
DUJE (Dicle University Journal of Engineering) 14:4 (2023) Page 593-601

Workflow Scheduling for Cloud Computing Using Evolutionary Algorithm

Mehmet KAYA1, Betül BOZ2*
1 Marmara University, Computer Engineering Department, mehmet.kaya@marmara.edu.tr, Orcid No: 0009-0003-7393-4226
2 Marmara University, Computer Engineering Department, betul.demiroz@marmara.edu.tr, Orcid No 0000-0001-7819-347X

Introduction
Cloud computing aims to provide computing resources to
real world applications dynamically. The performance of
cloud services is mostly dependent on the scheduling of
tasks to the available computing resources in the cloud. If
the scheduling is not properly done, then the computing
resources in the system may be underutilized or
overutilized. Improper scheduling may result as an increase
in the execution time of the tasks, waste of system
resources and increase in cost for usage of resources [1].
Since there are limited number of resources in the cloud
and the total number of requests for using these resources
are increasing day by day, efficient scheduling of tasks in
cloud computing is very crucial.

Scheduling problem is known to be NP-complete [2], so
meta-heuristic algorithms are proposed to find optimal or
sub-optimal solutions. There are many meta-heuristic
algorithms that successfully provide schedules [3] but they
are not specifically designed for cloud systems [4]. Min-
Min [5], Max-Min [5], First Come First Serve (FCFS) [6],
Heterogenous Earliest Finish Time (HEFT) [7], Minimum
Completion Time (MCT) [8] are heuristic algorithms that
are very widely used in cloud computing studies. Min-Min
algorithm mainly focuses on the task that can be executed

in the minimum completion time, whereas in Max-Min the
task with the longest execution time is first selected and
assigned to the VM that will execute the task fastest. FCFS
assigns the tasks to VMs according to their arrival time.
HEFT is a list-based scheduling algorithm which includes
a task priority list. Each task has an estimated completion
time and decisions about scheduling are made according to
this value. MCT uses expected minimum execution time of
tasks. There are also algorithms that consider multi-
objectives such as makespan and cost using task
duplication [9], genetic algorithm [10], evolutionary
algorithm [11] and neural network based dynamic
workflow scheduling [12].

The main motivation behind this study is to design an
evolutionary algorithm considering the properties of cloud
systems. Cloud systems offer multiple computing
resources to the users so in our algorithm the individuals
are designed as a two-dimensional array. The first
dimension refers to computing resources and the second
dimension holds the tasks assigned to these computing
resources. The crossover operator is designed to carry the
information included in the parents to the offspring. 3
different mutation operators and a hybrid mutation
operator using these 3 different mutation operators in a
probabilistic manner, are proposed in this study. The

Research Article

ARTICLE INFO

Article history:

Received 1 August 2023
Received in revised form 25
November 2023
Accepted 25 November 2023
Available online 31 December 2023
Keywords:

Workflow Scheduling, Cloud
Computing, Evolutionary Algorithm

ABSTRACT

Cloud computing provides powerful, highly scalable, flexible resources for real world applications. It also
reduces the cost and operation expenses. Workflow scheduling is important for getting higher
performance, reducing cost and using resources more efficiently in cloud computing. Workflow
scheduling in cloud systems assigns tasks to resources available in the system and aims to utilize cloud
resources by decreasing makespan of the workflow. In this study, an evolutionary algorithm is proposed
to solve workflow scheduling problem. The main objective of this work is to minimize the makespan of
the schedule. To achieve this goal, problem specific crossover operator and mutation operators are
proposed in the evolutionary algorithm. The crossover operator will combine the problem-specific
information stored in both parents to create a new individual. The mutation operators will explore neighbor
solutions using some intelligent search mechanisms. This unique design of the operators increases the
diversity of the search space and the quality of the solutions. As a result, the workflow schedules obtained
from the evolutionary algorithm decreases the makespan of the workflow in the cloud system. The
performance of the proposed study is measured using well-known scientific workflows and is compared
with the algorithms from the literature. The proposed study outperforms all related algorithms in 67% of
the test cases and obtains the same results in the remaining test cases.

Doi: 10.24012/dumf.1335981

* Corresponding author

DUJE (Dicle University Journal of Engineering) 14:4 (2023) Page 593-601

594

mutation operators are designed to explore neighbor
solutions using some intelligent search mechanisms. Since
the main performance issue of cloud computing is the total
execution time of the workload, our main objective is to
decrease makespan of the workflow. The performance of
the proposed algorithm is promising and can be extended
to support other QoS (Quality of Service) requirements
such as makespan, cost, reliability using multi-objectives.

The rest of the paper is organized as follows. In the next
section, workflows and their representation are explained,
and then the details of the proposed algorithm is given. In
Section 3, the simulation environment used for workflows
in cloud and scientific workflows used in the experiments
are provided. Then the performance of the algorithm is
given with a comparison of well-known scheduling
algorithms. Finally the conclusions and future directions for
the proposed study are provided.

Material and Method
Workflow Representation

Workflow is representing the input tasks and their
dependencies using a Directed Acyclic Graph (DAG).
DAG is denoted by W = {V, E} where V is the set of
vertices, and E is the set of edges between these vertices.

Tasks are denoted as vertices V={t0,..,tn} where t0 to tn
represent n tasks in the workflow. Data dependency
between these tasks are denoted as edges between related
vertices in the graph as E={ti→ tj | ti, tj ∈ V} denoting that
there is a data dependency from ti to tj. The size of data that
needs to be transferred in between two tasks may vary,
therefore weights are added to the edges to denote the
transfer amount. An example workflow with 8 tasks is
shown in Figure 1. The dependencies between the tasks are
represented with the edges having different weight values.
In this example, the highest amount of data transfer is
between t6 and t7.

For a task ti ∈ T, P(ti) denotes the set of precursors of ti,
S(ti) denotes the set of successors of ti. If a task does not
have any successors, it is an exit task. There can be more
than one exit task. All exit tasks can be routed to one exit
task which is denoted as te. Finishing time of the task ti ∈
T, can be denoted as FT(ti) and starting time of the task ti
∈ T, can be denoted as ST(ti). Makespan of a workflow is
calculated as follows:

 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑊𝑊) = 𝐹𝐹𝐹𝐹(𝑡𝑡𝑡𝑡) (1)

Evolutionary Algorithm

Evolutionary algorithm is a metaheuristic method that is
commonly used in optimization problems. Since
evolutionary algorithms are inspired by biological
evolution, they use some mechanisms like reproduction,
mutation, recombination, and selection. Population of the
algorithm includes candidate solutions to the optimization
problem, where each solution is represented as individuals
in the population. Individual representation may change

depending on the problem considered. Fitness function
determines the quality of a solution. An Evolutionary
Algorithm generally has the following steps: initialization,
selection, crossover, mutation and termination.
Initial population is created in the initialization step. Some
individuals in the initial population can be created using a
heuristic approach to speed up the optimization process and
others are created randomly to generate diversity. Once the
initial population is created, the fitness of each individual
is calculated. Both crossover and mutation operations are
applied to the individuals of the population and new
individuals which are referred as offsprings, are created. If
the offspring has a better fitness value, then it will be
replaced with its parents. This process is repeated until the
termination criteria is met.

Figure 1. An example workflow represented as a DAG

Proposed Algorithm

The proposed algorithm takes the workflow as a DAG and
number of resources available in the cloud referred as
Virtual Machines (VMs) as an input. It also takes some
algorithm specific inputs such as the generation size,
population size and mutation rate. The details of our
proposed algorithm are given in the following subsections.

Individual representation and initial population
generation

Individual S is represented as a two-dimensional array.
S[i] includes an array list of tasks that are assigned to VMi
and S[i][j] denotes the ID of the task that is assigned to

DUJE (Dicle University Journal of Engineering) 14:4 (2023) Page 593-601

595

VMi. The order of the tasks assigned to a VM does not
represent in which order they will be executed.

Figure 2. An example individual representation

An example individual representation is given in Figure 2.
Individual S ={{1, 3, 6, 7 }, { 2 }, {0, 4, 5 }} includes 3
task sets, so all tasks are assigned to 3 different VMs. The
first set {1, 3, 6, 7} shows that t1, t3, t6 and t7 are assigned
to VM0. The second set {2} contains a single task t2 which
is assigned to VM1. Finally, the last set denotes that t0, t4
and t5 will be executed in VM2.

Initial population is generated randomly. Each individual
in the population contains the assignment of tasks to VMs.
While creating an individual, all tasks from t0 to tn are
selected and assigned to a random VM. The makespan of
the solution represented by each individual is calculated
and assigned as the fitness value of that individual.

Algorithm 1: Crossover Operation

Input: Two individuals in the population as parents
(parent1, parent2),
Output: An offspring

1 Find the mean value of sizes of the task sets in
the chromosomes sizemean

2 Set the crossover point as floor(sizemean/2)
3 Generate empty chromosomes offspring1 and

offspring2
4 Copy the first floor (sizemean/2) elements in the

task sets from parent1 to offspring1
5 Copy all the elements those are not included

in offspring1 from parent2 to offspring1
6 Copy the first floor (sizemean/2) elements in the

task sets from parent2 to offspring2
7 Copy all the elements those are not included

in offspring2 from parent1 to offspring2
8 Randomly choose one of the offsprings and

return it

Crossover operator

Crossover operator is performed on two individuals
selected from the population referred as parent1 and
parent2, and at the end of the crossover one offspring is
generated as shown in Algorithm 1. Tournament selection

is used while selecting the parents. In tournament selection,
3 individuals from the population are selected randomly
and the individual with the best fitness value is assigned as
parent1. The same procedure is applied for selecting
parent2.

While generating the offspring, some part of the solution is
taken from parent1 and the other part is taken from parent2,
so a crossover point should be found. In this work, one
point crossover is used. Each parent’s task set sizes for
each VMs are calculated. Half of the mean value of the task
set sizes determines the crossover point.

The first offspring’s task set elements come from the first
parent until the crossover point is reached. The remaining
part of the offspring’s task set elements come from the
second parent. The second parents task sets are checked
from beginning to the end to determine whether they
already exist in the offspring or not. If they are not
available in the offspring, then they will be added to the
task sets.

For the second offspring, the same operations will be
performed by switching the order of the parents. Two
offsprings are created and one of them is selected randomly
and mutation is applied to this offspring.

To clarify the execution of the crossover operation, an
illustrative example is provided in Figure 3. The size of the
task sets for parent1 is 4, 2 and 3. The size of task sets for
parent2 is 4, 4 and 1. The mean value of all the task set sizes
is 3. Half of this value, which is 1, selected as the crossover
point. All the elements before the crossover point are
copied from parent1 to offspring1 and parent2 to offspring2.
The remaining part is added from the other parent if it is
not already included in the solution.

Figure 3. Crossover applied to parents to generate

offsprings.

Mutation

Mutation is applied to the offspring generated at the end of
the crossover operator. In this study, three different
mutation techniques are proposed.

The first mutation operator is named as Random Swap
Mutation Operator (RSM). This operator randomly selects

DUJE (Dicle University Journal of Engineering) 14:4 (2023) Page 593-601

596

two tasks from different VMs and swaps these tasks. As an
example, Task 6 from VM0 and Task 4 from VM2 are
selected randomly and are swapped in the offspring. In the
final solution represented by the offspring, Task 6 is
executed on VM2 and Task 4 is executed on VM0 as shown
in Figure 4.

Figure 4. Random swap mutation operator

The second mutation operator is named as Random Move
Mutation Operator (RMM). This mutation operator
randomly selects a VM and a position, removes the task in
that position from the VM. It then assigns this task to a new
VM where its new position is randomly set.

The final mutation operator is named as Intelligent Move
Mutation Operator (IMM). This operator again selects a
task randomly and removes it from the VM it is assigned
to. It then searches for the successors and predecessors of
the task. The removed task is placed to a VM right after its
predecessor or right before its successor to minimize
communication overhead.

Fitness calculation and population update

Since the objective of this study is to decrease the
makespan of the workflow, the fitness value is equal to the
makespan of the solution present in the individuals. The
individual with the smallest fitness value is reported as the
best solution once the algorithm is completed.

For population update, elitism is used. Best individual in the
population is added to the next generation. Crossover and
mutation operations are performed to add new individuals
to the population. All the new individuals are kept
separately from the current population. Current population
is replaced by the new population after all the new
population members are generated.

Workflow simulator and scientific workflows
WorkflowSim [13] is a well-known framework for
simulating workflows in the cloud environment. It is
implemented using Java programming language. We used
WorkflowSim as our workflow simulator in the
experiments.

CyberShake, Montage, Epigenomics are realistic scientific
workflows that are used to test the performance of our
algorithm. These workflows are generated by Pegasus
Workflow Generator [14]. The structure of these
workflows is given in Figure 5. The CyberShake workflow
is used to characterize earthquake hazards. The
Epigenomics workflow is used to automate various

operations in genome sequence processing. The Montage
application stitches together multiple input images to
create custom mosaics of the sky.

Figure 5. The structure of scientific workflows [15]

Results

The proposed evolutionary algorithm has some parameters
which are population size, generation size and mutation
rate. The first set of experiments show the performance of
the algorithm for varying population size, the number of
offsprings generated and the mutation operators. The
proposed algorithm updates the whole population in each
iteration; therefore, it generates new offsprings where the
number of offsprings are equal to the population size in
each iteration. The performance of the algorithm for
varying population size with respect to number of
offsprings generated is shown in Figure 6, Figure 7 and
Figure 8. In each test, the population size varies between
25, 50, 100 and the experiments are performed on Montage
scientific workflow for 25, 50 and 100 tasks. These tests
are also performed on CyberShake and Epigenomics
scientific workflows, and the results show similar trends.

Figure 6. The effect of population size on the performance
of the algorithm for Montage Scientific Workload with 25
tasks.

The fitness value of the initial population is higher when
the population size is set to 25 for 25 tasks, and 25 and 50

DUJE (Dicle University Journal of Engineering) 14:4 (2023) Page 593-601

597

for 50 and 100 tasks as compared to a population size of
100. This shows that as the number of individuals in the
population increases, the chance to obtain better solutions
also increases, which in turn leads to smaller fitness values.
But as the algorithm continues to iterate, the fitness values
of the population tend to decrease and finally reach near
equal values. The time it takes to reach these results varies
depending on the number of tasks considered. Therefore,
the population size of the algorithm is set to 50 and the
generation size of the algorithm is set to 2000 for smaller
workflows which has 25 to 60 tasks and 5000 for larger
workflows which has 100 tasks.

Figure 7. The effect of population size on the performance
of the algorithm for Montage Scientific Workload with 50
tasks.

Figure 8. The effect of population size on the performance
of the algorithm for Montage Scientific Workload with 100
tasks.

Next the performance of our algorithm is explored for
different mutation strategies. Mutation rate is chosen as
0.2, 0.5 and 0.8. Depending on the previous studies from
the literature, the number of VMs is selected as 20. The
algorithm is executed for 10 runs and the best, average
fitness values with their standard deviation are reported for
different mutation operators with varying mutation rates.

The performance of the algorithm is first evaluated using 3
different mutation strategies. Once the performance of
these mutation operators is evaluated, it is observed that

depending on the structure of the workflow, different
mutation operators can perform better in different cases, so
hybrid mutation operators are added to the algorithm.
Hybrid mutation operator chooses one of the mutation
strategies depending on a given probability. Hybrid
Mutation Operator 1 (HM1) uses Random Swap Mutation
(RSM), Random Move Mutation (RMM) and Intelligent
Move Mutation (IMM) with a probability of 35%, 35% and
30%, respectively. Whereas the probabilities of RSM,
RMM and IMM are set to 45%, 45% and 10%, respectively
for Hybrid Mutation Operator 2 (HM2).

The performance of these mutation strategies for different
mutation rates using Montage scientific workflow are
shown in Table 1. When the number of tasks considered is
25, all operators show the same performance and obtain the
same results in all runs, and the standard deviation is 0. As
the number of tasks are increased to 50, all operators except
IMM show similar performance in most of the runs and
standard deviation is low. When 100 tasks are used in the
experiments, the RMM and HM2 operators show the best
performance, whereas the performance of IMM is the worst.
When the performance of RMM and HM2 operators on
varying mutation rates is explored, they give the best
average results when the mutation rate is chosen as 0.5. The
performance of CyberShake scientific workflow has similar
trend as can be seen from Table 2. Finally, the performance
of the algorithm using Epigenomics scientific workflow is
given in Table 3. All operators except IMM obtain the best
results for 24, 48 and 100 tasks. When the average values
are compared, RMM and HM2 operators with mutation
rates 0.5 and 0.8 obtain the best results in all runs, therefore
their standard deviation is 0.

From all these tests reported in Table 1, Table 2 and Table
3, we can conclude the following for mutation operators:

• IMM gives the worst result in all of the cases.

• Hybrid mutation strategies give the best result in
most of the cases due to the reason that they use
multiple strategies so that they explore the neighbor
solutions.

• HM2 with mutation rate 0.5 gives the best result in
most of the test cases.

 Table 4 shows the performance of the algorithm for 3
different scenarios. “EA-WM” denotes the performance of
the algorithm when only crossover is applied to the parents.
EA-HM2 denotes the performance of the algorithm when
HM2 with mutation rate 0.5 is used, whereas EA-Best
shows the best result obtained from 5 different mutation
operators with 3 different mutation rates. As can be seen
from the table, selecting HM2 with a mutation rate of 0.5
gives the best result in 66% of the test cases, and gives good
results in the remaining test cases. So instead of executing
the algorithm 15 times for each mutation operator –
mutation rate couple, HM2 with mutation rate 0.5 can be
selected as the mutation operator in the proposed study.

DUJE (Dicle University Journal of Engineering) 14:4 (2023) Page 593-601

598

Table 1. Performance of different mutation strategies using Montage Workflow

Mutation
of Tasks

25 50 100

Type Probability Best Average Std.
Dev. Best Average Std.

Dev. Best Average Std.
Dev.

RSM

0.2 46.77 46.77 0.00 66.20 66.22 0.03 101.67 101.74 0.10

0.5 46.77 46.77 0.00 66.20 66.21 0.01 101.66 101.69 0.02

0.8 46.77 46.77 0.00 66.20 66.23 0.03 101.68 101.74 0.04

RMM

0.2 46.77 46.77 0.00 66.20 66.25 0.05 101.91 102.00 0.10

0.5 46.77 46.77 0.00 66.20 66.23 0.02 101.86 101.90 0.03

0.8 46.77 46.77 0.00 66.20 66.22 0.02 101.91 102.00 0.05

IMM

0.2 46.77 46.77 0.00 66.38 66.51 0.06 106.05 112.48 2.39

0.5 46.77 46.77 0.00 66.33 66.47 0.08 102.42 108.72 5.31

0.8 46.77 46.77 0.00 66.37 66.45 0.05 102.32 106.59 5.36

HM1

0.2 46.77 46.77 0.00 66.20 66.24 0.04 101.68 101.78 0.19

0.5 46.77 46.77 0.00 66.20 66.21 0.01 101.68 101.75 0.08

0.8 46.77 46.77 0.00 66.20 66.21 0.02 101.73 101.80 0.06

HM2

0.2 46.77 46.77 0.00 66.20 66.23 0.03 101.67 101.80 0.22

0.5 46.77 46.77 0.00 66.20 66.21 0.02 101.67 101.69 0.02

0.8 46.77 46.77 0.00 66.20 66.23 0.02 101.68 101.80 0.10

Table 2. Performance of different mutation strategies using CyberShake Workflow

Mutation
of Tasks

30 50 100

Type Probability Best Average Std. Dev. Best Average Std. Dev. Best Average Std. Dev.

RSM

0.2 262.20 262.20 0.00 283.25 283.25 0.00 303.56 303.99 0.15

0.5 262.20 262.20 0.00 283.25 283.25 0.00 303.56 303.80 0.25

0.8 262.20 262.20 0.00 283.25 283.25 0.00 303.56 303.66 0.20

RMM

0.2 262.20 262.32 0.26 283.25 283.25 0.00 303.56 306.26 2.71

0.5 262.20 262.20 0.00 283.25 283.25 0.00 303.56 304.33 1.19

0.8 262.20 262.20 0.00 283.25 283.25 0.00 303.56 303.85 0.24

IMM

0.2 262.20 262.32 0.26 283.25 283.56 0.27 327.06 340.75 8.34

0.5 262.20 262.26 0.20 283.25 283.62 0.25 311.32 328.22 13.64

0.8 262.20 262.26 0.20 283.25 283.41 0.25 308.57 314.54 3.67

HM1

0.2 262.20 262.20 0.00 283.25 283.25 0.00 303.56 303.75 0.24

0.5 262.20 262.20 0.00 283.25 283.25 0.00 303.56 303.75 0.24

0.8 262.20 262.20 0.00 283.25 283.25 0.00 303.56 303.75 0.24

HM2

0.2 262.20 262.20 0.00 283.25 283.31 0.16 303.56 303.80 0.25

0.5 262.20 262.20 0.00 283.25 283.25 0.00 303.56 303.85 0.24

0.8 262.20 262.20 0.00 283.25 283.25 0.00 303.56 303.61 0.15

DUJE (Dicle University Journal of Engineering) 14:4 (2023) Page 593-601

599

Table 3. Performance of different mutation strategies using Epigenomics Workflow

Mutation
of Tasks

24 48 100

Type Probability Best Average Std. Dev. Best Average Std. Dev. Best Average Std. Dev.

RSM

0.2 5584.32 5584.33 0.01 7731.38 7731.41 0.02 32821.92 33038.76 322.91

0.5 5584.31 5584.33 0.01 7731.37 7731.38 0.02 32821.92 32821.92 0.00

0.8 5584.31 5584.33 0.01 7731.37 7731.37 0.00 32821.92 32821.92 0.00

RMM

0.2 5584.29 5584.29 0.00 7731.38 7731.38 0.00 32821.92 33223.44 250.52

0.5 5584.29 5584.29 0.01 7731.37 7731.38 0.00 32821.92 33168.75 332.75

0.8 5584.29 5584.29 0.00 7731.37 7731.38 0.01 32821.92 32923.61 101.99

IMM

0.2 5584.29 5584.37 0.05 7731.40 7778.41 148.47 41117.57 44919.36 2113.30

0.5 5584.29 5584.34 0.05 7731.38 7731.45 0.07 41328.05 43611.06 1943.12

0.8 5584.29 5584.35 0.04 7731.40 7731.45 0.05 43161.06 44015.77 783.13

HM1

0.2 5584.29 5584.29 0.00 7731.37 7731.38 0.01 32821.92 32822.15 0.48

0.5 5584.29 5584.29 0.01 7731.37 7731.37 0.00 32821.92 32876.18 123.06

0.8 5584.29 5584.29 0.00 7731.37 7731.38 0.01 32821.92 32822.03 0.35

HM2

0.2 5584.29 5584.29 0.00 7731.37 7731.38 0.00 32821.92 32885.28 200.35

0.5 5584.29 5584.29 0.00 7731.37 7731.37 0.00 32821.92 32821.92 0.00

0.8 5584.29 5584.29 0.00 7731.37 7731.38 0.00 32821.92 32821.92 0.00

Table 4. Performance comparison of the algorithm with/without mutation

Workflow # of Tasks EA - WM EA - HM2 EA - Best

CyberShake

30 262.199 262.199 262.199

50 283.254 283.254 283.254

100 341.137 303.562 303.562

Epigenomics

24 5584.420 5584.287 5584.287

48 7731.619 7731.374 7731.374

100 42887.049 32821.916 32821.915

Montage

25 46.789 46.765 46.765

50 66.743 66.196 66.196

100 113.412 101.666 101.658

DUJE (Dicle University Journal of Engineering) 14:4 (2023) Page 593-601

600

Table 5. Performance comparison of the proposed algorithm with algorithms from the literature

Workflow
of
Tasks HEFT

Data Aware
Scheduling FCFS Max-Min MCT Min-Min

Round
Robin EA-HM2

CyberShake

30 262.199 262.822 262.822 262.199 262.822 262.822 262.822 262.199

50 283.254 283.771 283.771 283.254 283.771 283.771 283.771 283.254
100 603.669 323.438 323.438 304.275 323.438 326.14 323.438 303.562

Epigenomics

24 5584.289 5584.37 5584.374 5584.289 5584.374 5584.374 5584.374 5584.287

48 7731.41 7731.477 7731.459 7731.459 7731.459 7731.449 7731.459 7731.374

100 32824.09 34963.04 34963.04 36947.03 34963.04 43018.52 40010.52 32821.97

Montage

25 46.765 46.773 46.773 46.765 46.773 46.773 46.773 46.765

50 66.338 66.398 66.398 66.314 66.398 66.404 66.398 66.196

100 102.296 102.146 102.252 102.052 102.252 102.274 102.156 101.666

Table 6. Comparison of the proposed algorithm with algorithms from the literature using t-test

Workflow # of Tasks HEFT
Data Aware
Scheduling FCFS MAX-MIN MCT MIN-MIN

Round
Robin

CyberShake

30 1 1.82E-233 1.8E-233 1 1.8E-233 1.82E-233 1.82E-233

50 1 2.68E-229 2.7E-229 1 2.7E-229 2.68E-229 2.68E-229

100 9.191E-55 1.943E-33 1.94E-33 2.829E-05 1.94E-33 1.9E-34 1.943E-33

Epigenomics

24 4.404E-08 1.232E-37 1.23E-37 4.404E-08 1.23E-37 1.232E-37 1.232E-37

48 2.24E-181 1.98E-191 6.3E-190 6.27E-190 6.3E-190 5.96E-189 6.27E-190

100 1.316E-49 1.73E-103 1.7E-103 1.3E-108 1.7E-103 1.09E-115 5.9E-113

Montage

25 1 5.75E-213 5.8E-213 1 5.8E-213 5.75E-213 5.75E-213

50 4.121E-16 5.353E-19 5.35E-19 1.391E-14 5.35E-19 3.092E-19 5.353E-19

100 1.577E-24 2.704E-22 6.17E-24 1.761E-20 6.17E-24 3.079E-24 1.826E-22

Finally the performance of the proposed study is compared
with the algorithms from the literature as given in Table 5.
The proposed algorithm outperforms the other algorithms
in 6 of the 9 test cases, and gives the same performance in
the remaining test cases. Our algorithm is especially better
than the other algorithms when the number of tasks in the
cloud computing system increases.

The statistical analysis of the performance comparison of
the algorithms using t-test is shown in Table 6. In all
scientific workloads when number of tasks reach 100, the
proposed algorithm significantly outperforms all related
studies.

Discussion

In this study 3 different mutation operators RSM, RMM
and IMM are proposed. Since IMM uses the information of
the predecessor and successor of the task that is moved
from one VM to the other, it is assumed that it would be

intelligent, would decrease the computation time and
would perform the best among all the mutation strategies,
but the experimental results showed the opposite where
IMM gave the worst performance. These results denote
that random movements instead of intelligent strategies
perform better. When performance of the mutation
operators that include randomness are explored, in some
test cases RMM outperformed RSM, whereas in others it is
the opposite. So, hybrid mutation strategies are proposed
which show the best performance.

The proposed algorithm is compared with related studies
from the literature and when the task size increases in the
workflow, it is observed that the performance improvement
of the proposed algorithm increases. Since in cloud
computing systems, large number of tasks are considered,
the proposed algorithm can provide a better solution. One
disadvantage of our proposed study is its execution time. It
runs much slower as compared to the studies used for
performance comparison.

DUJE (Dicle University Journal of Engineering) 14:4 (2023) Page 593-601

601

Conclusion

In this study, an evolutionary algorithm for workflow
scheduling in cloud computing systems is proposed. The
properties of the cloud resources and workflows are used
to design the individual representation, crossover operator
and mutation techniques. The main power of our algorithm
comes from the selection of individual representation with
problem specific information, the crossover operator that
explores the search space successfully and mutation
techniques that explores the neighbor solutions. The
experimental study shows that the proposed algorithm
outperforms related studies from literature and can provide
better solutions for cloud computing.

The objective of the proposed study is to decrease the
makespan of the workflow, as a future work the proposed
algorithm can be extended to work with multiple objectives.
The VMs considered in our study are homogenous, the
computing power of the VMs can be heterogenous. Since in
the individual representation, unique sets are defined for
each VM, heterogeneity can easily be added to the
algorithm. Finally, the proposed mutation operators and
hybrid strategies can be used by other scheduling
algorithms to increase their performance.

Ethics committee approval and conflict of
interest statement
There is no need to obtain permission from the ethics
committee for the article prepared.

There is no conflict of interest with any person / institution
in the article prepared.

Authors’ Contributions
-Study conception and design: Mehmet Kaya and Betül
Boz

-Analysis and interpretation of data: Mehmet Kaya

-Drafting of manuscript: Mehmet Kaya and Betül Boz

-Critical revision: Betül Boz

References
[1] E. H. Houssein, A. G. Gad, Y. M. Wazery, and P. N.
Suganthan, “Task Scheduling in Cloud Computing based
on Meta-heuristics: Review, Taxonomy, Open Challenges,
and Future Trends”, Swarm and Evolutionary
Computation, 2021, 62.

[2] M. R. Garey and D. S. Johnson, “A guide to the theory
of np-completeness”, Computers and intractability, 1979,
pp. 641–650.

[3] R. Zarrouk, I. E. Bennour, and A. Jemai, “A two-level
particle swarm optimization algorithm for the flexible job
shop scheduling problem”, Swarm Intelligence, 2019, pp.
1–24.

[4] N. Sadashiv, and S. D. Kumar, “Cluster, grid and cloud
computing: A detailed comparison”, 2011 6th
International Conference on Computer Science &
Education (ICCSE), 2011, pp. 477–482.

[5] S. H. H Madni, Latiff, M. S. A. Abdullahi, M.,
Abdulhamid, and M. Usman, “Performance comparison of
heuristic algorithms for task scheduling in iaas cloud
computing environment”, PLoS ONE, 2017, 12: 5.

[6] A. Brandwajn, and T. Begin, “First-come-first-served
queues with multiple servers and customer classes”,
Performance Evaluation, 2019; 130, pp. 51–63.

[7] H. Topcuoglu, S. Hariri, and M. Wu, “Performance-
effective and low-complexity task scheduling for
heterogeneous computing”, IEEE transactions on parallel
and distributed systems, 2002, 13(3), pp. 260-274.

[8] B. Li, L. Niu, X. Huang, H. Wu, and Y. Pei, “Minimum
completion time offloading algorithm for mobile edge
computing”, IEEE 4th International Conference on
Computer and Communications (ICCC), IEEE, 2018, pp.
1929–1933.

[9] F. Yao, C. Pu, and Z. Zhang, “Task Duplication-Based
Scheduling Algorithm for Budget-Constrained Workflows
in Cloud Computing”, IEEE Access, 2021, 9, pp. 37262-
37272.

[10] H. Aziza and S. Krichen, “A hybrid genetic algorithm
for scientific workflow scheduling in cloud environment”,
Neural Computing & Applications, 2020, 32(18).

[11] M. Zhang, H. Li, L. Liu and R. Buyya, “An adaptive
multi-objective evolutionary algorithm for constrained
workflow scheduling in Clouds”, Distributed and Parallel
Databases, 2018, 36(2), pp. 339-368.

[12] G. Ismayilov and H. Topcuoglu, “Neural network
based multi-objective evolutionary algorithm for dynamic
workflow scheduling in cloud computing”, Future
Generation computer systems, 2020, 102, pp. 307-322.

[13] W. Chen and E. Deelman, “WorkflowSim: A toolkit
for simulating scientific workflows in distributed
environments”, 2012 IEEE 8th International Conference
on E-Science, Chicago, IL, USA, pp. 1-8. doi:
10.1109/eScience.2012.6404430.

[14] E. Deelman, K. Vahi, G. Juve, M. Rynge, S.
Callaghan, P. J. Maechling, R. Mayani, W. Chen, R.
Ferreira da Silva, M. Livny, and K. Wenger, “Pegasus, a
workflow management system for science automation”,
Future Generation Computer Systems, 2015, 46, pp. 17-35.

[15] S. Bharathi, A. Chervenak, E. Deelman, G. Mehta, M.
-H. Su and K. Vahi, "Characterization of scientific
workflows", 2008 Third Workshop on Workflows in
Support of Large-Scale Science, Austin, TX, USA, 2008,
pp. 1-10, doi: 10.1109/WORKS.2008.4723958.

