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Abstract. Many generalizations have been made for Fibonacci and Lucas

number sequences and many properties have been found about these sequences.
In the article [13], the authors obtained many features of these sequences with

the Cholesky decomposition algorithm, using the 2 x 2 matrix belonging to a
generalization of the Fibonacci sequence. In this study, it is shown that many

different features can be found by using a 2 x 2 matrix belonging to the Lucas

number sequence with the same method.

1. Introduction

Most identities for the Fibonacci number sequence Fn and the Lucas number se-
quence Ln are obtained by changing the recursion relations and/or initial conditions
of the sequences and making sequence generalizations ( [2]- [5], [9]- [15], [17], [19]-
[27]).

The Fibonacci numbers Fn are defined by a quadratic recurrence relation:

Fn+2 = Fn+1 + Fn, n ≥ 0 (1)

with initial conditions F0 = 0 and F1 = 1, see [15]. Binet formula for the numbers
Fn is

Fn =
αn − βn

α− β
(2)

where α = 1+
√
5

2 and β = 1−
√
5

2 . From here, it can be noted that and

αβ = −1,

α+ β = 1,

α− β =
√
5.
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We also recall [15] that

Fn =

⌊(n−1)/2⌋∑
j=0

(
n− j − 1

j

)
,

where ⌊·⌋ denotes the greatest integer function. Using the Binet formula, we can
write the following equation for negative indices:

F−n := (−1)n+1Fn.

Analogously, the numbers Ln are defined by a quadratic recurrence relation:

Ln+2 = Ln+1 + Ln, n ≥ 0

with initial conditions L0 = 2, L1 = 1, see [17]. Binet formula for the numbers Ln

is
Ln = αn + βn. (3)

Also the Fn and Ln numbers satisfied following identity

Ln = Fn−1 + Fn+1. (4)

Morever, from above equalities we have that

L−n = (−1)nLn.

In [8] and [28], the Cholesky decomposition (Cholesky factorization) is defined
as: If A ∈ Rn

n is symmetric positive definite matrix, then there exists a unique
lower triangular matrix G ∈ Rn

n with positive diagonal entries such that A = GGT .
Here GT is the transpose matrix of the G. The calculation of G and GT matrices
is called the Cholesky algorithm.

Matrix method is also very useful method to obtain the properties of Fibonacci
and Lucas sequences, see [6], [13], [16], [18], [22], [24], [26]. In particular, Horadam
and Flipponi obtained some new features for Fibonacci and Lucas sequences by
using the matrix Mk which is created by the Cholesky matrix decomposition algo-
rithm [13]. While doing this work they used the k-Fibonacci generalized sequence
and the M matrix belonging to this sequence.

We observed that the application of the same method for the M matrix con-
stituting the Lucas sequence creates different sequence properties. In this study,
the matrix functions of the xMn

k matrix sequence, which was created by using the

M =

[
3 1
1 2

]
matrix that produced the Lucas sequence, were examined and new

results were obtained.

2. Main Results

From [16] let’s consider the 2× 2 symmetric matrix

M =

[
3 1
1 2

]
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which has eigenvalues α+ 2 and β + 2. For a positive integer n,

Mn =


5

n−1
2

[
Ln+1 Ln

Ln Ln−1

]
, if n is odd,

5
n
2

[
Fn+1 Fn

Fn Fn−1

]
, if n is even,

(5)

see [16]. Now let us define the matrix sequence Mk in the following steps.
Let M1 := M , therefore

M1 = M =

[
3 1
1 2

]
and Cholesky decomposition of M1 is obtained as

M1 = T1T
T

1 =

[
a1 0
c1 b1

] [
a1 c1
0 b1

]
,

where T1 is a lower triangular matrix and T
T

1 is the transpose matrix of T1. So TT
1

is an upper triangular matrix. The a1, b1 and c1 components of T1 easily obtained
with the matrix equation above. In fact, the system

a21 = 3,

a1c1 = 1,

b21 + c21 = 2

can be written, whose solution is

a1 = ±
√
3

c1 =
1

a1

b1 = ±
√
2− c21

Any of the four solutions obtained creates a Cholesky decomposition of the sym-
metric matrix M1.

We also know that the product of a lower triangular matrix and an upper trian-
gular matrix is generally not commutative, so it is known that the inverse product

T
T

1 T1 gives a symmetric matrix M2 similar to but different from M1 [7]. If we

consider the b1 =
√

5
3 solution, we get

M2 =
1

3

[
10

√
5√

5 5

]
,

when b1 = −
√

5
3 the off-diagonal components of M2 are negative.
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In contrast, M2 can be decomposed similarly so that

M2 = T2T
T

2 =

[
a2 0
c2 b2

] [
a2 c2
0 b2

]
,

where

a2 = ±
√

10

3
,

c2 =

√
5

a2
= ±

√
6

6
,

b2 = ±
√
6

2
.

The inverse product T
T

2 T2 gave rise to a matrix M3 with the sign of the off-diagonal
entries based on b2.

If we repeat such a procedure indefinitely, we get the sequence (Mk)
∞
1 of the 2×

2 symmetric matrices. Henceforth Mk be called the k-order Lucas-type Cholesky
algorithm matrix.

Due to the unclear sign of Cholesky decomposition, the above matrix sequence
is not the only possible result of applications of the Cholesky algorithm to M .
However, other possible outcomes may differ only in the sign of the off-diagonal
components of the above matrix sequence, in any term of the sequence except the
first term. However, from now on we will only consider the positive definite (Mk)
matrix sequence.

Since the matrices Mk are similar, they have the same eigenvalues. Mk tends to
a diagonal matrix containing these eigenvalues as k tends to infinity.

The following Lemma can be easily obtained from [15] and [27]

Lemma 1. Let k be a positive integer, then
i) If k is odd, then Lk−1Lk+1 = 5F 2

k + 1.

ii) If k is even, then 5Fk+1 = L2
k
2+1

+ L2
k
2

.

iii) If k is even, then L2
k + 1 = Fk+1

(
L2

k
2−1

+ L2
k
2

)
.

Theorem 1. Let k be positive integer, then

Mk =


1
Fk

[
Lk+1 1
1 Lk−1

]
, if k is odd,

1
Lk

[
L2

k
2+1

+ L2
k
2

√
5

√
5 L2

k
2

+ L2
k
2−1

]
, if k is even.

Proof. From the M1 and M2 matrices we found earlier, it can be seen that the
equality is achieved in the case of k = 1 and k = 2.
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If k is odd:

Mk =
1

Fk

[
Lk+1 1
1 Lk−1

]
= TkT

T

k

hence, using Lemma 1, we obtain

Tk =

 √
Lk+1√
Fk

0
1√

FkLk+1

√
5

√
Fk√

Lk+1

 .

Therefore

Mk+1 = T
T

k Tk =


√

Lk+1√
Fk

1√
FkLk+1

0
√
5

√
Fk√

Lk+1


 √

Lk+1√
Fk

0
1√

FkLk+1

√
5

√
Fk√

Lk+1


=

1

Lk+1

[
L2

k+1+1

Fk

√
5√

5 5Fk

]
.

Here, using the Lemma 1

Mk+1 =
1

Lk+1

[
L2

k+1
2 +1

+ L2
k+1
2

√
5

√
5 L2

k+1
2

+ L2
k−1
2

]
is obtained.

If k is even:

Mk =
1

Lk

[
L2

k
2+1

+ L2
k
2

√
5

√
5 L2

k
2

+ L2
k
2−1

]
hence, using Lemma 1, we obtain

Tk =

 √
5

√
Fk+1√
Lk

0
1√

Lk

√
Fk+1

√
Lk√
Fk+1

 .

Therefore

Mk+1 = T
T

k Tk =

 √
5

√
Fk+1√
Lk

1√
Lk

√
Fk+1

0
√
Lk√
Fk+1


 √

5

√
Fk+1√
Lk

0
1√

Lk

√
Fk+1

√
Lk√
Fk+1


=

1

Fk+1

[
5F 2

k+1+1

Lk
1

1 Lk

]

=
1

Fk+1

[
Lk+2 1
1 Lk

]
.

Here, the equation Lk+2 Lk = 5F 2
k+1+1 obtained from L2m L2n = 5F 2

m+n+L2
m−n

in [15, p.109] is used. □
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Theorem 2. If we apply the Cholesky algorithm to Mn, we obtain the followings:

(Mn)k =



5
n−1
2

Fk

[
Ln+k Ln

Ln Ln−k

]
, if k is odd and n is odd,

5
n
2

Fk

[
Fn+k Fn

Fn Fn−k

]
, if k is odd and n is even,

5
n
2

Lk

[
Ln+k Fn

√
5

Fn

√
5 Ln−k

]
, if k is even and n is even,

5
n−1
2

Lk

[
5Fn+k Ln

√
5

Ln

√
5 5Fn−k

]
, if k is even and n is odd.

We can also see that the equation (Mk)
n = (Mn)k and for simplicity we will use

the notation Mn
k := (Mk)

n = (Mn)k.

Proof. It can be easily seen by induction using Theorem 1 and equation (5) . □

Here, suppose the above power equation is true for some value of n, say N .
In this case, (Mk)

N = (MN )k. From this, it can be easily seen that (Mk)
N+1 =

Mk(Mk)
N = Mk(M

N )k = (MN+1)k so if the above power equation is true for N ,
it is also true for N + 1.

2.1. Functions of the Matrix xMn
k . From the theory of functions of matrices [7],

if the function f is a function defined on the spectrum of a 2× 2 matrix A = [aij ]
with distinct eigenvalues λ1 and λ2, then

f(A) = X = [xij ] = c0I + c1A, (6)

where I is the 2× 2 identity matrix and the coefficients c0 and c1 are given by the
solution of the system

c0 + c1λ1 = f(λ1),

c0 + c1λ2 = f(λ2).

Therefore

[
x11 x12

x21 x22

]
= c0

[
1 0
0 1

]
+ c1

[
a11 a12
a21 a22

]
,

=

[
c0 + c1a11 c1a12

c1a21 c0 + c1a22

]
·

From the last equation, we get

x11 = c0 + c1a11,

x12 = c1a12,
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x21 = c1a21,

x22 = c0 + c1a22.

In equation (6), let us write λ1 and λ2 instead of A and find c0 and c1 values

c0 =
(β + 2)nf(x(α+ 2)n)− (α+ 2)nf(x(β + 2)n)

(β + 2)n − (α+ 2)n
,

c1 =
f(x(β + 2)n)− f(x(α+ 2)n)

(β + 2)n − (α+ 2)n

and then

x11 = [(a11 − λ1)f(λ2)− (a11 − λ2)f(λ1)]/(λ2 − λ1),

x12 = a12[f(λ2)− f(λ1)]/(λ2 − λ1),

x21 = a21[f(λ2)− f(λ1)]/(λ2 − λ1),

x22 = [(a22 − λ1)f(λ2)− (a22 − λ2)f(λ1)]/(λ2 − λ1).

Lemma 2. Let k and n be arbitrary positive integers. For x an arbitrary quantity,
let us consider the matrix xMn

k having eigenvalues

λ1 = x(α+ 2)n,

λ2 = x(β + 2)n.

Proof. It is easily seen by induction. □

To express the yij components of Y = [yij ] = f(xMn
k ) in separate formulas, we

can give the following theorem with

λ :=
(β + 2)nf(x(α+ 2)n)− (α+ 2)nf(x(β + 2)n)

(β + 2)n − (α+ 2)n

and

ϕ :=
f(x(β + 2)n)− f(x(α+ 2)n)

(β + 2)n − (α+ 2)n
.

Theorem 3. Let k and n be arbitrary positive integers.
i) If n is even and k is odd, then

Y =
5

n
2

Fk

[
λFk + ϕFn+k ϕFn

ϕFn λFk + ϕFn−k

]
.

ii) If n is odd and k is odd, then

Y =
5

n−1
2

Fk

[
λFk + ϕLn+k ϕLn

ϕLn λFk + ϕLn−k

]
.
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iii) If n is odd and k is even, then

Y =
5

n−1
2

Lk

[
λLk + 5ϕFn+k

√
5ϕLn√

5ϕLn λLk + 5ϕFn−k

]
.

iv) If n is even and k is even, then

Y =
5

n
2

Lk

[
λLk + ϕLn+k

√
5ϕFn√

5ϕFn λLk + ϕLn−k

]
.

Proof. Taking xMn
k as matrix A in equation (6) and applying the above steps using

Lemma 2 the desired result is obtained. □

Theorem 4. If f is the matrix inversion function then

(xMn
k )

−1 =



5
−n−1

2

xFk

[
Ln−k −Ln

−Ln Ln+k

]
, if k is odd and n is odd,

5
−n
2

xFk

[
Fn−k −Fn

−Fn Fn+k

]
, if k is odd and n is even,

5
−n
2

xLk

[
Ln−k −Fn

√
5

−Fn

√
5 Ln+k

]
, if k is even and n is even,

5
−n−1

2

xLk

[
5Fn−k −Ln

√
5

−Ln

√
5 5Fn+k

]
, if k is even and n is odd.

Proof. It can be easily seen using the identity (xMn
k )

−1 = 1
xM

−n
k , (x ̸= 0) . □

3. Relations with Some Finite Series

In this section, sums of some finite series containing Fn and Ln are found using
some properties of the Lucas-type Cholesky algorithm matrix Mk.

Lemma 3. If k is a positive integer, then

M2
k = 5Mk − 5I, (7)

and

M−1
k = I − 1

5
Mk. (8)

Proof. Using equation (1), it easily be obtained from equations Theorem 1 and
Theorem 2. □
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Lemma 4. If x is an arbitrary quantity with the constraints x ̸= 1

αn
and x ̸= 1

βn

then

(xMn
k − I)−1 =


(
5

n+1
2 Fnx− 1

)
I − xMn

k

5nx2 − 5
n+1
2 Fnx+ 1

, if n is odd,(
5

n
2 Lnx− 1

)
I − xMn

k

5nx2 − 5
n
2 Lnx+ 1

, if n is even.

Proof. It can be easily seen using equations (2), (3), (4) and Lemma 3 and the
following equations

Lk+n − 5FnFk = −Ln−k if k is odd and n is odd [15, p. 111, 83.],

Fk+n − FkLn = −Fn−k if k is odd and n is even [15, p. 118, 58.],

Lk+n − LnLk = −Ln−k if k is even and n is even [15, p. 111, 83.],

Fk+n − LkFn = −Fn−k if k is even and n is odd [15, p. 118, 58.].

□

Lemma 5. For positive numbers k and n the following equality holds

Mn
k =

n∑
j=0

5−j

(
n

j

)
M2j

k .

Proof. From equation (7) we can write (M2
k +5I)n = (5Mk)

n, from which the proof
can be obtained by using the binomial expansion. □

Theorem 5. i) Let n be a nonnegative even integer and k be an arbitrary positive
integer. Then we have

Fn∓k = 5−
n
2

n∑
j=0

(
n

j

)
F2j∓k,

Ln∓k = 5−
n
2

n∑
j=0

(
n

j

)
L2j∓k.

ii) Let n be a nonnegative odd integer and k be an arbitrary positive integer. Then
we have

Fn∓k = 5
−n−1

2

n∑
j=0

(
n

j

)
F2j∓k,

Ln∓k = 5
−n+1

2

n∑
j=0

(
n

j

)
L2j∓k.
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Proof. If n is even positive integer and k is odd positive integer, then from Theorem
2 and Lemma 5,

Mn
k =

5
n
2

Fk

[
Fn+k Fn

Fn Fn−k

]
=

n∑
j=0

5−j

(
n

j

)
5j

Fk

[
F2j+k F2j

F2j F2j−k

]
,

hence,

5
n
2

[
Fn+k Fn

Fn Fn−k

]
=


n∑

j=0

(
n
j

)
F2j+k

n∑
j=0

(
n
j

)
F2j

n∑
j=0

(
n
j

)
F2j

n∑
j=0

(
n
j

)
F2j−k

 ,

therefore,

Fn∓k = 5−
n
2

n∑
j=0

(
n

j

)
F2j∓k.

Other equations are obtained in a similar way. □

Lemma 6. For positive integers k, n, s the following equality holds

M2n+s
k = 5n

n∑
j=0

(−1)n+j

(
n

j

)
Ms+j

k .

Proof. From equation (7), we can write

(5Mk − 5I)nMs
k = M2n+s

k (9)

from which the proof can be obtained by using the binomial expansion. □

Theorem 6. For positive integers n and s the following equality holds

L2n+s =

n∑
j=0

(
n

j

){
(−1)n+15

j+1
2 Fs+j , if j is odd,

(−1)n5
j
2Ls+j , if j is even,

,

F2n+s =

n∑
j=0

(
n

j

){
(−1)n+15

j−1
2 Ls+j , if j is odd,

(−1)n5
j
2Fs+j , if j is even.

.

Proof. It can be easily seen with Lemma 6 and Theorem 2. □
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Theorem 7. For positive integers k and n the followings holds

Ln±k =



n∑
j=0

(
n
j

){ −5
n−j
2 Lj∓k, if j is odd,

5
n−j+1

2 Fj∓k, if j is even,
if k is odd and n is odd,

n∑
j=0

(
n
j

){ 5
n−j
2 Lj∓k, if j is odd,

−5
n−j+1

2 Fj∓k, if j is even,
if k is even and n is odd,

n∑
j=0

(
n
j

){ 5
n−j+1

2 Fj∓k, if j is odd,

−5
n−j
2 Lj∓k, if j is even,

if k is odd and n is even,

n∑
j=0

(
n
j

){ −5
n−j+1

2 Fj∓k, if j is odd,

5
n−j
2 Lj∓k, if j is even,

if k is even and n is even,

Fn±k =



n∑
j=0

(
n
j

){ 5
n−j
2 Fj∓k, if j is odd,

−5
n−j−1

2 Lj∓k, if j is even,
if k is odd and n is odd,

n∑
j=0

(
n
j

){ −5
n−j
2 Fj∓k, if j is odd,

5
n−j−1

2 Lj∓k, if j is even,
if k is even and n is odd,

n∑
j=0

(
n
j

){ −5
n−j−1

2 Lj∓k, if j is odd,

5
n−j
2 Fj∓k, if j is even,

if k is odd and n is even,

n∑
j=0

(
n
j

){ 5
n−j−1

2 Lj∓k, if j is odd,

−5
n−j
2 Fj∓k, if j is even,

if k is even and n is even.

Proof. Using equation (8) we can write (I − 1
5Mk)

n = (Mn
k )

−1. Here,

(I − 1

5
Mk)

n =

n∑
j=0

(
n

j

)
(−1)

j 1

5j
M j

k = (Mn
k )

−1.

Let n, k be odd positive integers.

n∑
j=0
j odd

(
n

j

)
(−1)

j 1

5j
5

j−1
2

Fk

[
Lj+k Lj

Lj Lj−k

]
+

n∑
j=0

j even

(
n

j

)
(−1)

j 1

5j
5

j
2

Fk

[
Fj+k Fj

Fj Fj−k

]

=
5

−(n+1)
2

Fk

[
Ln−k −Ln

−Ln Ln+k

]
,

hence,

[
Ln−k −Ln

−Ln Ln+k

]
=

n∑
j=0

(
n

j

)
(−1)

j


5

n−j
2

[
Lj+k Lj

Lj Lj−k

]
, if j is odd,

5
n−j+1

2

[
Fj+k Fj

Fj Fj−k

]
, if j is even,

,
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from which the following result is obtained

Ln−k =

n∑
j=0

(
n

j

){
−5

n−j
2 Lj+k, if j is odd,

5
n−j+1

2 Fj+k, if j is even,

Ln+k =

n∑
j=0

(
n

j

){
−5

n−j
2 Lj−k, if j is odd,

5
n−j+1

2 Fj−k, if j is even.

Other equations are obtained in a similar way. □

Theorem 8. Let h, k and n be positive integers and

θ(n) := 5
n+1
2 Fnx− 1, ϑ(n) := 5

n
2 Lnx− 1.

i) If n is odd, then

h∑
j=0

xjMnj
k =

θ(n)I − xMn
k

5nx2 − θ(n)

(
xh+1M

n(h+1)
k − I

)
= −

xh+2M
n(h+2)
k − xMn

k − θ(n) (xMn
k )

h+1
+ θ(n)I

5nx2 − θ(n)
.

ii) If n is even, then

h∑
j=0

xjMnj
k =

ϑ(n)I − xMn
k

5nx2 − ϑ(n)

(
xh+1M

n(h+1)
k − I

)
= −

xh+2M
n(h+2)
k − xMn

k − ϑ(n) (xMn
k )

h+1
+ ϑ(n)I

5nx2 − ϑ(n)
.

Proof.

(xAn − I)

h∑
j=0

xjAnj = xh+1An(h+1) − I, (10)

is valid for every square matrix A. Using equation (10) and Lemma 4, i) and ii) can
easily be shown. □

Theorem 9. Let n and s be arbitrary integers where x ̸= 1

αn
and x ̸= 1

βn , the

following equations are satisfied:
i)

h∑
j=0

xjFnj+s =
(−1)n−1xh+2Fnh+s + xh+1Fn(h+1)+s − (−1)sxFn−s − Fs

(−1)n−1x2 + Lnx− 1
,
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ii)

h∑
j=0

xjLnj+s =
(−1)n−1xh+2Lnh+s + xh+1Ln(h+1)+s + (−1)sxLn−s − Ls

(−1)n−1x2 + Lnx− 1
.

Proof. The equation i) can be obtained by using the Lemma 4 and Theorem 2. By
substitute s± 1 for s in equation i) we obtained ii). □

4. Relationships with Some Infinite Series

In this section, we consider a method using functions of the matrix xMn
k to find

sums of infinite series containing Fn and Ln. Under certain restrictions, some sum
formulas can be computed using the results given in Section 3.

Theorem 10. If

− 1

αn
< x <

1

αn

then,

∞∑
j=0

xjFnj+s =
(−1)s−1xFn−s − Fs

(−1)n−1x2 + Lnx− 1
,

∞∑
j=0

xjLnj+s =
(−1)sxLn−s − Ls

(−1)n−1x2 + Lnx− 1
.

Proof. If the limits of i) and ii) in Theorem 9 are taken on both sides as h goes to
infinity, we get the equations. □

4.1. Calculation of Certain Functions of xMn
k . In [7] and [13] we see that the

authors obtain some identity with the matrix functions. Similarly, we can examine
some series of Fibonacci and Lucas sequences using the xMn

k matrices.

Theorem 11. For positive numbers k, n the following equality holds

Y = exp(xMn
k ) =

∞∑
j=0

xjM jn
k

j!
.

Proof. If we take A = xMn
k in the equation given in [7, p. 113] for the exponential

function of a matrix A, we get the result. □

Theorem 12. For positive integers k and n the following identities holds

∞∑
j=0

xjLjn+k

j!
= αk exp(xαn) + βk exp(xβn),
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∞∑
j=0

xjLjn

j!
= exp(xαn) + exp(xβn),

∞∑
j=0

xjLjn−k

j!
= (−1)k[αk exp(xαn) + βk exp(xβn)],

∞∑
j=0

xjFjn+k

j!
=

αk exp(xαn)− βk exp(xβn)

α− β
,

∞∑
j=0

xjFjn

j!
=

exp(xαn)− exp(xβn)

α− β
,

∞∑
j=0

xjFjn−k

j!
= (−1)k−1

[
αk exp(xβn)− βk exp(xαn)

α− β

]
.

Proof. When f is an exponential function, if we replace Y in Theorem 3 by its
equivalent given in Theorem 11, we obtain these identities from the matrix equation.

□

The technique presented above allows us to consider a very large number of
infinite series involving Fn and Ln by considering power series expansions ( [1], [7],
[21]) of other functions of the matrix xMk

n . Finally, let us examine the expansion
of tan−1 y.

Theorem 13. Under the constraint

− 1

αn
≤ x ≤ 1

αn

we have
∞∑
j=1

(−1)j+1x2j−1Ln(2j−1)+s

2j − 1
= αs tan−1(xαn) + βs tan−1(xβn).

5. Conclusion

In this work, many identities for Fibonacci and Lucas sequences have been ob-
tained. Although some of these are identities that can be obtained more simply in
different ways, they are not found in the literature. What we really want to do here
is to show how productive the Cholesky decomposition method is.
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[25] Tan, E., Dağlı, M., Belkhir, A., Biperiodic incomplete Horadam numbers, Turkish Journal
of Mathematics, 47 (2023), 554-564. https://doi.org/10.55730/1300-0098.3378

[26] Tan, E., Leung, H. H., Some basic properties of the generalized bi-periodic Fibonacci and

Lucas sequences, Advances in Difference Equations, 26 (2020), 1-11.
[27] Vajda, S., Fibonacci & Lucas Numbers and the Golden Section, John Wiley & Sons, 1989.

[28] Wilkinson, J. H., The Algebraic Eigenvalue Problem, Oxford: Clarendon Press, 1965.


	1. Introduction
	2. Main Results
	2.1. Functions of the Matrix xMkn

	3. Relations with Some Finite Series
	4. Relationships with Some Infinite Series
	4.1. Calculation of Certain Functions of xMkn

	5. Conclusion
	References

