃗) =
∏
i<j

[
xj − xi

]
e− 1

2
∑n

k=1 x2
k

defined over the set Dn = {x⃗ ∈ Rn : −∞ < x1 < x2 < · · · < xn < ∞}. Note that f is smooth, posi-
tive and bounded over Dn but approaches 0 on the boundary. Thus, f must have a critical point in Dn.
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Lemma 2.7. A point x⃗ ∈ Dn is a critical point of f if and only if Expression 5 holds for k ∈
{1, 2, 3, · · · , n}.

Proof.
Consider instead

ln(f) =
∑
i<j

ln(xj − xi) − 1
2

n∑
k=1

x2
k

we have that
∂ ln(f)

∂xk
= fxk

f
=

∑
j∈Jk

1
xk − xj

− xk

demonstrating the claim.

Lemma 2.8. The function ln(f) has only one critical point in Dn.

Proof.
The claim holds if we can show that ln(f) is concave in Dn. This, in turn, will follow if we can show
that the Hessian of ln(f) is diagonally dominant and negative definite. To that extent, observe that

∂2 ln(f)
∂x2

k

= −
∑
j∈Jk

1
(xk − xj)2 − 1

and for i ̸= j that
∂2 ln(f)
∂xixj

= 1
(xi − xj)2

The Hessian is thus diagonally dominant and negative definite.

2.3. Laguerre Polynomials

The degree n generalized Laguerre polynomial L
(α)
n (x) solves the differential equation

xy′′ + (α + 1 − x)y′ + ny = 0

Denote the n distinct zeros of L
(α)
n (x) by x1, · · · , xn. Let a = c = 0, b = 1, µ = −1, ν = α + 1, and

κ = n. By Proposition 2.2, we see that the zeros must satisfy

2
∑
j∈Jk

xk

xk − xj
+ α + 1 − xk = 0 ⇔

∑
j∈Jk

1
xk − xj

+
1
2(α + 1)

xk
− 1

2 = 0 (6)

In what follows, consider the real-valued function

f(x⃗) =
∏
i<j

[
xj − xi

] n∏
k=1

[
x

(α+1)/2
k

]
e− 1

2
∑n

k=1 xk

defined over the set Dn = {x⃗ ∈ Rn : 0 < x1 < x2 < · · · < xn < ∞}. Note that f is smooth, positive
and bounded over Dn but approaches 0 on the boundary. Thus, f must have a critical point in Dn.

Lemma 2.9. A point x⃗ ∈ Dn is a critical point of f if and only if Expression 6 holds for k ∈
{1, 2, 3, · · · , n}.

Proof.
Consider instead

ln(f) =
∑
i<j

ln(xj − xi) +
n∑

k=1

[α + 1
2 ln xk

]
− 1

2

n∑
k=1

xk
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we have that
∂ ln(f)

∂xk
= fxk

f
=

∑
j∈Jk

1
xk − xj

+
1
2(α + 1)

xk
− 1

2

demonstrating the claim.

Lemma 2.10. The function ln(f) has only one critical point in Dn.

Proof.
The claim holds if we can show that ln(f) is concave in Dn. This, in turn, will follow if we can show
that the Hessian of ln(f) is diagonally dominant and negative definite. To that extent, observe that

∂2 ln(f)
∂x2

k

= −
∑
j∈Jk

1
(xk − xj)2 −

1
2(α + 1)

x2
k

< 0

and for i ̸= j that
∂2 ln(f)
∂xixj

= 1
(xi − xj)2

The Hessian is thus diagonally dominant and negative definite.

2.4. Normalized Reversed Generalized Bessel Polynomials

The normalized reversed generalized Bessel polynomials (RGBP)

θ̂n(z; a) = θn

((2n + a − 2)z
2 ; a

)
satisfy the differential equation

2z

2n + a − 2 θ̂′′
n − (2z + 2)θ̂′

n + 2nθ̂n = 0

Applying Proposition 2.2, ∑
j∈Jk

1
zk − zj

+ Mn,a

zk
+ Mn,a = 0 (7)

where Mn,a = 2 − 2n − a

2 , which correspond to the critical points of the function

f(z⃗) =
∏
i<j

(zj − zi)
n∏

i=1

(
z

Mn,a

i

)
eMn,a

∑
zi

with domain Dn = {z⃗ : zi ̸= zj if i ̸= j}.

Lemma 2.11. A point z⃗ ∈ Dn is a critical point of f if and only if Equation 7 holds for k ∈
{1, 2, 3, · · · , n}.

Proof.
Consider instead

ln(f) =
∑
i<j

ln(zj − zi) + Mn,a

n∑
i=1

ln zi − Mn,a

n∑
i=1

zk

we have that
∂ ln(f)

∂zk
= fzk

f
=

∑
j∈Jk

1
zk − zj

+ Mn,a

zk
− Mn,a

demonstrating the claim.

Lemma 2.12. The function ln(f) has only one critical point in Dn.
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Proof.
The claim holds if we can show that ln(f) is concave in Dn. This, in turn, will follow if we can show
that the Hessian of ln(f) is diagonally dominant and negative definite. To that extent, observe that

∂2 ln(f)
∂z2

k

= −
∑
j∈Jk

1
(zk − zj)2 − Mn,a

z2
k

and for i ̸= j that
∂2 ln(f)

∂zizj
= 1

(zi − zj)2

The Hessian is thus diagonally dominant and negative definite.

2.5. Generalized Bessel Polynomials

In the case of generalized Beesel Polynomials (GBP), which satisfies the differential equation x2y′′ +
(αx + β)y′ + n(n + α − 1)y = 0, we can take a = 1, b = c = 0, µ = α, ν = β, and κ = n(n + α − 1), to
get that the zeros of the nth GBP satisfy∑

j∈Jk

1
xk − xj

+
1
2β

x2
k

+
1
2α

xk
= 0 (8)

These correspond to the critical points of the function

f(x⃗) =
∏
i<j

(xj − xi)
n∏

i=1

(
x

α/2
i

)
e− 1

2 β
∑

1/xi

with domain Dn = {x⃗ : xi ̸= xj if i ̸= j}.

Lemma 2.13. A point x⃗ ∈ Dn is a critical point of f if and only if Equation 8 holds for k ∈
{1, 2, 3, · · · , n}.

Proof.
Consider instead

ln(f) =
∑
i<j

ln(xj − xi) + α

2

n∑
i=1

ln xi − β

2

n∑
i=1

1
xi

we have that
∂ ln(f)

∂xk
= fxk

f
=

∑
j∈Jk

1
xk − xj

+
1
2α

xk
+

1
2β

x2
k

demonstrating the claim.

Lemma 2.14. The function ln(f) has only one critical point in Dn.

Proof.
The claim holds if we can show that ln(f) is concave in Dn. This, in turn, will follow if we can show
that the Hessian of ln(f) is diagonally dominant and negative definite. To that extent, observe that

∂2 ln(f)
∂x2

k

= −
∑
j∈Jk

1
(xk − xj)2 −

1
2α

x2
k

−
1
2β

x2
k

and for i ̸= j that
∂2 ln(f)
∂xixj

= −
∑
j∈Jk

1
(xi − xj)2

The Hessian is thus diagonally dominant and negative definite.
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2.6. Vieté–Pell and Vieté–Pell–Lucas Polynomials

Vieté–Pell polynomials satisfy the differential equation (4 − x2)y′′ − 3xy′ + n(n + 1)y = 0 and Vieté–
Pell–Lucas polynomials satisfy the differential equation (4 − x2)y′′ − xy′ + n2y = 0 where n is the
degree of the polynomial. Applying Proposition 2.2 in each case, we find that the zeros satisfy∑

j∈Jk

1
xk − xj

+
3
4

xk + 2 +
3
4

xk − 2 = 0 (9)

and ∑
j∈Jk

1
xk − xj

+
1
2

xk + 2 +
1
2

xk − 2 = 0 (10)

respectively. Consider the functions

f(x⃗) =
n∏

k=1

[
(2 − xk)

3
4 (2 + xk)

3
4
] ∏

i<j

(xj − xi)

and
g(x⃗) =

n∏
k=1

[
(2 − xk)

1
2 (2 + xk)

1
2
] ∏

i<j

(xj − xi)

Proceeding as in the Jacobi case, one finds that:

Lemma 2.15. A point x⃗ ∈ Dn is a critical point of f (resp. g) if and only if Equation 9 (resp.
Equation 10) holds for k ∈ {1, 2, · · · , n}.

Proof.
Consider instead

ln(f) =
∑
i<j

ln(xj − xi) + 3
4

n∑
i=1

ln(2 − xi) + 3
4

n∑
i=1

ln(2 + xi)

we have that
∂ ln(f)

∂xk
= fxk

f
=

∑
j∈Jk

1
xk − xj

+
3
4

xk − 2 +
3
4

xk + 2

demonstrating the claim for f . For g, replace 3
4 with 1

2 .

Lemma 2.16. The functions ln(f) and ln(g) have only one critical point in Dn.

Proof.
The claim holds if we can show that both ln(f) and ln(g) are concave in Dn. This, in turn, will follow
if we can show that their Hessians are diagonally dominant and negative definite. To that extent,
observe that

∂2 ln(f)
∂x2

k

= −
∑
j∈Jk

1
(xk − xj)2 −

3
4

(xk − 2)2 −
3
4

(xk + 2)2

and for i ̸= j that
∂2 ln(f)
∂xixj

= −
∑
j∈Jk

1
(xi − xj)2

For g, replace 3
4 with 1

2 . In either case, the Hessian is thus diagonally dominant and negative definite.
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3. Electrostatic Interpretation and the Connection to the Energy Minimiza-
tion Problem

As detailed by Szego in [2], the zeros of the classical orthogonal polynomials may be interpreted as
the equilibrium position of an electrostatic problem. Stieltjes derived this connection in the case of
the Jacobi polynomials in 1885. In this case, the problem is to find the position of n ≥ 2 unit masses
in the interval [−1, 1] given two fixed positive masses α+1

2 and β+1
2 at −1 and 1, respectively, for

which electrostatic equilibrium is attained. The problem is solved by locating the zeros of the Jacobi
polynomial P

(α,β)
n (x) [2]. Stieltjes provided a similar interpretation to the other classical orthogonal

polynomials. The unit “masses” lie in the interval (0, ∞) for the Laguerre polynomials with the
restriction that the arithmetic mean of the unit charges is uniformly bounded and (−∞, ∞) for the
Hermite polynomials with the restriction that the square arithmetic mean of the unit charges is
uniformly bounded [2, 19].

A similar electrostatic interpretation may be presented for Vieté–Pell and Vieté–Pell–Lucas polyno-
mials; the unit masses lie in the interval [−2, 2], where we have positive mass 3

4 at both −2 and
2 in Vieté–Pell case and positive mass 1

2 at both −2 and 2 in Vieté–Pell–Lucas case. To the best
of our knowledge, an electrostatic interpretation for the normalized RGBP and the GBP remains
open. Interest in this connection has been steadily growing; see Marcellán, Mart́ınez-Finkelshtein and
Mart́ınez-González’s excellent survey [19] for details. As noted in [19], this is due in part to advances
in the theory of logarithmic potentials as well as special functions from other areas of study, such
as physics, combinatorics and number theory. Marcellán et al. [19] consider the following natural
questions:

i. Can the electrostatic interpretation be generalized to other families of polynomials?

ii. Is it necessary to consider the global minimum of the energy? What about other equilibria?

In regards to the first question, it is noted in [19] that Ismail [8,9] has provided an electrostatic model
for general orthogonal polynomials, in which the external field is given as the sum of a long-range
and short-range potential. For example, in [8], an explicit formula is given for the total energy of the
model at the equilibrium position, and this energy is shown to be minimum. In the case of Freud
weights, the total energy is shown to be asymptotic to −n2

α ln n.

The authors [19] consider a more general case where the weight function satisfies the Pearson equation,
particularly with the weight function corresponding to the Freud-type polynomials. It is noted that, in
this case, the zeros of the Freud-type polynomials provide a critical configuration for the total energy.
Still, it is an open problem whether the zeros are in a stable equilibrium. Regarding the second
question, it is posited whether other types of equilibria are preserved in this case. The authors [19]
present a max-min characterization of the zeros of the Jacobi polynomials, which is amenable to
complex zeros of the family when the parameters fall out of the “classical” bounds. Loosely speaking,
the characterization shows that of all possible compact continua from -1 to 1 (within the complex
plane), the energy (minimized over n points for a given compact continua) is maximized over all
compact continua when the n points are the zeros of the Jacobi polynomial.

More recently, regarding the first question above, Ismail and Wang developed an electrostatic inter-
pretation of quasi-orthogonal polynomials in [7]. The main result is analogous to one given in [8]. In
brief, it says that the equilibrium position of n unit charges in the presence of a given external field is
uniquely attained at the zeros of the associated quasi-orthogonal polynomials.
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4. Implementation

The above method was implemented using an amalgamation of symbolic and numerical approaches
in Maple 2018. As an illustration, we present the steps taken to calculate the zeros of the Laguerre
polynomial L

(0)
9 (x).

Step 1. We implement the initial guess procedure using the asymptotic formula in the Digital Library
of Mathematical Functions section 18.16. [20]. The input for the initial guess procedure is α and n

corresponding to the desired Laguerre polynomial L
(α)
n (x).

Step 2. We define the nonlinear system Expression 6, corresponding to the Laguerre polynomials.

Step 3. We calculate the Jacobian matrix using the built-in Maple function “Jacobian”.

Step 4. For instructive purposes, we perform one iteration of Newton’s method before writing a loop
to iterate it ten times. We evaluate L

(0)
9 (x) at the approximated zeros as a quick check for accuracy.

Maple produces the zeros after each iteration.

5. Illustrative Examples

In the following Tables 1-7, zeros approximations are listed for a variety of classical orthogonal poly-
nomials of a specified degree n. The Jacobi column corresponds to the general Jacobi polynomial
with α = 1

4 and β = 1
8 . The Chebyshev column refers to the Chebyshev polynomials of the 1st kind,

which correspond to Jacobi polynomials with α = β = −1
2 . The Gegenbauer column corresponds to

Jacobi polynomials with α = β = 1
4 . The Legendre column corresponds to Jacobi polynomials with

α = β = 0. The Laguerre column corresponds to the classical Laguerre polynomials. The General
Laguerre column corresponds to Laguerre polynomials with α = 1.

These results are obtained by using a straightforward implementation of Newton’s method in the
following way: Let n be a fixed natural number and consider the vector x⃗ = (x1, x2, · · · , xn) which
contains the zeros of the orthogonal polynomial of degree n and f⃗ = (f1, f2, · · · , fn) be a vector-
valued function. With this notation, we can write the system of equations as f⃗(x⃗) = 0⃗. The nonlinear
equation above is represented by Expression 4 in the case of the Jacobi polynomials, by Expression 5
in the case of the generalized Laguerre polynomials and by Expression 6 in the case of the Hermite
polynomials. As for the initial guess, we relied on formulas given in Section 18.16 of [20].

Since the exact roots are known for the Chebyshev case, one may calculate the exact error. Thus, the
same can be said for Vieté–Pell and Vieté–Pell–Lucas polynomials. Using the infinity norm we have
for n = 20 the exact error is 6.749 × 10−17, while for n = 25 the exact error is 6.297 × 10−17. We
provide error estimates in each case using the infinity norm.

Table 1. Error estimates for n = 20
Polynomial Error Estimate

Legendre 1.6064700823479085388 × 10−16

General Jacobi α = 1/4, β = 1/8 2.0443258006786251481 × 10−16

Gegenbauer 2.4276213934271014550 × 10−16

Chebyshev 1st Kind 2.775557561562891350 × 10−17

Classical Laguerre 7.0122389569333584353 × 10−15

General Laguerre α = 1 1.0850726264919494635 × 10−14

Hermite 1.2572574676652352260 × 10−16
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Table 2. Error estimates for n = 25
Polynomial Error Estimate

Legendre 2.1554887097997079110 × 10−16

General Jacobi α = 1/4, β = 1/8 1.1129640277756032144 × 10−16

Gegenbauer 1.4290762156055028002 × 10−16

Chebyshev 1st Kind 1.3834655062070259971 × 10−16

Classical Laguerre 8.9260826473499668326 × 10−15

General Laguerre α = 1 2.4825341532472729961 × 10−16

Hermite 4.7043788112778503159 × 10−16

Table 3. Newton’s Method results for n = 20 and 30 iterations

Jacobi Chebyshev Gegenbauer

-0.992143445584654 -0.996917333733128 -0.991034230192877

-0.962098494639669 -0.972369920397677 -0.959770495283156

-0.90991914333223 -0.923879532511287 -0.906555627647643

-0.83679724371729 -0.852640164354092 -0.832601034386276

-0.744414638606914 -0.760405965600031 -0.739597864903566

-0.634897399553407 -0.649448048330184 -0.629673706991205

-0.510766182525352 -0.522498564715949 -0.505343420884813

-0.374878073128636 -0.382683432365090 -0.369451505240359

-0.230360787671044 -0.233445363855905 -0.22510699141448

-0.080540669675107 -0.0784590957278449 -0.0756123031135758

0.071133877871622 0.078459095727845 0.0756123031135758

0.221171767113119 0.233445363855905 0.22510699141448

0.366119581638305 0.382683432365090 0.369451505240359

0.502641066039214 0.522498564715949 0.505343420884813

0.627593920566186 0.649448048330184 0.629673706991205

0.738102136937797 0.760405965600031 0.739597864903566

0.831622222573934 0.852640164354092 0.832601034386276

0.906001841773546 0.923879532511287 0.906555627647643

0.959529848266796 0.972369920397677 0.959770495283156

0.99098031100982 0.996917333733128 0.991034230192877
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Table 4. Newton’s Method results for n = 20 and 30 iterations
Legendre Laguerre General Laguerre

-0.993128599185095 0.0705398896919887 0.174906752386615
-0.963971927277914 0.372126818001611 0.587303080638269
-0.912234428251326 0.916582102483273 1.23822510183424
-0.839116971822219 1.70730653102834 2.13139626007693
-0.746331906460151 2.74919925530943 3.27213313351699
-0.636053680726515 4.04892531385089 4.66749446588836
-0.510867001950827 5.61517497086162 6.32653619767384
-0.37370608871542 7.45901745367106 8.26067095201373
-0.227785851141645 9.5943928695811 10.4841673812082
-0.0765265211334974 12.0388025469643 13.0148487721526
0.0765265211334973 14.8142934426307 15.8750870127848
0.227785851141645 17.9488955205194 19.0932519076063
0.373706088715419 21.478788240285 22.7058938881731
0.510867001950827 25.4517027931869 26.7611702293794
0.636053680726515 29.9325546317006 31.3245161370075
0.746331906460151 35.013434240479 36.4887033461491
0.839116971822219 40.8330570567286 42.3934227457745
0.912234428251326 47.6199940473465 49.2688138498685
0.963971927277914 55.8107957500639 57.5544209713148
0.993128599185095 66.5244165256157 68.3770378145523

Table 5. Newton’s Method results for n = 25 and 30 iterations
Jacobi Chebyshev Gegenbauer

-0.994901665878463 -0.998026728428272 -0.994174685362604
-0.975360959985654 -0.982287250728689 -0.973813483540093
-0.941256322689963 -0.951056516295154 -0.938979875687483
-0.893091307988287 -0.90482705246602 -0.890187770804335
-0.831584665110590 -0.844327925502015 -0.828161987824607
-0.757655035013272 -0.770513242775789 -0.75382448992158
-0.672406769138576 -0.684547105928689 -0.668280361715944
-0.577113343604359 -0.587785252292473 -0.57280131807384
-0.473198311079934 -0.481753674101715 -0.468806780981076
-0.362214026547642 -0.368124552684678 -0.357842771895352
-0.245818453819013 -0.248689887164855 -0.241558925568652
-0.125750396162197 -0.125333233564304 -0.121683964806954
-0.0038035200079399 8.36062906219094E-18 2.87922513006768E-17
0.118200440621912 0.125333233564304 0.121683964806954
0.238438898854630 0.248689887164855 0.241558925568652
0.355115642426439 0.368124552684678 0.357842771895352
0.466487667212620 0.481753674101715 0.468806780981076
0.570891216112889 0.587785252292473 0.57280131807384
0.666766634609609 0.684547105928689 0.668280361715944
0.752681672462637 0.770513242775789 0.75382448992158
0.827352885709386 0.844327925502015 0.828161987824607
0.889664827092574 0.904827052466020 0.890187770804335
0.938686772318027 0.951056516295154 0.938979875687483
0.973686941970036 0.982287250728689 0.973813483540093
0.994146438181037 0.998026728428272 0.994174685362604
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Table 6. Newton’s Method results for n = 25 and 30 iterations
Legendre Laguerre General Laguerre

-0.995556969790498 0.0567047754527055 0.141236726258096

-0.976663921459518 0.299010898586989 0.473974537884425

-0.942974571228974 0.735909555435016 0.998383405621479

-0.894991997878275 1.36918311603519 1.71638168719236

-0.833442628760834 2.20132605372147 2.63069311458477

-0.759259263037358 3.23567580355804 3.7448777262027

-0.673566368473468 4.47649661507383 5.06340831233858

-0.577662930241223 5.92908376270045 6.59177560687321

-0.473002731445715 7.59989930995675 8.33662635980513

-0.361172305809388 9.49674922093243 10.3059430256137

-0.243866883720988 11.6290149117788 12.5092780113164

-0.12286469261071 14.0079579765451 14.9580612826525

-3.94351965660777E-18 16.6471255972888 17.6660089928416

0.12286469261071 19.5628980114691 20.6496747456588

0.243866883720988 22.775241986835 23.9292078044927

0.361172305809388 26.3087723909689 27.5294209021358

0.473002731445715 30.1942911633161 31.481337894211

0.577662930241223 34.471097571922 35.8245167628475

0.673566368473468 39.1906088039374 40.61069001566

0.759259263037358 44.422349336162 45.9097868582297

0.833442628760834 50.2645749938335 51.8206158754045

0.894991997878275 56.8649671739402 58.4916748142772

0.942974571228974 64.4666706159541 66.1674493598106

0.976663921459518 73.5342347921002 75.315081358106

0.995556969790498 85.260155562496 87.1338948199813

Table 7. Newton’s Method results for n = 12 and 30 iterations
Hermite

0.440147298645308

0.881982756213821

1.32728070207308

1.77800112433715

2.23642013026728

2.70532023717303

3.1882949244251

3.69028287699836

4.21860944438656

4.78532036735222

5.41363635528003

6.16427243405245
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6. Conclusion

We have presented a unified approach for calculating the zeros of the classical orthogonal polynomials
and provided examples involving the Jacobi polynomials, including Chebyshev and Gengebauer, the
General Laguerre polynomials, including Legendre and Laguerre and the Hermite polynomials. We are
working on a similar approach that works for more general classes of polynomials, the Heine–Stieltjes
polynomials. The difficulty lies in choosing a decent guess for the zeros of the given Heine–Stieltjes
polynomial. We have had some success using the electrostatic interpretation for the initial guess, but
more work is needed. Other future studies include expanding the family of orthogonal polynomials to
which this method applies, expanding the electrostatic interpretation to other families of polynomials,
such as the generalized Bessel polynomials, and exploring connections between orthogonal polynomials
and Lucas polynomial identities, such as was done in [21].
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[5] B. Kuloğlu, E. Özkan, A. G. Shannon, Incomplete Generalized Vieta–Pell and Vieta–Pell–Lucas
Polynomials, Notes on Number Theory and Discrete Mathematics 27 (4) (2021) 245–256.

[6] D. Tasci, F. Yalcin, Vieta-Pell and Vieta-Pell-Lucas Polynomials, Advances in Difference Equa-
tions 2013 (2013) Article Number 224 8 pages.

[7] M. E. H. Ismail, X.-S. Wang, On Quasi-Orthogonal Polynomials: Their Differential Equations,
Discriminants and Electrostatics, Journal of Mathematical Analysis and Applications 474 (2)
(2019) 1178–1197.

[8] M. E. H. Ismail, An Electrostatics Model for Zeros of General Orthogonal Polynomials, Pacific
Journal of Mathematics 193 (2) (2000) 355–369.

[9] M. E. H. Ismail, More on Electrostatic Models for Zeros of Orthagonal Polynomials, Numerical
Functional Analysis and Optimization 21 (1) (2007) 191–204.



Journal of New Theory 45 (2023) 30-45 / A Unified Approach to Computing the Zeros of Orthogonal Polynomials 45

[10] A. N. Lowan, N. Davids, A. Levenson., Table of the Zeros of the Legendre Polynomials of Order
1-16 and the Weight Coefficients for Gauss’ Mechanical Quadrature Formula, Bulletin of the
American Mathematical Society 48 (10) (1942) 739–743.

[11] R. E. Greenwood, J. J. Miller, Zeros of the Hermite Polynomials and Weights for Gauss’ Me-
chanical Quadrature Formula, Bulletin of the American Mathematical Society 54 (1948) 765–769.

[12] H. E. Salzer, R. Zucker, Table of the Zeros and Weight Factors of the First Fifteen Laguerre
Polynomials, Bulletin of the American Mathematical Society 55 (10) (1949) 1004–1012.

[13] H. L. Krall, O. Frink, A New Class of Orthogonal Polynomials: The Bessel Polynomials, Tran-
sactions of the American Mathematical Society 65 (1) (1949) 100–115.

[14] L. Pasquini, Polynomial Solutions to Second Order Linear Homogeneous Ordinary Differential
Equations. Properties and Approximation, Calcolo 26 (1989) 167–183.

[15] L. Pasquini, On the Computation of the Zeros of the Bessel Polynomials, in: R. V. M. Zahar
(Ed.), Approximation and Computation: A Festschrift in Honor of Walter Gautschi, Vol. 119 of
ISNM International Series of Numerical Mathematics, Birkhäuser, Boston, 1994, pp. 511–534.
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