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Introduction 
Cloud computing aims to provide computing resources to 
real world applications dynamically. The performance of 
cloud services is mostly dependent on the scheduling of 
tasks to the available computing resources in the cloud. If 
the scheduling is not properly done, then the computing 
resources in the system may be underutilized or 
overutilized. Improper scheduling may result as an increase 
in the execution time of the tasks, waste of system 
resources and increase in cost for usage of resources [1]. 
Since there are limited number of resources in the cloud 
and the total number of requests for using these resources 
are increasing day by day, efficient scheduling of tasks in 
cloud computing is very crucial. 

Scheduling problem is known to be NP-complete [2], so 
meta-heuristic algorithms are proposed to find optimal or 
sub-optimal solutions. There are many meta-heuristic 
algorithms that successfully provide schedules [3] but they 
are not specifically designed for cloud systems [4]. Min-
Min [5], Max-Min [5], First Come First Serve (FCFS) [6], 
Heterogenous Earliest Finish Time (HEFT) [7], Minimum 
Completion Time (MCT) [8] are heuristic algorithms that 
are very widely used in cloud computing studies. Min-Min 
algorithm mainly focuses on the task that can be executed 

in the minimum completion time, whereas in Max-Min the 
task with the longest execution time is first selected and 
assigned to the VM that will execute the task fastest. FCFS 
assigns the tasks to VMs according to their arrival time. 
HEFT is a list-based scheduling algorithm which includes 
a task priority list. Each task has an estimated completion 
time and decisions about scheduling are made according to 
this value. MCT uses expected minimum execution time of 
tasks. There are also algorithms that consider multi-
objectives such as makespan and cost using task 
duplication [9], genetic algorithm [10], evolutionary 
algorithm [11] and neural network based dynamic 
workflow scheduling [12]. 

The main motivation behind this study is to design an 
evolutionary algorithm considering the properties of cloud 
systems. Cloud systems offer multiple computing 
resources to the users so in our algorithm the individuals 
are designed as a two-dimensional array. The first 
dimension refers to computing resources and the second 
dimension holds the tasks assigned to these computing 
resources. The crossover operator is designed to carry the 
information included in the parents to the offspring. 3 
different mutation operators and a hybrid mutation 
operator using these 3 different mutation operators in a 
probabilistic manner, are proposed in this study. The 
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ABSTRACT 

  

Cloud computing provides powerful, highly scalable, flexible resources for real world applications. It also 
reduces the cost and operation expenses. Workflow scheduling is important for getting higher 
performance, reducing cost and using resources more efficiently in cloud computing. Workflow 
scheduling in cloud systems assigns tasks to resources available in the system and aims to utilize cloud 
resources by decreasing makespan of the workflow. In this study, an evolutionary algorithm is proposed 
to solve workflow scheduling problem. The main objective of this work is to minimize the makespan of 
the schedule. To achieve this goal, problem specific crossover operator and mutation operators are 
proposed in the evolutionary algorithm. The crossover operator will combine the problem-specific 
information stored in both parents to create a new individual. The mutation operators will explore neighbor 
solutions using some intelligent search mechanisms. This unique design of the operators increases the 
diversity of the search space and the quality of the solutions. As a result, the workflow schedules obtained 
from the evolutionary algorithm decreases the makespan of the workflow in the cloud system. The 
performance of the proposed study is measured using well-known scientific workflows and is compared 
with the algorithms from the literature. The proposed study outperforms all related algorithms in 67% of 
the test cases and obtains the same results in the remaining test cases. 
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mutation operators are designed to explore neighbor 
solutions using some intelligent search mechanisms. Since 
the main performance issue of cloud computing is the total 
execution time of the workload, our main objective is to 
decrease makespan of the workflow. The performance of 
the proposed algorithm is promising and can be extended 
to support other QoS (Quality of Service) requirements 
such as makespan, cost, reliability using multi-objectives.  

The rest of the paper is organized as follows. In the next 
section, workflows and their representation are explained, 
and then the details of the proposed algorithm is given. In 
Section 3, the simulation environment used for workflows 
in cloud and scientific workflows used in the experiments 
are provided. Then the performance of the algorithm is 
given with a comparison of well-known scheduling 
algorithms. Finally the conclusions and future directions for 
the proposed study are provided. 

 

Material and Method 
Workflow Representation 

Workflow is representing the input tasks and their 
dependencies using a Directed Acyclic Graph (DAG). 
DAG is denoted by W = {V, E} where V is the set of 
vertices, and E is the set of edges between these vertices.  

Tasks are denoted as vertices V={t0,..,tn} where t0 to tn 
represent n tasks in the workflow. Data dependency 
between these tasks are denoted as edges between related 
vertices in the graph as E={ti→ tj | ti, tj ∈ V} denoting that 
there is a data dependency from ti to tj. The size of data that 
needs to be transferred in between two tasks may vary, 
therefore weights are added to the edges to denote the 
transfer amount. An example workflow with 8 tasks is 
shown in Figure 1. The dependencies between the tasks are 
represented with the edges having different weight values. 
In this example, the highest amount of data transfer is 
between t6 and t7.  

For a task ti ∈ T, P(ti) denotes the set of precursors of ti, 
S(ti) denotes the set of successors of ti. If a task does not 
have any successors, it is an exit task. There can be more 
than one exit task. All exit tasks can be routed to one exit 
task which is denoted as te. Finishing time of the task ti ∈ 
T, can be denoted as FT(ti) and starting time of the task ti 
∈ T, can be denoted as ST(ti). Makespan of a workflow is 
calculated as follows: 

 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑊𝑊) = 𝐹𝐹𝐹𝐹(𝑡𝑡𝑡𝑡) (1) 

Evolutionary Algorithm 

Evolutionary algorithm is a metaheuristic method that is 
commonly used in optimization problems. Since 
evolutionary algorithms are inspired by biological 
evolution, they use some mechanisms like reproduction, 
mutation, recombination, and selection. Population of the 
algorithm includes candidate solutions to the optimization 
problem, where each solution is represented as individuals 
in the population. Individual representation may change 

depending on the problem considered. Fitness function 
determines the quality of a solution. An Evolutionary 
Algorithm generally has the following steps: initialization, 
selection, crossover, mutation and termination. 
Initial population is created in the initialization step. Some 
individuals in the initial population can be created using a 
heuristic approach to speed up the optimization process and 
others are created randomly to generate diversity. Once the 
initial population is created, the fitness of each individual 
is calculated. Both crossover and mutation operations are 
applied to the individuals of the population and new 
individuals which are referred as offsprings, are created. If 
the offspring has a better fitness value, then it will be 
replaced with its parents. This process is repeated until the 
termination criteria is met. 

 

 
Figure 1. An example workflow represented as a DAG 

 

Proposed Algorithm 

The proposed algorithm takes the workflow as a DAG and 
number of resources available in the cloud referred as 
Virtual Machines (VMs) as an input. It also takes some 
algorithm specific inputs such as the generation size, 
population size and mutation rate. The details of our 
proposed algorithm are given in the following subsections.  

 

Individual representation and initial population 
generation 

Individual S is represented as a two-dimensional array. 
S[i] includes an array list of tasks that are assigned to VMi 
and S[i][j] denotes the ID of the task that is assigned to 
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VMi. The order of the tasks assigned to a VM does not 
represent in which order they will be executed. 

 

Figure 2. An example individual representation 

An example individual representation is given in Figure 2. 
Individual S ={{1, 3, 6, 7 }, { 2 }, {0, 4, 5 }} includes 3 
task sets, so all tasks are assigned to 3 different VMs. The 
first set {1, 3, 6, 7} shows that t1, t3, t6 and t7 are assigned 
to VM0. The second set {2} contains a single task t2 which 
is assigned to VM1. Finally, the last set denotes that t0, t4 
and t5 will be executed in VM2. 

Initial population is generated randomly. Each individual 
in the population contains the assignment of tasks to VMs. 
While creating an individual, all tasks from t0 to tn are 
selected and assigned to a random VM. The makespan of 
the solution represented by each individual is calculated 
and assigned as the fitness value of that individual.  

 

Algorithm 1: Crossover Operation 

Input: Two individuals in the population as parents 
(parent1, parent2),  
Output: An offspring 

1    Find the mean value of sizes of the task sets in 
the chromosomes sizemean 

2    Set the crossover point as floor(sizemean/2) 
3    Generate empty chromosomes offspring1 and 

offspring2 
4    Copy the first floor (sizemean/2) elements in the 

task sets from parent1 to offspring1 
5    Copy all the elements those are not included 

in offspring1 from parent2 to offspring1 
6    Copy the first floor (sizemean/2) elements in the 

task sets from parent2 to offspring2 
7    Copy all the elements those are not included 

in offspring2 from parent1 to offspring2 
8    Randomly choose one of the offsprings and 

return it 

 

Crossover operator 

Crossover operator is performed on two individuals 
selected from the population referred as parent1 and 
parent2, and at the end of the crossover one offspring is 
generated as shown in Algorithm 1. Tournament selection 

is used while selecting the parents. In tournament selection, 
3 individuals from the population are selected randomly 
and the individual with the best fitness value is assigned as 
parent1. The same procedure is applied for selecting 
parent2. 

While generating the offspring, some part of the solution is 
taken from parent1 and the other part is taken from parent2, 
so a crossover point should be found. In this work, one 
point crossover is used. Each parent’s task set sizes for 
each VMs are calculated. Half of the mean value of the task 
set sizes determines the crossover point.  

The first offspring’s task set elements come from the first 
parent until the crossover point is reached. The remaining 
part of the offspring’s task set elements come from the 
second parent. The second parents task sets are checked 
from beginning to the end to determine whether they 
already exist in the offspring or not. If they are not 
available in the offspring, then they will be added to the 
task sets.  

For the second offspring, the same operations will be 
performed by switching the order of the parents. Two 
offsprings are created and one of them is selected randomly 
and mutation is applied to this offspring. 

To clarify the execution of the crossover operation, an 
illustrative example is provided in Figure 3. The size of the 
task sets for parent1 is 4, 2 and 3. The size of task sets for 
parent2 is 4, 4 and 1. The mean value of all the task set sizes 
is 3. Half of this value, which is 1, selected as the crossover 
point. All the elements before the crossover point are 
copied from parent1 to offspring1 and parent2 to offspring2. 
The remaining part is added from the other parent if it is 
not already included in the solution. 

 
Figure 3. Crossover applied to parents to generate 

offsprings. 

Mutation 

Mutation is applied to the offspring generated at the end of 
the crossover operator. In this study, three different 
mutation techniques are proposed.  

The first mutation operator is named as Random Swap 
Mutation Operator (RSM). This operator randomly selects 
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two tasks from different VMs and swaps these tasks. As an 
example, Task 6 from VM0 and Task 4 from VM2 are 
selected randomly and are swapped in the offspring. In the 
final solution represented by the offspring, Task 6 is 
executed on VM2 and Task 4 is executed on VM0 as shown 
in Figure 4.  

 

Figure 4. Random swap mutation operator 

The second mutation operator is named as Random Move 
Mutation Operator (RMM). This mutation operator 
randomly selects a VM and a position, removes the task in 
that position from the VM. It then assigns this task to a new 
VM where its new position is randomly set. 

The final mutation operator is named as Intelligent Move 
Mutation Operator (IMM). This operator again selects a 
task randomly and removes it from the VM it is assigned 
to. It then searches for the successors and predecessors of 
the task. The removed task is placed to a VM right after its 
predecessor or right before its successor to minimize 
communication overhead. 

Fitness calculation and population update 

Since the objective of this study is to decrease the 
makespan of the workflow, the fitness value is equal to the 
makespan of the solution present in the individuals. The 
individual with the smallest fitness value is reported as the 
best solution once the algorithm is completed.  

For population update, elitism is used. Best individual in the 
population is added to the next generation. Crossover and 
mutation operations are performed to add new individuals 
to the population. All the new individuals are kept 
separately from the current population. Current population 
is replaced by the new population after all the new 
population members are generated. 

 

Workflow simulator and scientific workflows 
WorkflowSim [13] is a well-known framework for 
simulating workflows in the cloud environment. It is 
implemented using Java programming language. We used 
WorkflowSim as our workflow simulator in the 
experiments.  

CyberShake, Montage, Epigenomics are realistic scientific 
workflows that are used to test the performance of our 
algorithm. These workflows are generated by Pegasus 
Workflow Generator [14]. The structure of these 
workflows is given in Figure 5. The CyberShake workflow 
is used to characterize earthquake hazards. The 
Epigenomics workflow is used to automate various 

operations in genome sequence processing. The Montage 
application stitches together multiple input images to 
create custom mosaics of the sky. 

 

Figure 5. The structure of scientific workflows [15] 

 

Results 

The proposed evolutionary algorithm has some parameters 
which are population size, generation size and mutation 
rate. The first set of experiments show the performance of 
the algorithm for varying population size, the number of 
offsprings generated and the mutation operators. The 
proposed algorithm updates the whole population in each 
iteration; therefore, it generates new offsprings where the 
number of offsprings are equal to the population size in 
each iteration. The performance of the algorithm for 
varying population size with respect to number of 
offsprings generated is shown in Figure 6, Figure 7 and 
Figure 8.  In each test, the population size varies between 
25, 50, 100 and the experiments are performed on Montage 
scientific workflow for 25, 50 and 100 tasks. These tests 
are also performed on CyberShake and Epigenomics 
scientific workflows, and the results show similar trends. 

 

 

Figure 6. The effect of population size on the performance 
of the algorithm for Montage Scientific Workload with 25 
tasks. 

 

The fitness value of the initial population is higher when 
the population size is set to 25 for 25 tasks, and 25 and 50 
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for 50 and 100 tasks as compared to a population size of 
100. This shows that as the number of individuals in the 
population increases, the chance to obtain better solutions 
also increases, which in turn leads to smaller fitness values. 
But as the algorithm continues to iterate, the fitness values 
of the population tend to decrease and finally reach near 
equal values. The time it takes to reach these results varies 
depending on the number of tasks considered. Therefore, 
the population size of the algorithm is set to 50 and the 
generation size of the algorithm is set to 2000 for smaller 
workflows which has 25 to 60 tasks and 5000 for larger 
workflows which has 100 tasks. 

 

Figure 7. The effect of population size on the performance 
of the algorithm for Montage Scientific Workload with 50 
tasks. 

 

Figure 8. The effect of population size on the performance 
of the algorithm for Montage Scientific Workload with 100 
tasks. 

Next the performance of our algorithm is explored for 
different mutation strategies. Mutation rate is chosen as 
0.2, 0.5 and 0.8. Depending on the previous studies from 
the literature, the number of VMs is selected as 20. The 
algorithm is executed for 10 runs and the best, average 
fitness values with their standard deviation are reported for 
different mutation operators with varying mutation rates. 

The performance of the algorithm is first evaluated using 3 
different mutation strategies. Once the performance of 
these mutation operators is evaluated, it is observed that 

depending on the structure of the workflow, different 
mutation operators can perform better in different cases, so 
hybrid mutation operators are added to the algorithm. 
Hybrid mutation operator chooses one of the mutation 
strategies depending on a given probability. Hybrid 
Mutation Operator 1 (HM1) uses Random Swap Mutation 
(RSM), Random Move Mutation (RMM) and Intelligent 
Move Mutation (IMM) with a probability of 35%, 35% and 
30%, respectively. Whereas the probabilities of RSM, 
RMM and IMM are set to 45%, 45% and 10%, respectively 
for Hybrid Mutation Operator 2 (HM2). 

The performance of these mutation strategies for different 
mutation rates using Montage scientific workflow are 
shown in Table 1. When the number of tasks considered is 
25, all operators show the same performance and obtain the 
same results in all runs, and the standard deviation is 0. As 
the number of tasks are increased to 50, all operators except 
IMM show similar performance in most of the runs and 
standard deviation is low. When 100 tasks are used in the 
experiments, the RMM and HM2 operators show the best 
performance, whereas the performance of IMM is the worst. 
When the performance of RMM and HM2 operators on 
varying mutation rates is explored, they give the best 
average results when the mutation rate is chosen as 0.5. The 
performance of CyberShake scientific workflow has similar 
trend as can be seen from Table 2. Finally, the performance 
of the algorithm using Epigenomics scientific workflow is 
given in Table 3. All operators except IMM obtain the best 
results for 24, 48 and 100 tasks. When the average values 
are compared, RMM and HM2 operators with mutation 
rates 0.5 and 0.8 obtain the best results in all runs, therefore 
their standard deviation is 0. 

From all these tests reported in Table 1, Table 2 and Table 
3, we can conclude the following for mutation operators:  

• IMM gives the worst result in all of the cases.  

• Hybrid mutation strategies give the best result in 
most of the cases due to the reason that they use 
multiple strategies so that they explore the neighbor 
solutions. 

• HM2 with mutation rate 0.5 gives the best result in 
most of the test cases. 

 Table 4 shows the performance of the algorithm for 3 
different scenarios. “EA-WM” denotes the performance of 
the algorithm when only crossover is applied to the parents. 
EA-HM2 denotes the performance of the algorithm when 
HM2 with mutation rate 0.5 is used, whereas EA-Best 
shows the best result obtained from 5 different mutation 
operators with 3 different mutation rates. As can be seen 
from the table, selecting HM2 with a mutation rate of 0.5 
gives the best result in 66% of the test cases, and gives good 
results in the remaining test cases. So instead of executing 
the algorithm 15 times for each mutation operator – 
mutation rate couple, HM2 with mutation rate 0.5 can be 
selected as the mutation operator in the proposed study.
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Table 1.  Performance of different mutation strategies using Montage Workflow 

Mutation 
# of Tasks 

25 50 100 

Type Probability Best Average Std. 
Dev. Best Average Std. 

Dev. Best Average Std. 
Dev. 

RSM 

0.2 46.77 46.77 0.00 66.20 66.22 0.03 101.67 101.74 0.10 

0.5 46.77 46.77 0.00 66.20 66.21 0.01 101.66 101.69 0.02 

0.8 46.77 46.77 0.00 66.20 66.23 0.03 101.68 101.74 0.04 

RMM 

0.2 46.77 46.77 0.00 66.20 66.25 0.05 101.91 102.00 0.10 

0.5 46.77 46.77 0.00 66.20 66.23 0.02 101.86 101.90 0.03 

0.8 46.77 46.77 0.00 66.20 66.22 0.02 101.91 102.00 0.05 

IMM 

0.2 46.77 46.77 0.00 66.38 66.51 0.06 106.05 112.48 2.39 

0.5 46.77 46.77 0.00 66.33 66.47 0.08 102.42 108.72 5.31 

0.8 46.77 46.77 0.00 66.37 66.45 0.05 102.32 106.59 5.36 

HM1 

0.2 46.77 46.77 0.00 66.20 66.24 0.04 101.68 101.78 0.19 

0.5 46.77 46.77 0.00 66.20 66.21 0.01 101.68 101.75 0.08 

0.8 46.77 46.77 0.00 66.20 66.21 0.02 101.73 101.80 0.06 

HM2 

0.2 46.77 46.77 0.00 66.20 66.23 0.03 101.67 101.80 0.22 

0.5 46.77 46.77 0.00 66.20 66.21 0.02 101.67 101.69 0.02 

0.8 46.77 46.77 0.00 66.20 66.23 0.02 101.68 101.80 0.10 

Table 2.  Performance of different mutation strategies using CyberShake Workflow 

Mutation 
# of Tasks 

30 50 100 

Type Probability Best Average Std. Dev. Best Average Std. Dev. Best Average Std. Dev. 

RSM 

0.2 262.20 262.20 0.00 283.25 283.25 0.00 303.56 303.99 0.15 

0.5 262.20 262.20 0.00 283.25 283.25 0.00 303.56 303.80 0.25 

0.8 262.20 262.20 0.00 283.25 283.25 0.00 303.56 303.66 0.20 

RMM 

0.2 262.20 262.32 0.26 283.25 283.25 0.00 303.56 306.26 2.71 

0.5 262.20 262.20 0.00 283.25 283.25 0.00 303.56 304.33 1.19 

0.8 262.20 262.20 0.00 283.25 283.25 0.00 303.56 303.85 0.24 

IMM 

0.2 262.20 262.32 0.26 283.25 283.56 0.27 327.06 340.75 8.34 

0.5 262.20 262.26 0.20 283.25 283.62 0.25 311.32 328.22 13.64 

0.8 262.20 262.26 0.20 283.25 283.41 0.25 308.57 314.54 3.67 

HM1 

0.2 262.20 262.20 0.00 283.25 283.25 0.00 303.56 303.75 0.24 

0.5 262.20 262.20 0.00 283.25 283.25 0.00 303.56 303.75 0.24 

0.8 262.20 262.20 0.00 283.25 283.25 0.00 303.56 303.75 0.24 

HM2 

0.2 262.20 262.20 0.00 283.25 283.31 0.16 303.56 303.80 0.25 

0.5 262.20 262.20 0.00 283.25 283.25 0.00 303.56 303.85 0.24 

0.8 262.20 262.20 0.00 283.25 283.25 0.00 303.56 303.61 0.15 
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Table 3.  Performance of different mutation strategies using Epigenomics Workflow 

Mutation 
# of Tasks 

24 48 100 

Type Probability Best Average Std. Dev. Best Average Std. Dev. Best Average Std. Dev. 

RSM 

0.2 5584.32 5584.33 0.01 7731.38 7731.41 0.02 32821.92 33038.76 322.91 

0.5 5584.31 5584.33 0.01 7731.37 7731.38 0.02 32821.92 32821.92 0.00 

0.8 5584.31 5584.33 0.01 7731.37 7731.37 0.00 32821.92 32821.92 0.00 

RMM 

0.2 5584.29 5584.29 0.00 7731.38 7731.38 0.00 32821.92 33223.44 250.52 

0.5 5584.29 5584.29 0.01 7731.37 7731.38 0.00 32821.92 33168.75 332.75 

0.8 5584.29 5584.29 0.00 7731.37 7731.38 0.01 32821.92 32923.61 101.99 

IMM 

0.2 5584.29 5584.37 0.05 7731.40 7778.41 148.47 41117.57 44919.36 2113.30 

0.5 5584.29 5584.34 0.05 7731.38 7731.45 0.07 41328.05 43611.06 1943.12 

0.8 5584.29 5584.35 0.04 7731.40 7731.45 0.05 43161.06 44015.77 783.13 

HM1 

0.2 5584.29 5584.29 0.00 7731.37 7731.38 0.01 32821.92 32822.15 0.48 

0.5 5584.29 5584.29 0.01 7731.37 7731.37 0.00 32821.92 32876.18 123.06 

0.8 5584.29 5584.29 0.00 7731.37 7731.38 0.01 32821.92 32822.03 0.35 

HM2 

0.2 5584.29 5584.29 0.00 7731.37 7731.38 0.00 32821.92 32885.28 200.35 

0.5 5584.29 5584.29 0.00 7731.37 7731.37 0.00 32821.92 32821.92 0.00 

0.8 5584.29 5584.29 0.00 7731.37 7731.38 0.00 32821.92 32821.92 0.00 

 

 

Table 4.  Performance comparison of the algorithm with/without mutation

Workflow # of Tasks EA - WM EA - HM2 EA - Best 

CyberShake 

30 262.199 262.199 262.199 

50 283.254 283.254 283.254 

100 341.137 303.562 303.562 

Epigenomics 

24 5584.420 5584.287 5584.287 

48 7731.619 7731.374 7731.374 

100 42887.049 32821.916 32821.915 

Montage 

25 46.789 46.765 46.765 

50 66.743 66.196 66.196 

100 113.412 101.666 101.658 
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Table 5.  Performance comparison of the proposed algorithm with algorithms from the literature 
 

Workflow 
# of 
Tasks HEFT 

Data Aware 
Scheduling FCFS Max-Min MCT Min-Min 

Round 
Robin EA-HM2 

CyberShake 

30 262.199 262.822 262.822 262.199 262.822 262.822 262.822 262.199 

50 283.254 283.771 283.771 283.254 283.771 283.771 283.771 283.254 
100 603.669 323.438 323.438 304.275 323.438 326.14 323.438 303.562 

Epigenomics 

24 5584.289 5584.37 5584.374 5584.289 5584.374 5584.374 5584.374 5584.287 

48 7731.41 7731.477 7731.459 7731.459 7731.459 7731.449 7731.459 7731.374 

100 32824.09 34963.04 34963.04 36947.03 34963.04 43018.52 40010.52 32821.97 

Montage 

25 46.765 46.773 46.773 46.765 46.773 46.773 46.773 46.765 

50 66.338 66.398 66.398 66.314 66.398 66.404 66.398 66.196 

100 102.296 102.146 102.252 102.052 102.252 102.274 102.156 101.666 

 
 
 

Table 6.  Comparison of the proposed algorithm with algorithms from the literature using t-test 
 

Workflow # of Tasks HEFT 
Data Aware 
Scheduling FCFS MAX-MIN MCT MIN-MIN 

Round 
Robin 

CyberShake 

30 1 1.82E-233 1.8E-233 1 1.8E-233 1.82E-233 1.82E-233 

50 1 2.68E-229 2.7E-229 1 2.7E-229 2.68E-229 2.68E-229 

100 9.191E-55 1.943E-33 1.94E-33 2.829E-05 1.94E-33 1.9E-34 1.943E-33 

Epigenomics 

24 4.404E-08 1.232E-37 1.23E-37 4.404E-08 1.23E-37 1.232E-37 1.232E-37 

48 2.24E-181 1.98E-191 6.3E-190 6.27E-190 6.3E-190 5.96E-189 6.27E-190 

100 1.316E-49 1.73E-103 1.7E-103 1.3E-108 1.7E-103 1.09E-115 5.9E-113 

Montage 

25 1 5.75E-213 5.8E-213 1 5.8E-213 5.75E-213 5.75E-213 

50 4.121E-16 5.353E-19 5.35E-19 1.391E-14 5.35E-19 3.092E-19 5.353E-19 

100 1.577E-24 2.704E-22 6.17E-24 1.761E-20 6.17E-24 3.079E-24 1.826E-22 
 
 

Finally the performance of the proposed study is compared 
with the algorithms from the literature as given in Table 5. 
The proposed algorithm outperforms the other algorithms 
in 6 of the 9 test cases, and gives the same performance in 
the remaining test cases. Our algorithm is especially better 
than the other algorithms when the number of tasks in the 
cloud computing system increases.  

The statistical analysis of the performance comparison of 
the algorithms using t-test is shown in Table 6. In all 
scientific workloads when number of tasks reach 100, the 
proposed algorithm significantly outperforms all related 
studies.  

Discussion  

In this study 3 different mutation operators RSM, RMM 
and IMM are proposed. Since IMM uses the information of 
the predecessor and successor of the task that is moved 
from one VM to the other, it is assumed that it would be 

intelligent, would decrease the computation time and 
would perform the best among all the mutation strategies, 
but the experimental results showed the opposite where 
IMM gave the worst performance. These results denote 
that random movements instead of intelligent strategies 
perform better. When performance of the mutation 
operators that include randomness are explored, in some 
test cases RMM outperformed RSM, whereas in others it is 
the opposite. So, hybrid mutation strategies are proposed 
which show the best performance.  

The proposed algorithm is compared with related studies 
from the literature and when the task size increases in the 
workflow, it is observed that the performance improvement 
of the proposed algorithm increases. Since in cloud 
computing systems, large number of tasks are considered, 
the proposed algorithm can provide a better solution. One 
disadvantage of our proposed study is its execution time. It 
runs much slower as compared to the studies used for 
performance comparison. 
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Conclusion 

In this study, an evolutionary algorithm for workflow 
scheduling in cloud computing systems is proposed. The 
properties of the cloud resources and workflows are used 
to design the individual representation, crossover operator 
and mutation techniques. The main power of our algorithm 
comes from the selection of individual representation with 
problem specific information, the crossover operator that 
explores the search space successfully and mutation 
techniques that explores the neighbor solutions. The 
experimental study shows that the proposed algorithm 
outperforms related studies from literature and can provide 
better solutions for cloud computing.  

The objective of the proposed study is to decrease the 
makespan of the workflow, as a future work the proposed 
algorithm can be extended to work with multiple objectives. 
The VMs considered in our study are homogenous, the 
computing power of the VMs can be heterogenous. Since in 
the individual representation, unique sets are defined for 
each VM, heterogeneity can easily be added to the 
algorithm. Finally, the proposed mutation operators and 
hybrid strategies can be used by other scheduling 
algorithms to increase their performance. 
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